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Abstract. Human operators interacting with machines or computers continu-
ally adapt to the needs of the system ideally resulting in optimal performance. In
some cases, however, deteriorated performance is an outcome. Adaptation to the
situation is a strength expected of the human operator which is often accom-
plished by the human through self-regulation of mental state. Adaptation is at
the core of the human operator’s activity, and research has demonstrated that the
implementation of a feedback loop can enhance this natural skill to improve
training and human/machine interaction. Biocybernetic adaptation involves a
“loop upon a loop,” which may be visualized as a superimposed loop which
senses a physiological signal and influences the operator’s task at some point.
Biocybernetic adaptation in, for example, physiologically adaptive automation
employs the “steering” sense of “cybernetic,” and serves a transitory adaptive
purpose – to better serve the human operator by more fully representing their
responses to the system. The adaptation process usually makes use of an
assessment of transient cognitive state to steer a functional aspect of a system
that is external to the operator’s physiology from which the state assessment is
derived. Therefore, the objective of this paper is to detail the structure of bio-
cybernetic systems regarding the level of engagement of interest for adaptive
systems, their processing pipeline, and the adaptation strategies employed for
training purposes, in an effort to pave the way towards machine awareness of
human state for self-regulation and improved operational performance.
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1 Introduction

Human operators generally face a complex, dynamic and uncertain environment under
time pressure. The occurrence of unexpected events (e.g., critical failure) requires
flexibility and cognitive regulation policies to meet task demand (Sperandio 1978).
Various strategies may be employed by humans to achieve adaptation. In a study of the
physiological effects of a kinetically adaptive environment, Jager et al. (2017) describe
the reciprocal relationship between adaptive humans and such environments. Schwarz
and Fuchs (2017) point out that “humans are adaptive systems themselves”, that is,
they are able to mitigate critical user states by applying self-regulation strategies. They
cite as examples “investing more effort if task demands increase or drinking coffee to
combat fatigue”. Additionally, the system itself can be made to adapt to the human.

Some examples of the integration of simultaneous human and system adaptation are
aimed at psychophysiological goal achievement, not necessarily at the immediate
achievement of optimal performance. Biocybernetic adaptation has been employed as a
self-regulation training method for application in clinical and sports settings (Pope et al.
2014). In these technologies, the adaptation approach involves physiological signals
modulating some aspects of the training tasks in such a way as to reward trainees for
approaching a target signal. These physiological self-regulation training technologies
are designed to improve adherence to a training regimen by delivering the training
through engaging, motivating, and entertaining experiences. The processing employed
in these technologies is minimal to enable real-time feedback. Likewise, the decision
rules are usually simple, e.g., modulating a single task element based upon signal level.
For instance, some consequences in a digital game or simulation reward the user for
achieving a psychophysiological goal by diminishing an undesirable effect in a game
(analogous to negative reinforcement). Other consequences reward the user for
achieving a psychophysiological goal by producing a desirable effect (analogous to
positive reinforcement) such as additional scoring opportunities. That is, some mod-
ulation effects enable superimposed disadvantages in a digital game or simulation to be
reduced by progression toward a psychophysiological goal, whereas others enable
advantages to be effected by progression toward a psychophysiological goal.

Schmorrow proposes a system that adapts to a trainee’s level in the context of flight
training: “Imagine an aviation recruit experiencing a simulator that is tailored to the
trainee at the most fundamental neurophysiological level. Imagine that this simulator’s
integrated helmet and sensor suite are hooked up to a ‘black box’ that modifies the
simulated flight exercise based on a real-time assessment of the student pilot’s cog-
nitive state, using information collected by the sensor suite.” (Schmorrow 2005).
Similarly, the task modulation concept embodied in the self-regulation training tech-
nology based on biocybernetic adaptation may be adapted for use in task simulators.
The simulator embodiment of the closed-loop modulation concept, Stress
Counter-response Training (Palsson and Pope 1999), integrates physiological
self-regulation training into the practice of mission-relevant tasks. Stress
Counter-response Training is based upon the concept of instrument functionality
feedback which ties the functionality of a simulator to the requirement to maintain the
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physiological equanimity suited for optimal cognitive and motor performance under
emergency events in an airplane cockpit.

