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Abstract. A variety of factors can affect one’s reliance on an automated aid.
Some of these factors include one’s perception of the system’s trustworthiness,
such as perceived reliability of the system or one’s ability to understand the
system’s underlying reasoning. A mismatch between the operator’s perception
and the true capabilities and characteristics of the system can lead to inappro-
priate reliance on the tool. This improper use of the system can manifest as
either underutilization of the technology or complacency resulting from
over-trusting the system. Increasing an automated tool’s transparency is one
approach that enables the operator to more appropriately rely on the technology.
Transparent automated systems provide additional information that allows the
user to see the system’s intent and understand its underlying processes and
capabilities. Several researchers have developed frameworks to support the
design of more transparent automation. However, these frameworks may not
fully consider the particular challenges to transparency design introduced by
automation that leverages machine learning. Like all automation, these systems
can benefit from transparency. However, artificial intelligence poses new chal-
lenges that must be considered when designing for transparency. Unique con-
siderations must be made in terms of the type, and amount or level of
transparency information conveyed to the user.
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1 Appropriate Reliance

Through their interactions with automation, operators form perceptions of an auto-
mated system’s technical competence, ability to function consistently (i.e., reliability)
and understanding of the system’s processing. These perceptions affect one’s trust in
the technology and ultimately one’s reliance on the automation [1]. When a mismatch
exists between the operator’s trust and the actual capabilities of the system the operator
may under-trust or over-trust the automation [1]. An operator under-trusts the
automation when his or her trust is less than what is appropriate given the reliability
and capabilities of the technology. For example, research on alarm systems has
investigated the impact of under-trust on alarm system compliance. Several studies
suggest that an unreliable alarm system which produces a high false alarm rate may
result in slower and less frequent operator compliance with the system [2, 3]. Sorkin [4]
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revealed that in some instances false alarms have led to a complete rejection of the
technology, such as the deactivation of a warning system due to high false alarm rates.

Unreliable automation can also cause problems for the operator if the operator
over-trusts the system. Over-trust can lead to complacency [1] which has been char-
acterized by a reduction in system monitoring below what would be considered opti-
mal, resulting in poor operator performance [5]. For example, a warfighter who
over-trusts a sensor used for target detection may be less vigilant and fail to notice that
the sensor is providing old or inaccurate information. In this example, the warfighter’s
lack of awareness would lead to inappropriate reliance on the automation (i.e., sensor)
and poor performance. Complacency has been identified as one of the major factors
contributing to accidents and incidents in aviation [6].

2 Automation Transparency

One possible way to calibrate trust may be to improve automation transparency [7]. In a
human-system relationship transparency “is concerned with revealing information to
the user and supplementing expected outputs, which reveal how a system works and/or
what it is doing” [8, p. 2]. According to Lyons [9], transparency allows the operator to
correctly perceive the ability, intent, and situational constraints of the automation or
autonomous system. A review of the cognitive systems engineering and human factors
literature identified several system design techniques to support operator cognitive
performance. Techniques were identified to promote situation awareness such as pro-
viding access to historic information. Techniques for alleviating attentional demand,
such as reducing visual clutter by highlighting critical information, were also identified.
In addition to these techniques, the researchers included several guidelines for
improving transparency such as providing operator access to unfiltered data and pro-
viding explanations for how raw data is filtered and processed. According to this
review improving system transparency was identified as an important step toward
supporting operator cognitive performance [10].

Empirical evidence suggests that providing operators with transparency can increase
trust and operator reliance on an unreliable automated system. Fallon et al. [11]
investigated the impact of Likelihood Alarm Displays (LADs) on trust. These displays
generate an alarm signal coupled with additional probabilistic information regarding the
signal’s validity [12]. Fallon et al. [11] found that this additional transparency infor-
mation significantly increased user trust in the system. In addition, Heldin et al. [13]
manipulated the transparency of an automated target classification aid to support the
target discrimination offighter pilots. According to this research, providing fighter pilots
with additional information about the uncertainty of the sensor increased user trust and
the number of correct classifications. By improving the appropriateness of the operator’s
reliance on unreliable automation, the presence of transparency information may reduce
errors. Also, in situations where operators have previously rejected an unreliable
automated system, adding transparency to the automation may decrease operator
workload by increasing reliance on the time-saving automation.

