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Abstract. The Modified Mercalli Intensity Scale is a measure of the
severity of an earthquake for a nonscientist. Since the Mercalli scale
is based on perceived effects, it has a strong dependence on observers.
Typically, these reports take time to be prepared and, as a consequence,
Mercalli intensities are published hours after the occurrence of an earth-
quake. The National Seismological Center of Chile needs to provide a
preliminary overview of the observed effects of an earthquake. This has
motivated us to create a system for early tracking of people’s reaction in
social networks to infer Mercalli intensities. By tracking people’s com-
ments about the effects of an earthquake, a collection of Mercalli point
estimates is retrieved at county level of granularity. We introduce the
concept of Reinforced Mercalli support that combines Mercalli point
estimates with social support, allowing to discard social unsupported
estimates. Experimental results show that our proposal is accurate pro-
viding early Mercalli reports 30 min after an earthquake, detecting the
maximum Mercalli intensity of an event with high accuracy in terms of
mean absolute error (MAE).
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1 Introduction

The Modified Mercalli intensity scale (from now on Mercalli) is a commonly used
measure that summarizes the effects of an earthquake in public infrastructure
and damages perceived by people. Unlike the moment magnitude scale, which
quantifies the released energy during an earthquake. Energy and damages may
differ due to a number of physical variables, as the depth of the seismic movement
and the geological composition of the ground. In addition, energy and damages
may differ due to the standard used to certify the quality of buildings.

Mercalli reports are prepared by observers providing ratings for earthquakes
in a given location. Seismological centers keep groups of observers distributed
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along territories providing these reports. Usually, Mercalli reports are released
hours after an earthquake, as the strong dependence on local observers makes
difficult to provide fast and fresh information. Many factors obstruct fast report-
ing, among them the quality of communications during a disaster or the observer
availability. To provide a first fast report of damages, the National Seismolog-
ical Center have pay attention to the information propagated through social
networks.

In this paper we study how social networks can be used to infer damages in
the Mercalli scale after an earthquake. The state of the art show some efforts
in this direction with promising results in the problem of earthquake detection.
We extend the state of the art providing fast Mercalli intensity reports, focusing
our efforts in the estimation of the maximum intensity in the Mercalli scale of
damages. The spatial dimension of the problem, namely how people distribute
along a territory and how this piece of information is involved in the Mercalli
inference process, is the key building block of our fast Mercalli intensity report
method.

Main contribution of the paper: In this paper we address the problem of
Mercalli intensity inference using the spatial dimension of the data. From our
point of view, social tracking is naturally related to the description of the effects
associated to a given earthquake, as the Mercalli scale is a scale of perceived
damages. However, the spatial dimension of the problem, namely how people is
distributed along a territory and how this information is included in the inference
process, is a key aspect of the problem not addressed in the state of the art. We
claim that this aspect can not be discarded. Experimental results will show that
our method outperforms the state of the art in the specific task of maximum
Mercalli intensity detection.

This paper is organized as follows. Related work is discussed in Sect. 2. Our
method is introduced in Sect. 3. Experiments are discussed in Sect. 4. Finally, we
conclude in Sect. 5 giving conclusions and outlining future work.

2 Related Work

Twitter has been a social network of much research along time, as it is a huge
source of user-generated content, which currently reaches more than 300 million
active users per month. This is the reason why several scientists have researched
Twitter with the aim of exploiting the information available, such as finding cor-
relations between Twitter and physical events [6]. These efforts have shown inter-
esting results. For instance, during the Tohoku earthquake in 2011, a research
highlighted high correlations between the amount of tweets and the intensity of
the disaster in some locations [5].

The elaboration of early reports of seismic event based on Twitter has been
of growing interest during the last five years. Quake alert systems have been
developed in different places of the world such as Australia [7] or Italy [1]. These
systems use a burst detection algorithm to report an earthquake, where a burst is
defined as a large number of occurrences of tweets within a short time window [9].
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Despite the fact that these systems just report that an earthquake happened in
a given location, they have shown that it is possible to infer more information.
Maybe the most salient result on seismic event report relies on the estimation
of the epicenter of an earthquake event using only information recovered from
Twitter [8] as tweets counts and tweets rates.