In these technologies, the physiological modulation method is tailored to the overall
game or simulation task, but without regard for changes in the task context or other
situational factors. Fuchs and Schwarz (2017) identify this as a “hard-coded” adapta-
tion strategy, where the system triggers a predetermined adaptation strategy. As will be
shown, even more complex adaptation strategies have considerations in common with
the simple self-regulation training strategy.

2 Biocybernetic Loop Implementation for Adaptive Systems

A first and important step for biocybernetic adaptation is to determine what temporal and
magnitude changes in physiological signals reflect operator or trainee state changes that
warrant mitigation (Fairclough and Gilleade 2013). Indeed, one important concern with
the implementation of such assisting systems is to succeed in providing assistance in a
timely and appropriate manner (Parasuraman et al. 1999). Spurious triggering of the
assistance system may have negative consequences on human operators (Parasuraman
et al. 1997). Therefore, an approach is to target mental states that are (1) relevant pre-
dictors of human performance and (2) that can be robustly identified via behavioral and
neurophysiological measures. Mental states of interest are discussed, followed by a
description of the biocybernetic adaptation pipeline.

Traditionally, most of the research has focused on mental workload-based biocy-
bernetic adaptation. However, the usability of the mental workload construct remains
limited. Although theoretically and practically interesting, it remains ill-defined
(Mandrick et al. 2016), providing a non-specific and generic index rather like a ther-
mometer. Moreover, mental workload should not be viewed as the result of an external
demand applied on an individual passively adapting to it, but rather as an active process
that depends on the human operator’s level of engagement. For instance, a highly
demanding situation will not necessarily induce high workload if an individual does not
engage to achieve. Several reasons may account for this lack of engagement such as
excessive task difficulty (Durantin et al. 2014), repetitive and boring tasks (Durantin
et al. 2015) and cognitive fatigue (Hopstaken et al. 2015). Conversely,
over-engagement in a non-priority and non-demanding task could induce high work-
load (e.g., interacting with the entertainment system or texting while driving) and
jeopardize safety (Lee 2014; Dehais et al. 2012). Thus, human cognitive performance
has to be considered the byproduct of the level of task demand by the level of task
engagement. Interestingly, the concept of engagement is related to a triad of attentional
states: attentional disengagement, attentional over-engagement, and attentional
in-engagement. Also, the study of engagement is richer than the concept of workload:
this concept accounts for neurophysiological and behavioral phenomena and it can be
characterized with portable measurement tools (Verdiere et al. 2018). For example, a
biocybernetic system was designed to mitigate task disengagement due to automation
by triggering changes in task mode based on the fluctuations of an engagement index
constructed as a ratio of EEG band powers (Scerbo et al. 2000). Derivation of the
engagement index was based on the proposition that the closed-loop paradigm that
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represents the adaptive configuration in which physiological indices are to have a
steering role can also serve as a prior validation test bed for the indices themselves
(Pope et al. 1995).

Firstly, attentional disengagement occurs when task demand is too low leading to
episodes of mind wandering (Durantin et al. 2015) or when task demand exceeds
mental capacity. In these two extreme situations, human operators generally drop the
primary task to focus on automatic secondary tasks. These two states are characterized
by the disengagement of the executive network, underpinned by the deactivation of the
dorsolateral prefrontal cortex (Durantin et al. 2014; Harrivel et al. 2013). Secondly,
attentional over-engagement, also referred to attentional tunneling (Wickens 2005) and
“channelized attention” (Harrivel et al. 2016), is defined as “the allocation of attention
to a particular channel of information, diagnostic hypothesis or task goal, for a duration
that is longer than optimal, given the expected cost of neglecting events on other
channels, failing to consider other hypotheses, or failing to perform other tasks”. Some
authors postulate that this impaired attentional state results from a disengagement
deficit of the orientation network underpinned by the thalamus (LaBerge et al. 1992).
Whereas the assessment of such brain structure remains difficult to be perform in
operational context - it requires the use of fMRI – some studies have disclosed that
attentional over-engagement is associated with an attentional shrinking and long fix-
ation time (Dehais et al. 2011). Recently, the EEG engagement index proposed by Pope
et al. (1995) was shown to be sensitive to episodes of over-engagement leading to
inattentional deafness to auditory alarm under real-flight settings (Dehais et al. 2014).

