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Abstract. People utilize pointing directives frequently and effortlessly.
Robots, therefore, will need to interpret these directives in order to
understand the intention of the user. This is not a trivial task as the
intended pointing direction rarely aligns with the ground truth point-
ing vector. Standard methods require head, arm, and hand pose esti-
mation inhibiting more complex pointing gestures that can be found in
human-human interactions. In this work, we aim to interpret these point-
ing directives by using the pose of the index finger in order to capture
both simple and complex gestures. Furthermore, this method can act
as a fall-back for when full-body pose information is not available. This
paper demonstrates the ability of a robot to determine pointing direction
using data collected from a Microsoft Kinect camera. The finger joints
are detected in 3D-space and used in conjugation with verbal cues from
the user to determine the point of interest (POI). In addition to this,
confidence heuristics are provided to determine the quality of the source
information, whether verbal or physical. We evaluated the performance
of using these features with a support vector machine, decision tree, and
a generalized model which does not rely on a learning algorithm.
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1 Introduction

Pointing directives are commonly used in social interactions to express an object
of interest. In order for social robots to have meaningful interactions with people,
interactions like these will need to be implemented. Unfortunately, systematically
interpreting this seemingly trivial behavior has proved to be a difficult task. The
difficulty stems from the number of factors influencing the pointing vector. A
common solution in minimizing this error is to detect the head pose [7,8] or
the gaze direction [2]. However, this correction requires additional information
which may not be available due to occlusion. Ideally the system would have a
more reliable fall-back method than using the hand pose exclusively.
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In this work, we propose to integrate contextual information for helping
decoding the users’ intentions. In order to frame the pointing direction within a
given context, we use natural language processing as well as confidence heuristics
to determine the accuracy of the information sources. The verbal component can
extend to a large range of descriptors, including object names, attributes, and
spatial references. However, in order to use this information the system needs
to be aware of the user’s environment. Fortunately, with the advancement of
object detection and localization, this task is becoming feasible. By using object
detection to learn about the environment, we can now leverage verbal cues as a
way to filter out irrelevant objects.

We claim that the proposed method which combines these channels of infor-
mation can interpret pointing directives significantly better than with the hand
pose alone. Separately, the hand pose is too unreliable as shown by previous
studies and using language alone may lead to overly complex and unnatural
descriptions. By fusing these channels together we can attain a reliable and nat-
ural way of handling this social interaction.

2 Related Work

Previous studies have attempted to use the vector from the head-hand line [9],
head-finger line [10], and forearm direction [4] as the pointing direction. Unfor-
tunately these models lack accuracy. An example of this inaccuracy can be seen
in the study performed by Abidi et al. [2] where the vector formed from the
elbow to the hand/finger provides unsatisfactory results when trying to guide a
robot. They found that using the pointing vector as the only feature led to 38%
satisfaction. Improvements were made by combining the pointing vector with
the gaze direction. However this relies on additional features that may not be
easy for a robot to obtain or susceptible to noise.

In order to address this, a study performed by Ueno et al. [5] created a cali-
bration procedure where the user points to the camera directly before pointing
to the intended object. Offsets are determined by the difference in the vector
formed from the eyes to the fingertip and the vector from the eyes to the tar-
get object. This method achieved accuracy between 80%–90% depending on the
camera position.

An alternative approach is to apply learning algorithms for finding a transfor-
mation from a set of observed spacial features to the intended pointing direction.
Droeschel et al. [3] used Gaussian Process Regression (GPR) to dramatically
reduce the error of the desired pointing direction angles in comparison to the
source vector. Similarly, Shukla et al. [6] implemented a probabilistic model to
learn the pointing direction by providing hand pose images. This approach can
be extended to other subproblems as well. Pateraki et al. [7] implemented a least
squares matching technique to minimize error with estimating the head pose.
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3 Proposed Method

We propose a computational model that takes verbal and visual input. The ver-
bal input has multiple sources of ambiguity which can be observed. The message
could become corrupted due to a failure in the Automatic Speech Recognition
(ASR), leading to a loss of keywords and potentially the intention of the user.
Even when the message is accurately retrieved, the information provided can
have varying levels of description. The level of detail required to resolve this
ambiguity is too verbose in comparison to what is naturally practiced. Further-
more, identifying what information to search for is difficult given free expression.
Similarly, visual input is susceptible to noise and may lack contextual informa-
tion not captured by the hand pose. Since both inputs carry inherent ambiguity,
we adjust the system’s trust on them dynamically.

