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Abstract. Measuring change is increasingly a computational task, but
understanding change and its implications are fundamentally human
challenges. Successful human/machine teams for streaming data anal-
ysis effectively balance data velocity with people’s capacity to ingest,
reason about, and act upon the data. Computational support is crit-
ical to aiding humans with finding what is needed when it is needed.
This is particularly evident in supporting complex sensemaking, situa-
tion awareness, and decision making in streaming contexts. Herein, we
conceptualize human/machine teams as interacting streams of data, gen-
erated from the interactions that are core to the human/machine team
activity. These streams capture the relative velocities of the human and
machine activities, which allows the machine to balance the capabili-
ties of the two halves of the system. We review the known challenges in
handling interacting streams that have been distilled in computational
systems. And we use this perspective to understand some of the open
challenges to designing effective human/machine systems that support
the disparate velocities of humans and machines.

Keywords: Big data · Human-machine interaction
Interactive streaming analytics · Visual analytics

1 Introduction

Despite the availability of “big data,” people remain effective processors of only
small data. Human perceptual and cognitive capacities remain constant, includ-
ing the effective limits on our working memory [1–3], limits on our attentional
capacity [4,5], and often limited bandwidth information processing capacity [6–
8]. People are also susceptible to a number of cognitive moderators that reduce
our ability to process information quickly and without error, such as fatigue,
stress, or cognitive overload [9]. We must rely on interactive interfaces to supply
the functionality to balance the difference between small-data processing people
and big-data processing machines.

The implications of this reliance on interactive interfaces to moderate the
speeds of human and machine activity are two-fold. First, all the primary respon-
sibility for processing and handling data falls to the machine. Machines can be
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built to operate at the speed and capacity needed to handle the velocities of the
data, the algorithms, and the user inputs. Machine intelligence, including com-
plex algorithms and artificial intelligence, can be employed to determine how to
execute processes and to provide solutions under dynamic system demands. Sec-
ond, the design and engineering of those systems falls to humans. Human intelli-
gence must determine the requirements of both the computing and human infor-
mation processing elements, complete with user requirements, variable working
environments, and changing goals.

The purpose of big data and computational resources is to be helpful to our-
selves: we gather data and employ resources to solve human problems. With
advancing machine technologies, the interaction between humans and machines
has changed shape. Smaller, more efficient, and more powerful machines have
both quantitatively and qualitatively changed what we try to compute on and
the expected output of that computation. The development of deep learning is
a recent example of this: it became computationally feasible to execute large-
scale analysis (including higher speed networking, greater storage density, and
improved compute power) that was previously unreachable. Quantitatively, more
operations per second and larger data were economically available. Qualitatively,
pervasive data collection resources provided richer data than had been avail-
able in the past. Collectively, these abilities are enabling advances in life-critical
applications, such as self-driving cars and advanced health-care. Importantly,
a major contributor to the success of many deep-learning efforts are the data
gathered through new interaction patterns found in crowd-sourcing information
(e.g., Mechanical Turk, Re-captcha) [10].

There are many conflicting definitions of “big data” but the majority share
variants on three characteristics V’s: volume, variety, and velocity [11,12].
(Other definitions add characteristics such as veracity, volatility, variability,
validity, and value. It is beyond our scope to explore the necessity, correct-
ness, or implications of each.) Each characteristic carries different constraints
on human/machine teaming and system engineering. Velocity is of particular
interest at present because it is a source of fragility in human/machine teams.
Velocity of big data refers to the speed at which data is generated, recorded, or
refreshed. Because machines are often involved in the production, data velocity
is implicitly related to the speed at which machines can process some source
data. Importantly, the producing machine and the analyzing machine are often
distinct.

A human/machine team must also consider the velocity of the human: peo-
ple’s capacity to ingest, reason about, and act upon the data. Considering veloc-
ity from both perspectives, time is a shared but relatively inflexible medium.
There is little we can do to change our experience with time: it does not wait
or stretch or save for humans or for machines. However, humans and machines
experience time and events over time on very different scales. Indeed, they are
even measured in different units, with meaningful human activity measured in
wall clock time in tens of milliseconds to years [13] and meaningful machine activ-
ity happening in system time down to the nanosecond. Consequently, apparent



Human Machine Interactions: Velocity Considerations 45

velocity versus relative processing speed has significantly different implications
for human/machine teams. Regardless of how fast things are happening or the
measurement scales, “velocity” implies change over time, which means sequenc-
ing and distributions of events become meaningful in the context of time. Specif-
ically, time and sequence restrict the analysis and force constraints on human
reasoning.