Lastly, recent work has shown the existence of an attentional in-engagement state
whereby human operators are unable to engage their attention to process relevant
information when facing critical situations. One could describe this state as “panic
mode” in a vernacular fashion. This state, that is the exact opposite of attentional
tunneling, is explained in terms of impaired thalamus tonic mode to maintain focused
attention. This state of “attentional confusion” or “attentional entropy” is associated
with high saccadic activity and absence of long fixations (Dehais et al. 2015).

Another interesting approach could be to identify the dynamic model of such
features. Tools derived from the linear algebra and control communities can be applied
to perform an approximation of the neurophysiological features model that could be
explored to monitor the engagement of an operator. The method provides a smooth
interpolation of all the data points enabling the extraction of frequency features that
reveal fluctuations in engagement with growing time-on-task (Poussot-Vassal et al.
2017). Alternatively, the use of large-scale EEG connectivity is a relevant approach not
only to detect but also to predict future performance and fluctuation of engagement
(Senoussi et al. 2017).

The implementation of the biocybernetic adaptation pipeline mostly consists of the
classical steps of a Brain-Computer Interface, that is to say a signal acquisition step
(e.g., EEG), a preprocessing step that generally deals with artifacts (e.g., eye blinks)
and better conditions the signal, a feature extraction step (e.g., extraction of the average
power in specific frequency bands), a machine learning step (e.g., a classification step),
and lastly an adaptation step (Roy and Frey 2016). This last step can consist of
providing the estimated mental state to the system’s decisional unit. The decisional unit
system allows the loop to be closed. This is done by implementing a decisional unit
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driven by a policy resulting from the resolution of a (Partially Observable) Markov
Decision Process ((PO)MDP) that takes into consideration uncertainties on actions,
partial observable states (i.e., mental states) or potentially non-deterministic behavior of
the human operator (Gateau et al. 2016; Drougard et al. 2017). Eventually, a last step is
to design a catalogue of adaptive solutions to mitigate decline in performance and
improve human performance. These solutions are presented in the next section.

3 Successful Implementation of Adaptive Solutions

Self-regulation training can be deliberate as described earlier or could occur inadver-
tently as a result of an operator’s exposure to an adaptive system. Technology in the
field of self-regulation training has commonly taken into account the fact that the
physiological self-regulation behavior and skill of the trainee changes as training
progresses. These systems have incorporated algorithms that respond to momentary,
transient changes in physiological signals in real time, as well as longer time course
changes that reflect a trainee’s emerging ability to voluntarily control physiological
parameters. The momentary changes are displayed as information and reward feedback
for learning of self-regulation skill, while the longer time course measurements are
assessed to guide the setting of higher and higher self-regulation performance goals.

An early example is an electromyographic biofeedback training system that
implemented a shaping procedure by adjusting the gain of the feedback loop after each
interval of training based on a trainee’s success at lowering EMG levels (Pope and
Gersten 1977). This system employed a fixed strategy by which task characteristics are
adapted to the individual. A training strategy implies a set of assertions relating strategy
characteristics and their effects on training progress. In a more advanced implemen-
tation, a data base of these assertions could be updated on-line and the training system
would be self-improving. In effect, the system would evaluate the results of mini-
experiments with various strategy versions within a session and modify the strategy
accordingly. O’Shea and Sleeman (1973) developed this hierarchical framework in the
context of adaptive teaching systems.

Similarly, physiologically adaptive systems will need to be designed to respond
appropriately not only to transient changes and spontaneous drifts in operator state due
to developing conditions such as fatigue, but also to conditioning of physiological
changes as a result of an operator’s extended exposure to information feedback about
their physiological state. Accordingly, an adaptive implementation that took into
consideration the operator “training” effect of its information feedback employed a
continually updated model of the operator analogous to the “template of average
performance” in the “symbionic cockpit” (Reising and Moss 1985). Techniques
developed for adapting a brain-computer interface classifier to adjust for possible
features drift could be applied to address this type of consequence (Vidaurre et al.
2011). Configuration of an adaptive system that takes into consideration these
long-term and short-term processes is depicted in Fig. 1.