3.1 Preprocessing

Knowledge of the objects and their respective position within the room is
required for resolving the pointing directive. This knowledge is acquired with the
use of an additional camera at a known location in the room. The image cap-
tured is fed into a Single Shot MultiBox Detector (SSD) [1] for object detection
and localization. The model is pre-trained on the VOC0712 dataset containing
20 classes. The localization only provides a bounding box on the input image
which does not provide the required spatial information of the objects (Fig. 1).

Fig. 1. Layout of the room

While the object position can be inferred from the Kinect depth stream, we
used AR markers as a simple alternative. Given the limited classes within the
model, we manually encoded 3 AR tags as object type “book”. To provide some
attribute information to the objects, we specified the color of each object by
hand (Fig. 2).
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Fig. 2. Object detection and localization with a Single Shot MultiBox Detector

3.2 Capture Process

In order to begin the capture process, subjects must use explicit keywords such
as “get” or “bring” in their pointing directive. Messages were captured using a
microphone and converted to text using a natural language processing library.
To estimate the pointing direction, we take the line formed by the base and tip
joints of the index finger. This information was captured by the Kinect using
the Metrilus Aiolos finger tracking library. Spatial instances were collected until
a minimum sample size, in our case 10, was reached in order to minimize noise.

3.3 Feature Vector

Physical Information. The pointing direction, i.e. the line formed between
the base and tip joints, is not explicitly added to the feature vector to minimize
over-fitting. Instead, the single direction is abstracted to a range of possible
directions using the 5 closest objects as features. This gives a general sense of
the direction while being too general to attribute to a specific sample instance.

Verbal Information. From the original message, the following categories are
extracted; object names, object attributes, and spacial cues. Specifically, the
number of references to each object type (e.g. “book”) as well as boolean values
for the presence of spacial and attribute keywords. For this paper, we define
spacial cues to be keywords which may provide spacial information of the desired
object, such as “bottom” and “left”.

Confidence Heuristics. A useful metric to provide is the accuracy of the
information source. To accomplish this, confidence heuristics were implemented
for both verbal input and visual inputs. For the verbal component, weights were
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applied to the mention of known attributes in the workspace, the number of
spacial cues, and the message length and structure. For the physical component,
confidence was inversely related with the variance of the capture buffer.

3.4 Model

In order to examine the importance of these features we trained a Support Vector
Machine (SVM) and Decision Tree (DT) to classify the POI. The SVM used a
linear kernel and the DT was limited to a max depth of 8. By tuning these
models and examining the accuracy we were able to construct a simpler and
more generalized model using the features provided to the learning algorithms.

4 Experiments and Results

4.1 Experiment Setup

In order to evaluate the accuracy of our approach, we conducted the experiments
in an indoor environment. There are 9 test objects in the room; 3 bottles, 3 books,
and 3 chairs. The subject stands in a fixed location in the room, approximately
8–10 ft away from the objects. The object positions relative to the Kinect are
shown in Fig. 3. In this configuration, objects are non-unique and similar objects
are spatially near one-another (e.g. the stack of books).

Fig. 3. Position of objects, Kinect, and the subject.