Velocity, and particularly the difference in velocity between machines and
humans, is an important consideration for the development of systems per-
forming interactive streaming analytics at scale. Interactive streaming analytic
systems, schematically diagrammed in Fig. 1, are human/machine systems that
strive to enable human decision making on streams of data in (near) real-time.
The goal is to produce correct, useful, and timely interpretations of the world,
where a human’s experience of the world is mitigated by the machine represen-
tations of the data streams. Note that when we refer to streams, we are referring
to continuing generation and collection of data where the values are changing
while being observed. Stream analytics steer data collection, summarize infor-
mation, and manage events occurring in the streaming data. Such analytics may
capture dynamic query updates and employ interactive interfaces to provide
human-digestible information to support intelligent decision making. Such sys-
tems provide the joint human/machine intelligence needed to perform real-time
systems monitoring (e.g., power grid control stations or flight control operations),
continuous security screening, or mission command and control. Putting users
into the streaming analytics process requires that interactive interfaces effec-
tively match both the velocity of both human cognitive inference and interface
interactions as well as the machine-derived velocity of updates to analysis and
visual representations. Thus, interactive streaming analytics at scale requires an
interface to mediate the difference between humans and machines to facilitate
meaningful interactions.

Fig. 1. Human/machine teaming for interactive streaming analytics at scale. The
human/machine team is contained in the green box, with the interactive user interface
mediating the differences in the velocity of the user activity (right side) and the velocity
of data streaming in from the world (left side). (Color figure online)
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Despite the need for interactive streaming systems in response to increasing
data availability, we have rarely succeeded in developing effective solutions to
this problem, let alone general solutions. One reason for a lack of general solu-
tions is that we lack a complete understanding of the conceptual and design
spaces and how they interact. This trade-off space captures the challenges of
developing systems for large scale, streaming data and the related challenges
and opportunities emerging from the cognitive capabilities of human operators
working on streaming data. In this paper, we argue that designing and engi-
neering for human/machine teaming in interactive streaming analytics or other
dynamic operational environments is critical for finding effective solutions to
balance the velocity of humans, the velocity of computers, and the velocity of
the phenomena to which the human/machine must be responsive. We believe
the key is emphasizing the interactions, because interaction data processing
can be handed to the machine, alongside other data streams, and the humans
can focus on designing effective interfaces to facilitate those interactions. From
this perspective, human/machine interactions create interacting data streams,
and leveraging known approaches for handling data streams can help us shape
the questions about how to design effective human/machine teams to operate
in dynamic, streaming conditions. Thus, we explore how reflecting on velocity
shapes what designers need to consider about both the human and the machine
to make an effective team.

2 Human/Machine Teams

The core of any team is interaction. Interactions provide the opportunity for
team members to influence each other, and become a joint entity that is more
than the sum of its parts. The information passed across a user interface (UI)
is therefore crucial to understanding how a human/machine team acts. Fluid
human/machine teaming is particularly critical for interactive streaming analyt-
ics systems that seek to put a human into the loop for real-time analysis [14].

Algorithmic, hardware, and cultural changes have enabled computer assis-
tance in problem solving. Humans and machines form a team with distinct but
complementary capabilities for analytical tasks. Humans are masters of context:
capable of bridging gaps between disparate datasets and making heuristic judg-
ments within datasets. In most cases, some vital information people work with
cannot be easily encoded for computational reasoning. Humans are also able to
act on information in ways distinct from computers, interfacing with the world
outside of the analytical environment. The human side of the team brings the
motivation for problem solving and is the ultimate arbiter of the goals to pursue.

Computer capabilities are often engineered to be complementary to human
capabilities. Machines provide raw capacity, repeatability, and a certain flavor of
efficiency. Computers handle large amounts of data at high speeds, they provide
repeatable processes, and tools for verifiability and precision. In a streaming
context, these machine capabilities are invaluable to human problem solving.

However, human and machine capabilities are not automatically cohesive. It
takes attention to merge the two into a team. This is doubly true in streaming
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context, because interactions need to focus on timely data analysis instead of
learning system behaviors and functionality. It is desirable in this context to
enable the system to simply observe the patterns of user interactions, and to use
that data in meaningful ways to help shape the human/machine team into the
cohesive team that can effectively perform the tasks of interest (e.g., [15,16]).
The latter statement, however, encompasses a broad set of open challenges in
how to use data in meaningful ways.

A number of advances in developing cohesive teams may be resolved by
establishing better models for each teammate. If computers were better equipped
with better human models, they would be able to more able to operate as a team
member. Current computer-hosted models of humans are typically static and
highly reactive (consider, most user interfaces essentially model likely “next”
interactions or expected constraints on interactions). Improving these models
could enable more proactive machine roles. Humans with better models of the
machine can more effectively communicate with it and interpret the results. The
interaction patterns between the humans and machines offer a key measurement
of the interacting agents that can be used to establish and inform such models.

2.1 Human Input

Human inputs to a machine interface are naturally modeled as a stream. They
are time varying, potentially unbounded, and not inherently repeatable [17,18].
Streaming data analysis systems that incorporate user input in a non-trivial
way therefore must deal with the intersection of the user input with other data
streams. These issues extend beyond general multi-stream issues discussed in
Sect. 4 (though many of those issues should also be considered when dealing
with human input).