Although empirical evidence suggests increasing transparency may help calibrate
operator trust and reliance on the automation, guidance for incorporating transparency
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information into design is lacking. Several researchers have made some initial progress.
Lyons [9] proposed multiple models for informing the implementation of transparency
in human-robot interaction. For example, this researcher draws a useful distinction
between what he refers to as the Intention, Task, and Analytic Models. According to
Lyon’s [9] Intention Model, robot designers have a responsibility to ensure that the
operator fully understands the machine’s functionality and purpose. In contrast, the
Task Model, emphasizes the communication of system goals and progress toward those
goals. The machine should also share information about its ability to perform tasks and
acknowledge its errors. Finally, Lyon’s [9] Analytical Model highlights the importance
of sharing the system’s underlying analytical processes with the operator. Adherence to
this model allows the operator to understand how the system is solving problems to
accomplish its goals.

Chen et al. [14] also proposed a model for designing transparency. Their model was
specifically developed to support situation awareness and is known as the Situation
Awareness-based Agent Transparency Model. Chen et al.’s [14] model maps onto
Endsley’s [15] three levels of situation awareness: perception, comprehension, and
projection. Similar to Lyon’s [9] Task Model, Chen et al.’s [14] model stresses the
importance of providing information about system’s task performance and goals.
According to these researchers this type of transparency information helps facilitate
operator perception. Chen et al. [14] also suggest transparency information specific to
the system’s underlying reasoning allows the operator to comprehend how the system is
working. This type of information is consistent with Lyon’s [9] Analytical Model and
according to Chen et al. [14] this information promotes Endsley’s second level of
situation awareness: comprehension. Chen’s [14] model is somewhat unique in its
emphasis on projection. According to their model, transparency information should
support the operators’ ability to make predictions about the system’s future performance.

Both Lyons [9] and Chen et al. [14] provide researchers with useful organizational
frameworks from which to build. However, advances in automation in the form of
artificial intelligence (AI) may require researchers to expand on the existing guidance.
Specifically, automation that leverages machine learning presents new challenges and
requires additional design considerations to ensure that these systems are transparent.
AI that leverages machine learning can improve its reliability and accuracy with
experience. The advances in automation fueled by machine learning pose new chal-
lenges for designers to ensure system transparency and appropriate reliance.

3 Machine Learning

Broadly, machine learning refers to AI systems that train and learn from past activity
without the specific improvements being explicitly programmed. The systems are given
algorithms for learning together with training examples/data from which they deter-
mine what to learn. There are three broad classes of learning algorithms, each with
different implications for the types of interactions or user inputs that will be required or
informative to the process. Because of the different level of user engagement in the
learning process, each type can have different implications for the types of transparency
or information that must be conveyed to those users. Supervised learning requires a
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completely labeled training set from which the algorithm must draw its feedback.
Traditional supervised machine learning requires all the training labels be provided up
front. Advances in active and interactive machine learning are looking for ways to
make this a more incremental process. In either case, the user may need a high degree
of engagement with the system, implying the user must understand what the machine
learner needs.

Semi-supervised and unsupervised learning algorithms need partial to no labeled
input from users. This may simplify the process of constructing training exemplar sets,
but it also changes the degree to which the user is engaged with the system. Unsu-
pervised systems with minimal user interactions may also provide minimal information
back to the user about the process, due to the lack of user involvement. In this case, it
may be desirable to integrate corrective feedback for errors or other simple ways to
engage the user, as well as training about the machine capabilities or explicit trans-
parent information.

The increasing interest in deep learning systems has recently highlighted the
impenetrable nature of black box machine learning for human observers. The hidden
layers do not usually operate on human-recognizable patterns. This has resulted in a
push for explainable systems, capable of translating those activities into something
humans can understand. This push is based on the assumption that increasing human
understanding through explanations, which are one form of transparency, will result in
improved trust in the deep learning systems. What is unclear in this argument is if the
explanations need to be about the internal reasoning processes or just about the clas-
sification outputs, or about some other aspect of the system entirely. Indeed, some
recent work has shown that explaining the machine’s reasoning can aid user in
selecting the more effective classifier [16]. However, because machine learning can be
used at multiple levels of automation and for multiple purposes in systems, post hoc
explanations about machine reasoning may not always be necessary or enough to
engender the appropriate trust and reliance. There are multiple types of transparency as
well as degrees or levels of transparency that may be needed. Considerations of these
will be informative to the system design process.