Burks et al. [2] proposed the first approach to estimate the Mercalli intensity
of an earthquake using Twitter. Conditioned on a set of reports retrieved from
seismological recording stations provided by the Japanese seismological center,
the area around each recording station is segmented into 9 radial areas, mapping
tweets that mention the word ‘earthquake’ to these areas. Lexical features in
each areal disc are calculated to study the correlation of these features with the
Mercalli intensity. To do this, the authors explored a number of linear regression
models, showing good results in terms of accuracy. We take some inspiration from
the ideas explored by Burks et al. to design our method, but discarding the use
of data recovered from seismological stations. The point here is that Japan has a
huge network of seismological recording stations distributed along its territory,
providing valuable information to the method. The aim of our study is to explore
the predictive power of the social network itself, in specific Twitter, in absence of
seismological recording stations reports, to provide a first fast Mercalli intensity
report that does not depend on the quality and coverage of the seismological
sensor network.

An on-line system named TwiFelt [4] has exploited the Twitter stream to
provide an estimation of the extension area where an earthquake was felt in
Italy. The system only use geo-located tweets to infer the area showing promising
results for high intensity earthquakes. One limitation of this system relies on the
availability of geo-located tweets, as a great proportion of the tweets recovered
in our country from the stream does not include the tweet location.

Maybe the closest work to our proposal is the one authored by Cresci et al. [3].
In that paper the authors studied how to use Twitter to estimate the maximum
intensity of an earthquake using only Twitter features. Using linear regression
models over a huge collection of aggregated features (45 features were tested in
that proposal), the authors showed that Twitter has enough predictive power
to infer the maximum intensity of an earthquake in the Mercalli scale. The
set of features tested by the authors comprises features extracted from user
profiles, tweets contents and time-based features of the tweet stream (e.g. tweet
interval rates). Our proposal can be considered as an extension of this work but
focusing only on tweets contents. We will use a linear regression model for a
first estimation of the Mercalli intensity. The main difference in the maximum
intensity task between our method and the method proposed by Cresci et al. is
that our proposal works over a reduced set of features (only 12 lexical features)
in comparison with the 45 features used in [3]. We will show in our experiments
that out method performs well in this specific task, taking advantage of the
spatial dimension of the data boosting the results achieved by Cresci et al. [3].
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3 Early Inference of Mercalli Intensities

We use information gathered from social networks, in specific from Twitter,
to infer damages in the Mercalli scale. As this information can be collected and
summarized in short periods of time, it is possible to infer at the early stages of an
emergency the Mercalli intensities of a given earthquake. We divide the inference
process in 3 stages: (1) Social tracking of earthquake effects, (2) Estimation of
a region of interest, and (3) Inference of the maximum Mercalli intensity.

The first stage corresponds to the social tracking of an earthquake’s effects.
Each event of interest is characterized at county level, the finer level of geolo-
cation considered in our method. The second stage of the process starts with a
regression process applied to infer the region of interest of a given earthquake.
The last stage of our method takes the collection of point estimates to infer the
maximum intensity in the Mercalli scale for a given seism. We introduce a Rein-
forced Mercalli variable that is used to adjust the Mercalli estimate according
to the level of support of the point estimate. Finally, we look for the maximum
intensity at the area of interest, fixing this value as the maximum intensity of
the earthquake.

3.1 Social Tracking of Effects

Posts are collected to extract features of the event that characterize the social
perception of the earthquake. In our study we use Twitter to collect the data.
Each perceived event is characterized at a level of aggregation that describes the
perception of the earthquake in a county. For each county batch, a set of features
is calculated to describe the earthquake.

County batches are built as follows. After each earthquake, a set of tweets
that matches the keywords “quake”, “earthquake” or “seismic” are retrieved
from Twitter. The time considered to collect the data is a parameter of our
system, with a window length of 30 min by default. Shorter windows can be
considered but at the cost of less accurate Mercalli predictions. Tweets that are
mapped to counties are aggregated into county batches. This piece of data is the
basic unit of earthquake characterization used for feature extraction.