An additional strategy is the deliberate exercise of self-regulation skill acquired as a
result of self-regulation training. Prinzel et al. (2002) demonstrated that participants
given feedback of the accuracy of their estimates of engagement levels, across a
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partitioning of the range of an EEG-based engagement index into six subranges, were
able to achieve “a 70% level of correct identifications.” Further, while interacting with
an adaptive automation system, “Participants in the self-regulation condition were
better able to maintain their task engagement level within a narrower range of task
modes, thereby reducing the need for task mode changes. The effect of this was an
increase in task performance as well as a decrease in reported workload.” Prinzel et al.
(2002) further comment, “The neurofeedback provided during training may have
allowed these participants to better manage their cognitive resources and thereby
regulate their engagement state, allowing them to better respond to a change in
automation mode. The results of this study support other research that has shown that
physiological self-regulation could enhance the cognitive resource management skills
of pilots and complement the benefits of adaptive automation.” An outcome of
self-regulation training accomplished with an adaptive system is improved cognitive
state management skill which is effectively meta-awareness on the part of the trainee.

User
Adjustable
System

Selectable
Short-Term
Adapta on
Strategy

Long-Term

Trend

Achieved

Output

Desired
Short-Term

Criteria

Desired
Long-Term
Engagement

Long-Term
Adapta on
Scheme

Short-Term
Engagement

Status

Human/System
Loop

Biocyberne c

Biocyberne c

Fig. 1. Configuration of an adaptive system for managing human user engagement. The Desired
Short-Term Engagement Criteria and Long Term Engagement Trends vary according to context
(e.g., phase of flight). The Adjustable System has adjustable parameters, such as automation
level. The Adjustable System is adjusted by the currently invoked Short-Term Adaptation
Strategy and is driven by input from the human user. The Selectable Short-Term Adaptation
Strategy has a catalog of selectable strategies, each one of which is in effect for a selectable
duration. The currently invoked Strategy is selected by the Long-Term Adaptation Scheme and is
driven by the discrepancy between the desired engagement criteria and actual engagement status.
The Long-Term Adaptation Scheme is driven by the discrepancy between the desired and actual
engagement trend. The Achieved Engagement Output is the level of an engagement index
derived from physiological and behavioral measures and is driven by the effects of the Adjustable
System on the Human User.
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This effect demonstrates an observing system as defined in second order cybernetics
(von Foerester 1995).

In addition to clinical and sports applications, biocybernetic adaptation as
self-regulation training is applied in a third area, the aircrew training context (Stephens
et al. 2017). In this application, the instructor-trainee interaction is influenced, closing
the loop on a broader time scale. Here the adaptation involves an attention management
training approach to complement the usual observations of airline training instructor
pilots by informing them, in the training context, of the occurrence of attention-related
human performance limiting states (AHPLS) experienced by their trainees. Classifier
models are trained to recognize trainee state during simulated flight scenarios based on
patterns of the physiological signals measured during benchmark tasks (Harrivel et al.
2016). Machine learning models’ real time determinations of the cognitive states
induced by the scenario tasks are displayed as gauges embedded in a mosaic of win-
dows that also displays real time images of the scenario tasks that the trainee is
performing (e.g., scene camera, simulator displays, animation of simulator controls),
and this mosaic1 is video recorded (Harrivel et al. 2017). The loop is closed when their
state information is conveyed to the trainee as part of each session debrief. This
approach involving trainee-trainer interaction leverages the effective bio-social influ-
ences on learning specified by Kamiya (Strehl 2014). Like the adaptive automation
application, the adaptation strategy here takes into consideration contextual parameters
such as the instructor’s discretion regarding the appropriateness of conveying particular
state information to the trainee.