3.1 Type of Transparency

Automation equipped with machine learning adds an additional dimension of com-
plexity and capability to the system that should be communicated to the user. At a basic
level the tool should be transparent about its ability to learn and improve its own
performance. This type of transparency is consistent with Lyons’ [9] Intention Model.
The tool should communicate to operators that it intends to learn from their input. This
intention may be communicated during training or explicitly communicated to the
operator during the first interaction.

In addition, the system should be clear what input is needed from the operator to
improve system learning. If one of the operator’s responsibilities is to teach the system,
the system should provide guidance for accelerating its own learning. This is a key
principle of active and interactive machine learning systems, particularly for robots,
where the learner selects the data from which it will learn or requests the information or
training feedback it needs [17, 18]. For example, if a recommender system based on
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machine learning learns only from specific user behaviors such as user product ratings,
the automation should inform the user that only this information will be helpful for
learning. If the operator is not aware of this behavior’s importance, he or she may
choose not to provide product ratings and ultimately stunt system growth. In general,
failure to communicate the importance of certain behaviors for learning can lead to
inefficient or unhelpful user interactions that slow the system’s progress.

Designers should develop tools that clearly communicate what user actions are
required for training. However, designers should also be considerate of the training
burden placed on the user and take steps to reduce this burden. It has been found that
simply treating the user as an oracle and repeatedly requiring the user to give
right/wrong feedback is frustrating to users [19]. This interaction puts systems into a
situation where users could stop giving any input at all, thus breaking the training
cycle.

A principle of mixed-initiative systems is that user interactions should be used
implicitly by the system to understand user goals and provide machine support toward
those efforts [20]. While mixed-initiative systems are not necessarily all machine-
learning based, the same principle applies to considering how observation of ongoing
user interactions and implicit learning about the user can inform the machine learning.
Semantic interactions were developed as one form of implicit learning about the pat-
terns in data of interest to the user [21]. Jasper and Blaha [22] suggested that machines
might learn implicitly from interactions with user interface metaphors. We note,
importantly, that while implicit learning about the user may be helpful to the system
and less intrusive to the user’s analytic process, they may also require some degree of
transparency so that the user provides interaction inputs that are valuable to the process.

Expanding on Lyon’s [9] Task Model and Chen et al.’s [14] emphasis on pro-
jection, the tool should also provide information that will help the user gauge how
quickly and smoothly the system will learn as well as the upper limits of the system’s
performance. This type of transparency will allow a new user to manage expectations
about how the system will (or will not) improve with repeated use. For some systems,
the relationship between operator input and system improvement may be linear. For
other automated tools system improvement may come in fits and starts despite con-
sistent attempts by the operator to train the tool.

Appropriately calibrating user expectations with the system’s rate of learning may
be particularly important for tools early in their learning (i.e., novice tools). For some
systems, there may be an initial training (“burn-in”) period where little to no perfor-
mance improvement should be expected. In other instances, the system may overcor-
rect early in its learning resulting in performance errors. If these learning delays are not
anticipated, the user may become discouraged and underutilize or even completely
reject the technology.

It may also be useful for the tool to communicate the upper limits of its capability.
If it is not reasonable for the operator to expect more than 80% reliability, this infor-
mation should be communicated to the operator. Without this transparency, the oper-
ators may grow frustrated when they do not see performance improve above this
threshold. This is a particularly salient aspect of working with machine learning sys-
tems, because the users can often see the mistakes. If the user is expecting 100%
accuracy in classification or labeling, for example, then the errors can be surprising and
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unexpected or even result in a catastrophic loss of trust in the system from which the
human-machine team may not recover.

For some system/environment combinations, it may be impossible for system
developers to reasonably predict how quickly the system will learn or the upper limit of
its performance. In these situations, it may be particularly useful for the system to
provide users easy access to historical data. As Chen et al. [14] noted in their model of
transparency, examining past system performance can help the operator predict future
performance. AI that tracks its own performance on a task will help the operator
understand how quickly the system is learning the task and the limits to the system’s
performance. In addition, allowing the operator to examine how much and how quickly
the system learned in previous situations may provide insight into how it will learn in a
new but similar environment.

3.2 Level of Transparency

The guidance above is simply an expansion of existing transparency models to support
human-automation interaction [9, 14]. These models provide frameworks that organize
transparency information by type such as distinguishing between task-focused and
analysis-focused information. Selecting the correct type(s) of transparency information
to display will help facilitate appropriate reliance and acceptance of the tool. However,
designers must also consider the amount of transparency information that is appropriate
for display and/or access at any given time. In this paper, we refer to the amount of
transparency information as the level of transparency. We see parallels between levels
of transparency and the levels of automation proposed by Parasuramen et al. [23].