We map tweets to counties using the user location field. We were forced to use
this field as only a very small fraction of the tweets in our country is geo-located.
The user location field is retrieved from the user profile and then, using a fuzzy
string matching procedure, it is mapped to a specific county. We understand that
many tweets will be effectively posted from a location matching the user location,
giving us a trace of the tweet spatial distribution. More accurate methods for
tweet geolocation can improve this aspect of our method but to the best of our
knowledge, this task is challenging and it is still open.

Twelve features are considered at this level of aggregation, as is shown in
Table 1. These features are calculated in each county data batch, characterizing
the set of tweets mapped to each specific county for a given seism.
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Table 1. Features used for our tracking system

Feature Description

NUMBER OF TWEETS Number of tweets in the data batch

TWEETS NORM Fraction of tweets over county population

AVERAGE WORDS Average length of tweets in number of words

AVERAGE LENGTH Average length of tweets in number of chars

QUESTION MARKS Fraction of tweets with question marks

EXCLAMATION MARKS Fraction of tweets with exclamation marks

UPPER WORDS Fraction of tweets with uppercase words

HASHTAG SYMBOLS Fraction of tweets containing the # (hashtag) symbol

MENTION SYMBOLS Fraction of tweets containing the @ (mention) symbol

RT SYMBOLS Fraction of tweets containing the “RT” symbol

CONTAINS EARTHQUAKE Fraction of tweets containing the word “earthquake”

POPULATION Number of inhabitants in the county

3.2 Estimation of a Region of Interest

Our method starts detecting the region of interest from where county data
batches will be used to infer Mercalli intensities. This step of the method sep-
arate counties into two classes. We do this using a 0/1 classifier trained over
county-seismic data batches pairs. These data batches were labeled according
to the actual Mercalli intensity reported into two disjoint classes. The 0 class
represents an earthquake that was not perceived (not reported in the Mercalli
scale) and the 1 class represents an earthquake that was effectively perceived by
people with an intensity value in the Mercalli scale. Each data batch is repre-
sented by a vector of features, using the features defined in Table 1. Once the
0/1 classifier was trained, our method is ready to detect the region of interest
on new earthquakes at county level.

The set of counties labeled in the 1 class is used as an input to characterize
the event in the third and last stage of our method: the inference of the maximum
intensity in the Mercalli scale. Data batches labeled in the 1 class are provided
to our method for a regression procedure, where the Mercalli intensity at each
county will be estimated.

3.3 Maximum Mercalli Intensity Estimation

Reinforced Mercalli Estimation. The maximum Mercalli intensity estima-
tion starts by inferring a reinforced Mercalli variable at county level. Let i be the
index of a county in the set of counties distributed in the region of interest of the
seism. The social support s(i) ∈ [0, 1] at the i-th county is defined as the ratio
between earthquake observers (people who have posted at least one message
related to the seismic movement during the period of observation) and Twitter
users at the county. We combine m(i) with its support s(i) to provide a rein-
forced Mercalli support estimation. The Reinforced Mercalli support estimation
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consist only of supported Mercalli point estimates. Unsupported Mercalli point
estimates will be discarded combining both factors in a soft minimum bivariate
function defined as follows:

Reinforced Mercalli Support(i) =
2 · m(i) · s(i)
m(i) + s(i)

, (1)

where m(i) is the Mercalli point estimate at the i-th county, constrained to
the [0, 1] interval. To achieve a Mercalli point estimate in the [0, 1] interval, we
normalize the estimate from the Mercalli intensity scale in {1, 12} to [0, 1] as
m(i) = m(i)−1

11 . Then, as m(i) and s(i) range in [0, 1], the Reinforced Mercalli
support function also ranges in [0, 1].