This psychophysiologically-based AHPLS detection and mitigation system is
modeled after the Hypoxia Familiarization Training (HFT) employed in aviation. The
focus of HFT is on recognizing symptoms of hypoxia and taking steps to recover from
the hypoxia being experienced. Similarly, recognition and recovery from AHPLS is
intended to improve self-monitoring of and response to one’s own attentional perfor-
mance, maintaining more effective states and managing attention. Such meta-awareness
results from this form of self-regulation training intended to develop attention man-
agement skill. If deployed in ground-based commercial aviation training contexts, the
intent is to mitigate potential in-flight loss of airplane state awareness (ASA) and thus
reduce aviation accidents and incidents.

Biocybernetic adaptation can be applied within autonomous systems to imbue
further intelligence into the systems about the humans involved in operations. In a
potential adaptive automation application, the cognitive state of the operator of a
semi-autonomous vehicle would be tracked by the vehicle system. The system uses the
cognitive state information to judge the operator’s ability to take back control of the
system in critical or noncritical hand-off instances2.

1 This concept is captured in a non-provisional patent application: Stephens et al. (2017, patent
pending) “System and Method for Training of State-Classifiers.” [NASA Case No.: LAR-18996-1].

2 This concept is captured in a non-provisional patent application: Harrivel et al. (2017, patent
pending) “System and Method for Human Operator and Machine Integration.” [NASA Case No.:
LAR-19051-1].
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4 Conclusion

The implementations of specific adaptations described in this paper represent actual
systems designed for improving human/machine interaction and furthermore enabling
human operators to improve self-regulation skills. The adaptation strategies described
herein include combinations of technological advances in the areas of neuroscience and
psychophysiology designed for specific contexts including clinical, aviation, and
sports. The example implementation systems instantiate concepts and enable practical
and empirical testing to evaluate adaptation strategies. Adaptation management issues
were discussed including dynamic selection and configuration of adaptations. Devel-
opment of adaptation strategies can create further questions for consideration such as
how to handle possible side effects on the human operator caused by setting up a
biocybernetic loop. This and other questions require empirical results to be sufficiently
addressed. Ongoing research efforts at NASA and the Institut Supérieur de l’Aéro-
nautique et de l’Espace (ISAE) seek to apply adaptation strategies to answer these
questions and reveal further questions with the ultimate goals of improved safety and
efficiency in aerospace operations.

References

Dehais, F., Causse, M., Tremblay, S.: Mitigation of conflicts with automation: use of cognitive
countermeasures. Hum. Factors 53(5), 448–460 (2011)

Dehais, F., Causse, M., Vachon, F., Régis, N., Menant, E., Tremblay, S.: Failure to detect critical
auditory alerts in the cockpit: evidence for inattentional deafness. Hum. Factors 56(4), 631–
644 (2014)

Dehais, F., Causse, M., Vachon, F., Tremblay, S.: Cognitive conflict in human automation
interactions: a psychophysiological study. Appl. Ergon. 43(3), 588–595 (2012)

Dehais, F., Peysakhovich, V., Scannella, S., Fongue, J., Gateau, T.: Automation surprise in
aviation: real-time solutions. In: Proceedings of the 33rd Annual ACM conference on Human
Factors in Computing Systems, 2525–2534 (2015)

Drougard, N., Chanel, C.P.C., Roy, R.N., Dehais, F.: Mixed-initiative mission planning
considering human operator state estimation based on physiological sensors. In: IROS17, 9th
Workshop on Planning, Perception and Navigation for Intelligent Vehicles (2017)

Durantin, G., Gagnon, J.F., Tremblay, S., Dehais, F.: Using near infrared spectroscopy and heart
rate variability to detect mental overload. Behav. Brain Res. 259, 16–23 (2014)

Durantin, G., Dehais, F., Delorme, A.: Characterization of mind wandering using fNIRS. Front.
Syst. Neurosci. 9, 45 (2015). https://doi.org/10.3389/fnsys.2015.00045

Fairclough, S., Gilleade, K.: Capturing user engagement via psychophysiology: measures and
mechanisms for biocybernetic adaptation. Int. J. Auton. Adapt. Commun. Syst. 6(1), 63–79
(2013)