The level of transparency information can range from a complete lack of trans-
parency at the lowest level to a salient display detailing the system’s performance
and/or underlying reasoning process at the highest level. In addition, one might con-
sider allowing access to detailed information within a menu structure a lower level of
transparency than presenting this information on a display. Such access is consistent
with Shneiderman’s Visual Information Seeking Mantra broadly applicable to inter-
active interfaces: overview first, zoom and filter, details on demand [24, p. 365]. In
practice, this means that when there is a danger of information overload, or more
information than may be immediately useful to the user, the information should be
made available in an easily findable way, on the demand of the user according to his or
her needs. This same principle may be very useful to offering flexible degrees of
transparency information, such that users desiring more details can access them, but
they are not immediately cluttering the information displayed to users who do not
desire the information. A variety of factors should be considered when choosing the
appropriate level of information. Some of these factors include the operator’s workload
and experience with the tool, the reliability of the automation, and consequences of an
error. Choosing the appropriate level of transparency is an important design decision
for any automated system. However, in this paper we will focus specifically on the
unique challenges posed by automated tools that improve with user interaction.

In static automated systems, the required level of transparency for appropriate
reliance may drop as the user learns the capabilities of the tool and how it processes
information. In the case of machine learning, increased familiarity with the tool coupled
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with improved performance may require the need for very little transparency. However,
it is important to consider additional factors when deciding the level of transparency.
One important factor to consider is the consequence of an error in the operational
environment.

In an environment with relatively low stakes, a user who is familiar with the highly
reliable automated tool may have little need for transparency. A high level of trans-
parency information under these conditions may at best be ignored and at worst be a
distraction that places unwanted attentional demands on the operator. Perhaps the ideal
design approach for a low consequence environment is an adaptive display that reduces
its level of transparency as both system reliability and operator familiarity increase. At
peak human-machine teaming performance, the operator interacts with the automation
seamlessly with little explicit communication. This relationship is similar to a high
functioning human-human team that relies on implicit coordination [25, see Fig. 1].

Figure 1 also depicts a scenario where the automation’s reliability is high despite
the user’s lack of familiarity with the tool. Such a situation might exist if the AI has
been trained by other users and is now available for a new operator to use. We propose
that the level of transparency should be high in this situation despite the system’s high
reliability. A high level of transparency may be necessary because the user lacks the
hands-on experience needed to become aware of the system’s superior performance.
The high level of transparency can be used to accelerate trust calibration and appro-
priate reliance in the absence of familiarity.

Fig. 1. The impact of operator familiarity and AI reliability on the level of AI transparency.
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It is important to note in certain situations it may never be appropriate to design for
very low levels of transparency. In high stakes environments where the consequences
of an error are severe, it may always be appropriate to provide a high level of trans-
parency. For example, despite familiarity with a highly reliable decision support tool, a
high consequence environment may still require the need to understand the reasoning
behind the system’s recommendation [see Fig. 2].

4 Conclusion

The success of a human-machine team is dependent on an operator’s ability to
appropriately rely on the automation. Over-reliance can lead to complacency, lapses in
operator attention and error. Underutilization of the tool can result in increased
workload and inefficiencies. Through trial and error the operator may be able to cali-
brate his or her trust in the tool and learn to rely on it appropriately. However, the trial
and error technique can be time consuming and prone to errors as the operator attempts
to understand the system’s capabilities and limits. In addition, trial and error may never
fully reveal the underlying analysis that governs the system’s behavior. Increasing
system transparency may be one technique to facilitate appropriate reliance more
efficiently and with fewer errors.

Fig. 2. The impact of operator familiarity and AI reliability on the level of AI transparency in a
high consequence environment.
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As the capabilities of automated tools grow, the added complexity of these tools
poses new challenges for transparency design. Machine learning in particular adds an
additional dimension that must be considered when building transparency into these
systems. This advancement in AI requires designers to consider a new type of trans-
parency. In addition to communicating information about the systems’ capabilities,
goals and underlying reasoning, automation that leverages machine learning should
communicate information about how the system learns.

Machine learning also creates additional challenges for designing the appropriate
level of transparency. Systems governed by machine learning will likely improve with
operator interaction. In low consequence environments, this increase in system accu-
racy and reliability may benefit from a decrease in transparency level. A level that
adjusts automatically or is adjustable by the operator may be ideal given the potential
for shifts in system performance over time.
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