The Reinforced Mercalli support only rates high supported events with high
intensity in the Mercalli scale. The rationale of the Reinforced Mercalli support is
to limit the effect of false positives. Then, only relevant events will be included
in the tracking system at the cost of diminishing the effect of supported low
intensity earthquakes. This cost is marginal for the tracking system as Mercalli
intensity reports are only critical for high intensity earthquakes. Low intensity
earthquakes can be characterized using only the Richter magnitude scale. As for
low intensity events the impact in terms of damages is very limited, it is not
necessary to characterize this kind of earthquakes on the damage scale.

Adjusted Mercalli at County Level and Maximum Intensity Detec-
tion. Our method considers each county as a sensor. Data aggregation at county
level unleashes people reactions in front of an earthquake aggregating different
reaction signals. We model the activation of a sensor at county level using an
activation function. We do this using a sigmoid function 1

1+e−x to model the
level of activation of a county in front of a given earthquake. The activation of
the function is fixed to Mercalli intensity 3, as is defined as the first level of
the Mercalli scale where the event is felt. Then, a county is considered as active
starting from level 3, as from this level to up, the earthquake will be reported.
We do this by applying the sigmoid function to the Reinforced Mercalli support,
scaling the function to {1, 12} and shifting it to 3 (11 · Re.M.S. + 1){1,12} − 2.
As the sigmoid function ranges in [0, 1], by combining it with the Mercalli point
estimate of the county m(i) we obtain an Adjusted Mercalli intensity at the
county, denoted by Madj(i) and obtained from the following expression:

Madj(i) = m(i) · Sigmoid
(

11 ·
[
2 · m(i) · s(i)
m(i) + s(i)

]
− 1

)
. (2)

The value of the Adjusted Mercalli intensity is retrieved from a surface that
comprises a collection of sigmoid functions in the Mercalli scale, stretching the
sigmoid according to the Mercalli point estimate.

Adjusted Mercalli intensities are at some extent noisy signals of the event, as
the quality and quantity of information per county varies. However, by looking
for the maximum intensity, our method is able to detect the county with the
highest support and consequently, the high confidence data to provide a fast
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estimation of the maximum intensity in the Mercalli scale. Then, our method for
maximum intensity detection ends as follows, looking for the maximum adjusted
Mercalli in the region of interest (ROI) for a given earthquake:

Max. Intensity = Max{Madj(i) | i ∈ ROI}.

4 Experiments

4.1 Dataset

A collection of 825310 tweets was retrieved from Twitter. These tweets were
collected using keywords as “quake”, “earthquake” and “seismic movement” (in
Spanish). The collection comprises a year and a half of Twitter data, matching
the keywords during 2016 and the first semester of 2017. From these tweets, only
2200 include the geolocation field, representing only the 0.26% of the data. The
collection was posted by 309749 users where 207015 records a location field in
their profiles, representing the 66.8% of the users recorded in the data.

As only a very small fraction of the tweets is geo-located, we inferred the
tweet location using the user location. From the set of 207015 users with user
location in our dataset, 57546 matched Chile in the country field. Then we used
approximate matching to associate this field with a Chilean county. To do this
we used fuzzy string matching, implemented in Fuzzy wuzzy1. Using an 80% of
fuzzy confidence level, a total of 41885 Chilean users were mapped to Chilean
counties. These users record in the dataset a total of 190249 tweets mapped to
the 345 different counties in Chile.

A second database was used to conduct a cross match between Twitter and
earthquake records. We used data collected by the National Seismological Center
of Chile, comprising 331 records of earthquakes in Chile during the observation
period, ranging magnitudes in Richter from 2.2 Mw to 7.6 Mw. In addition, the
National Seismological Center of Chile provided Mercalli reports for these events
along the Chilean territory.

The cross match between our tweet collection and the Mercalli earthquake
records was conducted over the county field. Only county batches that record
tweets until 30 min after an earthquake were studied, accounting for a total of
6790 county-Mercalli pairs with Twitter activity. A total amount of 6548 county
batches unmatched a Mercalli report, indicating the presence of tweets that men-
tion earthquake keywords in counties where it was unperceived. In summary,
our Twitter-Mercalli dataset comprises 331 earthquakes with 187317 tweets
distributed over 345 Chilean counties during 18 months of Twitter activity,
with county-earthquake pairs separated into 6790/6548 perceived/not-perceived
earthquake data batches.