4.2 Procedure

For this experiment, we used 10 subjects, 7 male and 3 female. In order to
determine the POI, the features provided are fed into the SVM and DT classifiers
respectively. For the generalized model we first eliminate unrelated objects based
on the verbal information provided, if any. Then by using this reduced set of
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objects, the POI is either assigned to the object closest to the line formed by the
pointing vector. In the event of low confidence on either of the input channels, the
low confidence channel is discarded. We evaluated the accuracy of this method
under the following conditions:

1. Pointing Independently – not allowed to talk
2. Subject can only express the object name and some attribute while pointing.
3. Subject can only express spacial information in relation to other objects while

pointing.
4. Subject can freely express any information about the object while pointing.

For condition (4), subjects were required to point to 4 objects of their choos-
ing. This relaxed condition was used to learn what subjects naturally say while
identifying objects. For each of the other conditions, subjects were given a ran-
domly generated permutation of the objects in which to point to. Given this
setup, subjects were required to give 31 pointing gestures each, providing a total
of 310 samples for the entire experiment.

4.3 Results

In order to evaluate the performance of the learning algorithms, the samples
were divided into two datasets for training (70%) and testing (30%) respectively.
Figures 4 and 5 show the accuracy of the SVM and DT on the test dataset.
Notice Fig. 6 uses the entire dataset as there is no learning algorithm involved
with the generalized approach. Additionally, each method is compared to using
the pointing direction alone. As seen by Figs. 4, 5 and 6, this method is very
inaccurate. On average, only 68% of the samples included the desired object
when taking the 5 closest objects to the pointing vector. Without any learning

Fig. 4. Accuracy of the support vector machine on the test dataset
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algorithm enabled the closest object is taken as the POI which leads to an
accuracy rate no better than guessing.

The SVM was able to take advantage of additional information while man-
aging to generalize well to new samples. In all cases the inclusion of confidence
estimates for the data source led to improvements in performance. Even in the
presence of no verbal information the accuracy significantly improved from 10%
to 19% without heuristics. This improvement suggests patterns in the detected
object positions vs their actual locations. Since the positions are detected using
a combination of the SSD object localization and AR tags, these positions are
susceptible to noise. Accuracy raised further to 27% with confidence heuristics
enabled suggesting the existence of noise while estimating the pointing direction,
such as potential dead-zones where the Kinect struggles to accurately detect
the hand.

Introducing verbal information containing the object name and attribute
significantly raised accuracy as would be expected. Accuracy improved to 63%
and 67% with heuristics disabled and enabled respectively. Interestingly, complex
verbal cues encoding spatial relations led to the highest performance in this
experiment. Accuracy reached 85% with spatial cues and raised further to 89%
with the inclusion of confidence metrics.

In comparison to the SVM, the DT was able to achieve similar performance
for samples in which there was limited or no verbal information provided. With
heuristics disabled, the DT was able to achieve accuracies of 12%, 67%, 77%
for conditions (1), (2), and (3). Unfortunately decision trees are prone to over-
fitting, which can be seen by the decreased accuracy when introducing confidence
heuristics. The tree incorporated the heuristics but the model poorly generalized
to new samples. With heuristics enabled, the DT was able to achieve accuracies
of 27%, 60%, 56% for conditions (1), (2), and (3). As seen in Fig. 5, as the

Fig. 5. Accuracy of the decision tree on the test dataset
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complexity of the verbal information increased, the tendency to over-fit based
on the confidence heuristics increased as well.

Fig. 6. Accuracy of the generalized approach on the entire dataset

The generalized approach was able to achieve accuracies of 10%, 70%, 37% for
conditions (1), (2), and (3) when confidence heuristics were excluded. By including
this metric, accuracies improved to 12%, 74% and 37% respectively. This model
performed similarlywell to the learning algorithms given simple verbal information
but was unable to fully utilize more complex messages. Furthermore, the model
was only able to take advantage of the heuristics to a small degree. This gives an
insight to the difficulty of utilizing the abundance of information provided without
the assistance of a learning algorithm.