Fuchs, S., Schwarz, J.: Towards a dynamic selection and configuration of adaptation strategies in
augmented cognition. In: Schmorrow, D., Fidopiastis, C. (eds.) AC 2017, Part II. LNCS, vol.
10285, pp. 101–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58625-0_7

96 C. Stephens et al.

http://dx.doi.org/10.3389/fnsys.2015.00045
http://dx.doi.org/10.1007/978-3-319-58625-0_7


Gateau, T., Chanel, C.P.C., Le, M.-H., Dehais, F.: Considering human’s non-deterministic
behavior and his availability state when designing a collaborative human-robots system. In:
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4391–4397. IEEE (2016)

Harrivel, A.R., Weissman, D.H., Noll, D.C., Peltier, S.J.: Monitoring attentional state with
fNIRS. Front. Hum. Neurosci. 7, 861 (2013)

Harrivel, A., Liles, C., Stephens, C., Ellis, K., Prinzel, L., Pope, A.: Psychophysiological sensing
and state classification for attention management in commercial aviation. In: American
Institute of Aeronautics and Astronautics, SciTech 2016, San Diego, California (2016)

Harrivel, A., Stephens, C., Milletich, R., Heinich, C., Last, M.C., Napoli, N., Abraham, N.,
Prinzel, L., Motter, M., Pope, A.: Prediction of cognitive states during flight simulation using
multimodal psychophysiological sensing. In: American Institute of Aeronautics and
Astronautics, SciTech 2017, Grapevine, Texas (2017)

Hopstaken, J.F., Linden, D., Bakker, A.B., Kompier, M.A.: A multifaceted investigation of the
link between mental fatigue and task disengagement. Psychophysiology 52(3), 305–315
(2015)

Jager, N., Schnädelbach, H., Hale, J., Kirk, D., Glover, K.: Reciprocal control in adaptive
environments. Interact. Comput. 29(4), 512–529 (2017)

LaBerge, D., Carter, M., Brown, V.: A network simulation of thalamic circuit operations in
selective attention. Neural Comput. 4, 318–331 (1992)

Lee, J.D.: Dynamics of driver distraction: the process of engaging and disengaging. Ann. Adv.
Automot. Med. 58, 24 (2014)

Mandrick, K., Chua, Z., Causse, M., Perrey, S., Dehais, F.: Why a comprehensive understanding
of mental workload through the measurement of neurovascular coupling is a key issue for
neuroergonomics? Front. Hum. Neurosci. 10 (2016). https://doi.org/10.3389/fnhum.2016.
00250

O’Shea, T., Sleeman, D.: A design for an adaptive self improving teaching system. In: Rose,
J. (ed.) Advances in Cybernetics and Systems, vol. 3. Gordon & Breach, London (1973)

Palsson, O.S., Pope, A.T.: Stress counterresponse training of pilots via instrument functionality
feedback. on symposium: new methods in biofeedback delivery: NASA innovations from
aerospace to inner space. In: Proceedings of the 1999 Applied Psychophysiology (AAPB)
Meeting, 10, April 1999, Vancouver, Canada (1999)

Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Factors
39, 230–253 (1997)

Parasuraman, R., Mouloua, M., Hilburn, B.: Adaptive aiding and adaptive task allocation
enhance human-machine interaction. In: Scerbo, M.W., Mouloua, M. (eds.) Automation
Technology and Human Performance: Current Research and Trends, pp. 119–123. Erlbaum,
Mahwah (1999)

Pope, A.T., Gersten, C.D.: Computer automation of biofeedback training. Behav. Res. Methods
Instrum. 9, 164–168 (1977)

Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system validates index of operator
engagement in automated task. Biol. Psychol. 40, 187–195 (1995)

Pope, A.T., Stephens, C.L., Gilleade, K.: Biocybernetic adaptation as biofeedback training
method. In: Fairclough, S., Gilleade, K. (eds.) Advances in Physiological Computing. HCIS,
pp. 91–115. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6392-3_5

Poussot-Vassal, C., Roy, R.N., Bovo, A., Gateau, T., Dehais, F., Chanel, C.P.C.: A
loewner-based approach for the approximation of engagement-related neurophysiological
features. Presented at the 20th The International Federation of Automatic Control (IFAC)
World Congress, Toulouse, France, July 2017 (2017)