From the total amount of 331 earthquakes, 264 were selected for training
and exploratory issues, reserving the remaining 68 earthquakes for testing and
1 Fuzzy wuzzy is a Python string matching library that uses the Levenshtein Distance

to calculate differences between string sequences. It is available in: https://github.
com/seatgeek/fuzzywuzzy.

https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
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validation tasks, representing a training/testing split of 80/20 percent. The train-
ing/testing splitting process was conducted using random sampling over earth-
quakes according to each Mercalli level, keeping the same proportions between
intensities in training and testings folds, avoiding over/under representations of
low/high intensity earthquakes in training and/or testing folds. Training/testing
proportions of instances according to the maximum Mercalli intensity report of
each earthquake are shown in Table 2.

Table 2. Training/testing instance partitions according to the maximum Mercalli
intensity of each seism

Partition II III IV V VI VII

Training 11 105 103 39 4 2

Testing 3 26 26 10 2 1

Overall 14 131 129 49 6 3

4.2 Estimating the Region of Interest

Training/testing county data batches accounts for 10491/2847 instances at
county level. To study the problem of perceived/not-perceived earthquakes at
county level, we train a 0/1 classifier. In the training fold 5021 instances accounts
of the 0 class (unreported Mercalli) and 5470 for the 1 class (reported Mercalli).
Training was conducted using 5 folds cross validation, using an SVM of C-SVC
type for classification with a radial basis function as a kernel implemented in
Weka 3.7. As the focus of the problem is the detection of the 1 class, we used
cost sensitive learning, penalizing false negatives in the 1 class to maximize the
recall, at the cost of a high FP rate. More learning algorithms were tested among
them naive Bayes or a Multilayer Perceptron but SVM was the one with the best
results, with 7325 correctly classified instances, representing in overall a 69.82%
of accuracy. The detailed accuracy by class is shown in Table 3

Once model selection is evaluated, applying the model built on training
instances on the testing instances, the performance of the classifier reaches 1867
correctly classified instances over a total amount of 2847 instances, achieving
a 65.57% of accuracy. These results show that the classifier generalizes well,

Table 3. Training accuracy by class using 5-folds cross validation

Class FP rate Precision Recall F-measure ROC area

0 (unreported) 0.189 0.736 0.575 0.646 0.693

1 (reported) 0.425 0.675 0.811 0.737 0.693

Weighted avg. 0.312 0.705 0.698 0.693 0.693
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as overall accuracies between training and testing partitions are similar. How-
ever, what is really important is that the recall in the testing partition remains
high, showing good properties in terms of predictability for the 1 class. The
results disaggregated by class are shown in Table 4.

Table 4. Testing accuracy by class

Class FP rate Precision Recall F-measure ROC area

0 (unreported) 0.184 0.765 0.517 0.617 0.667

1 (reported) 0.483 0.594 0.816 0.687 0.667

Weighted avg. 0.323 0.685 0.656 0.650 0.667

Table 4 shows that the 0/1 classifier is able to recover the region of interest for
each earthquake. The results show that each region of interest is over-estimated
as the low precision for class 1 shows but achieving a good coverage of the
actual region as its high recall shows. To better understand how the 0/1 classifier
behaves, we disaggregate matching/mismatching testing instances according to
the actual level of Mercalli intensity.

Table 5. Matching/mismatching instances according to the actual Mercalli intensity