5 Discussion

As seen by the results provided above, the SVM was able to achieve the highest
overall accuracy. The DT, however, was unable to perform as well due to over-
fitting. Additionally, the DT is limited to a max depth of 8 which forces the
model to focus on key features and ignore some of the less significant ones.
In comparison, the SVM can utilize as many features as desired so long as it
benefits the classification process. Given this, the SVM is a suitable model for
fusing multiple channels of information.

The generalized approach shows the challenge of extracting and making good
use of the information available. However, the generalized approach achieved
the highest accuracy when given a simple verbal command containing an object
name and attribute. This result can be explained by the ease in which this
information can be extracted, whereas spatial relations can take on many forms
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and is harder to analyze. Failure to resolve part of the complex message can
result in the information being diminished if not entirely lost.

By implementing a suitable learning algorithm we have shown that the com-
bination of the hand pose and varying levels of verbal information can lead to
improved reliability in the absence of other body pose information required to
accurately resolve pointing gestures.

6 Future Work

Future improvements can be made by eliminating the need to preprocess the
room. The AR markers used here simplify capturing object positions but could
be replaced by segmenting objects in the Kinect depth stream in conjunction
with the object localization provided by the SSD. Such a setup may require the
use of multiple cameras in order to maximize the number of objects in view.

Additionally, the generalized approach could be improved for complex ver-
bal messages by implementing a learning algorithm that transforms the verbal
input into a set of observed features. If successful, the model could reach similar
accuracies as the SVM while still being applicable to dynamic environments.

References

1. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.:
SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46448-0 2

2. Abidi, S., Williams, M., Johnston, B.: Human pointing as a robot directive. In: 2013
8th ACM/IEEE International Conference on Human-Robot Interaction (HRI),
Tokyo, pp. 67–68 (2013)

3. Droeschel, D., Stckler, J., Behnke, S.: Learning to interpret pointing gestures
with a time-of-flight camera. In: 2011 6th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), Lausanne, pp. 481–488 (2011)

4. Li, Z., Jarvis, R.: Visual interpretation of natural pointing gestures in 3D space
for human-robot interaction. In: 2010 11th International Conference on Control
Automation Robotics & Vision, Singapore, pp. 2513–2518 (2010)

5. Ueno, S., Naito, S., Chen, T.: An efficient method for human pointing estimation
for robot interaction. In: 2014 IEEE International Conference on Image Processing
(ICIP), Paris, pp. 1545–1549 (2014)

6. Shukla, D., Erkent, O., Piater, J.: Probabilistic detection of pointing directions
for human-robot interaction. In: 2015 International Conference on Digital Image
Computing: Techniques and Applications (DICTA), Adelaide, SA, pp. 1–8 (2015)

7. Pateraki, M., Baltzakis, H., Trahanias, P.: Visual estimation of pointed targets for
robot guidance via fusion of face pose and hand orientation. In: 2011 IEEE Interna-
tional Conference on Computer Vision Workshops (ICCV Workshops), Barcelona,
pp. 1060–1067 (2011)

8. Stiefelhagen, R., et al.: Enabling multimodal humanrobot interaction for the Karl-
sruhe humanoid robot. IEEE Trans. Rob. 23(5), 840–851 (2007)

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2


412 A. Showers and M. Si

9. Burger, B., Ferran, I., Lerasle, F., Infantes, G.: Two-handed gesture recognition
and fusion with speech to command a robot. Auton. Robots 32(2), 129–147 (2012)

10. Yamamoto, Y., Yoda, I., Sakaue, K.: Arm-pointing gesture interface using sur-
rounded stereo cameras system. In: Proceedings of the 17th International Confer-
ence on Pattern Recognition, ICPR 2004, vol. 4, pp. 965–970 (2004)


	Pointing Estimation for Human-Robot Interaction Using Hand Pose, Verbal Cues, and Confidence Heuristics
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Preprocessing
	3.2 Capture Process
	3.3 Feature Vector
	3.4 Model

	4 Experiments and Results
	4.1 Experiment Setup
	4.2 Procedure
	4.3 Results

	5 Discussion
	6 Future Work
	References