Biocybernetic Adaptation Strategies: Machine Awareness of Human Engagement 97

http://dx.doi.org/10.3389/fnhum.2016.00250
http://dx.doi.org/10.3389/fnhum.2016.00250
http://dx.doi.org/10.1007/978-1-4471-6392-3_5


Prinzel, L.J., Pope, A.T., Freeman, F.G.: Physiological Self-regulation and adaptive automation.
Int. J. Aviat. Psychol. 12(2), 179–196 (2002)

Reising, J.M., Moss, R.W.: 2010: the symbionic cockpit. In: Proceedings of the National
Aerospace and Electronics Conference, Dayton, OH, vol. 2, 20–24 May 1985, pp. 1050–1054
(1985)

Roy, R.N., Frey, J.: Neurophysiological markers for passive brain–computer interfaces. In: Clerc,
M., Bougrain, L., Lotte, F. (eds.) Brain-Computer Interfaces 1: Foundations and Methods.
Wiley, Hoboken (2016)

Scerbo, M.W., Freeman, F.G., Mikulka, P.J.: A biocybernetic system for adaptive automation.
In: Backs, R.W., Boucsein, W. (eds.) Engineering Psychophysiology: Issues and Applica-
tions, pp. 241–253. Lawrence Erlbaum, Mahwah (2000)

Schmorrow, D.D.: Aviation Training: A Future Avenue. Avionics Magazine, October 2005
Schwarz, J., Fuchs, S.: Multidimensional Real-Time Assessment of User State and Performance

to Trigger Dynamic System Adaptation. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC
2017, Part I. LNCS (LNAI), vol. 10284, pp. 383–398. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-58628-1_30

Senoussi, M., Verdiere, K.J., Bovo, A., Chanel, C.P.C., Dehais, F., Roy, R.N.:. Pre-stimulus
antero-posterior EEG connectivity predicts performance in a UAV monitoring task. In: 2017
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1167–1172.
IEEE, October 2017

Sperandio, J.C.: The regulation of working methods as a function of work-load among air traffic
controllers. Ergonomics 21(3), 195–202 (1978)

Stephens, C., Prinzel, L., Harrivel, A., Comstock, R., Abraham, N., Pope, A., Wilkerson, J.,
Kiggins, D.: Crew state monitoring and line-oriented flight training for attention management.
In: Proceedings of the 19th International Symposium on Aviation Psychology (ISAP), 8–11
May 2017, Dayton, OH (2017)

Strehl, U.: What learning theories can teach us in designing neurofeedback treatments. Front.
Hum. Neurosci. 8 (2014). https://doi.org/10.3389/fnhum.2014.00894

Verdière, K.J., Roy, R.N., Dehais, F.: Detecting pilot’s engagement using fNIRS connectivity
features in an automated vs manual landing scenario. Front. Hum. Neurosci. 12, 6 (2018)

Vidaurre, C., Sannelli, C., Müller, K.-R., Blankertz, B.: Machine-learning-based coadaptive
calibration for brain-computer interfaces. Neural Comput. 23(3), 791–816 (2011)

von Foerster, H. (ed.): Cybernetics of cybernetics: Or, the control of control and the
communication of communication, 2nd edn. Future Systems, Minneapolis (1995)

Wickens, C.D.: Attentional Tunneling and Task Management. Technical report,
AHFD-05-01/NASA-05-10, NASA Ames Research Center, Moffett Field CA (2005)

98 C. Stephens et al.

http://dx.doi.org/10.1007/978-3-319-58628-1_30
http://dx.doi.org/10.1007/978-3-319-58628-1_30
http://dx.doi.org/10.3389/fnhum.2014.00894

	Biocybernetic Adaptation Strategies: Machine Awareness of Human Engagement for Improved Operational Performance
	Abstract
	1 Introduction
	2 Biocybernetic Loop Implementation for Adaptive Systems
	3 Successful Implementation of Adaptive Solutions
	4 Conclusion
	References