Actual Predicted - I II III IV V VI VII

0 0 790 - - - - - - -

0 1 737 - - - - - - -

1 0 - 66 85 62 25 5 - -

1 1 - 130 234 351 198 65 95 4

Instances 1527 196 319 413 223 70 95 4

Error rate 0.48 0.33 0.26 0.15 0.11 0.07 - -

As Table 5 shows, the false negative rate is very low, and as the intensity of
the earthquake increases, the error rate decreases. High intensity earthquakes
(V to up) show an almost perfect performance. The thick part of this error
occurs in low intensity earthquakes (III to down), which is natural for this kind
of phenomena as in this part of the Mercalli scale many people do not recognize
the event as an earthquake, being felt only under very favorable conditions (for
instance, on upper floors of buildings). On the other hand, for the 0/1 classifier
it is hard to distinguish counties where the earthquake is reported but it is
unperceived. The over estimation of the region of interest will not affect the
performance in the task of maximum intensity detection in the Mercalli scale of
damages, as by looking for the maximum intensity in this area, the method will
discard noisy data recorded in many counties.
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Detecting the maximum intensity of an earthquake in he Mercalli
scale

Now we compare our method with the state of the art in the specific task of maxi-
mum intensity prediction in the Mercalli scale of damages. Results based on mean
absolute error measures for each earthquake in the testing set are shown in Table 6

Table 6. Averaged MAE of the maximum Mercalli intensity for each earthquake.

Proposal Cresci et al. [3] Baseline

II 〈1.00,+1.0,−1.0〉 〈2.00,+0.0,−0.0〉 〈4.12,+0.6,−0.4〉
III 〈0.69,+1.3,−0.6〉 〈1.05,+0.9,−1.0〉 〈3.04,+1.0,−0.8〉
IV 〈1.25,+2.7,−1.2〉 〈0.20,+0.7,−0.2〉 〈1.27,+1.4,−0.8〉
V 〈0.55,+0.4,−0.5〉 〈0.73,+1.2,−0.7〉 〈0.94,+0.8,−0.6〉
VI 〈1.00,+1.0,−1.0〉 〈0.5,+0.5,−0.0〉 〈1.00,+1.0,−1.0〉
VII 〈1.00,+0.0,−0.5〉 〈11.00,+0.0,−0.0〉 〈1.00,+0.0,−0.0〉

As Table 6 shows, our method performs well in the specific task of maxi-
mum intensity prediction, being very competitive with the state of the art. The
method of Cresci et al. [3] performs better than our method in IV level intensity
earthquakes but at the cost of poor results on low and high energy earthquakes.
The improvement of our method over the baseline is important. Note that the
baseline correspond to a regression over the lexical features at county level, pick-
ing the maximum value detected in each earthquake. Our proposal applies the
adjusted Mercalli at county level to improve the baseline, picking the maximum
over the set of adjusted Mercalli estimates defined in Eq. 2. The results show
that adjusted Mercalli variable is useful for maximum intensity detection.

5 Conclusion

In this paper we have proposed the method that predicts the maximum Mer-
calli intensity of an earthquake using social media features. The state of the art
shows efforts in earthquake detection, namely where an earthquake was felt and
which was its maximum intensity. Our proposal performs well in this specific
task, being very competitive with the state of the art [3] in earthquake detection
and maximum intensity prediction tasks using less features. However, the spe-
cific contribution of our proposal is to provide a new Mercalli estimate, named
adjusted Mercalli, combining supported estimates at county level for the regres-
sion method. Our proposal discards the use of geological models of the ground
or the inclusion of signals captured from spatially distributed seismographs as
was done in previous work [2] The simplicity of our method favors its application
in many countries, avoiding the need to build huge networks of seismographs to
track the effects of earthquakes. Our method shows that social media provides
valuable information helpful for the task of Mercalli damages reports, providing
accurate and fast reports of maximum Mercalli intensity.



Early Tracking of People’s Reaction in Twitter for Fast Reporting 257

Currently, we are extending our method to work with more features. The
inclusion of time-based features helps to characterize the tweet stream (e.g. tweet
interval rate), a valuable source of information for earthquake detection task. We
think that these features will also be helpful in the elaboration of spatial intensity
reports. In addition, we are working with network-based features (e.g. RT depth).
Preliminary experiments using these features show promissory results.

At last but not least, the design of a system for early tracking of earthquake
damages is the next step of this project. How to efficiently use our method to
provide spatial real-time damage reports is one of our most challenging tasks in
the near future. The pursuit of this goal involves efforts in data integration and
visualization, among other challenging tasks four our group.
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