Our interest is in human/machine teaming systems that have non-trivial
user streams. For our purposes, “non-trivial” user inputs are those that influ-
ence how future items in other streams may be processed. In some systems,
user inputs only inspect current items available in the user interface (UI). That
inspection does not influence future system behaviors, unless mixed-initiative
system approaches are engaged to indirectly influence future behavior through
machine steering. Imposing a filter is perhaps the simplest non-trivial input:
future items may or may not be displayed. This interaction is simple because
it is deterministic and essentially algebraic in nature. More complex interac-
tions include training examples through semi-supervised learning [19,20], seman-
tic interactions [21], and interaction sequences that might indicate foraging or
other exploratory analytic processes in provenance modeling. Conceptually the
difference between trivial and non-trivial inputs can be roughly approximated
thus: in a client-server system, a non-trivial user input is one that crosses from
the client back to the server, while trivial inputs stay within the client [22].1

1 This is a heuristic modeled on server-client designs. A sufficiently thin client will not
be able to do simple inspection on its own, and a sufficiently capable client may do
machine learning.
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Practically, non-trivial user inputs may come in the form of keyboard actions,
mouse clicks, touch inputs, or verbal communication, based on the design of the
system. Although input details influence the exact velocity of the system, our
stream-based model is agnostic to them because each will have a sequence and
human-scale velocity.

2.2 Machine Input

Machines contribute multiple different kinds of input into a system. In addition
to being integral in the data collection pipeline, machine actions around analytics
and UI can also define a stream. Consider, for example, mixed-initiative comput-
ing systems. Tracking of user inputs is a hallmark of mixed-initiative systems for
visual analytics [23]. In mixed-initiative systems, user interactions serve to steer
and inform the machine analytics. Machine actions then make recommendations
to the user for future interactions (an example of this recommendation workflow
style is the Active Data Environment [24]). This approach creates a series of
machine actions that influence the information and options presented back to
the user. This is the machine interaction stream.

Semantic interactions were introduced to describe UI interactions that sug-
gest particular interpretations to the machine because they occur in the con-
text of a known interface metaphor [21,25]. Broadly, machines might leverage
semantic interactions to understand the user’s mental model and sensemaking
process [26]. In many current mixed-initiative systems, the semantic interactions
are interpreted as they occur through the course of analytic session; they are not
necessarily revisited or reinterpreted, even if the analytic provenance is recorded.
The machine reactions to semantic interactions are not usually directly analyzed,
but they also reflect a component of the machine interaction stream. Conceptu-
alizing machine interactions as a stream will capture all the key characteristics
of the velocity of machine intelligence, which can be aligned with the velocity of
human interactions and with the data ingestion and processing velocities.

3 (Partial) Streaming Solutions

Stream processing algorithms and systems have been an active area of research
for decades. This existing work establishes a foundation for machine processing
of streaming data at a variety of velocities. This section summarizes machine-
processing oriented observations about streams.

3.1 Time & Sequence

A stream of values arrives over time, implying a sequence of values that arrive
over time. Therefore, stream algorithms must work with changing values or a
growing collection of values over time. This is distinct from traditional time-
series analysis. In time-series analysis, time itself is a part of the data being
analyzed. Often a full time series will be available at once, so the sequence of
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values is not integral to the analysis strategy. In streaming analysis, time may
be part of what is being analyzed; but sequence of values must be part of the
analysis strategy (either to ensure it does not impact results or to employ it to
improve results).

3.2 Sequence

A stream implies that values are presented over time. However, the presenta-
tion order does not need to correspond to their production order. Out-of-order
appearance is common in many real world cases. A practical example is in the
Transmission Control Protocol (TCP), which includes specific provision for out-
of-order delivery of (streamed) packets. In a trivial case, production may be the
iteration of values from database in reverse temporal order. As these two exam-
ples illustrate, a sequence may be irregular or regular and sequence deviations
may be incidental or deliberate. Regardless of its form, origin and severity of
sequence issues, if present, must be addressed.

3.3 Data Rates

Many streams have “too much” content to fully capture or practically store the
entirety. In other words, the data rate may be too high to handle, either com-
putationally or cognitively. Issues of frequency directly influence the scaling of a
system computationally, and ability of humans to act on computational results.
Choices must be made to determine sampling rates that are practical according
to sensor limitations, that capture the meaningful events on the stream, and
that enable the “right” amount of data to be analyzed and/or stored.

3.4 Cadence

Stream cadence may be highly regular or prone to bursts. Time-windowed stream
volume may be variable as well. These have technical and interface implications.

On the technical side, cadence directly impacts resource allocation strategies.
Regular cadence enables efficient resource management. Irregular cadences can
be mitigated with buffering strategies (e.g., burst buffers on HPC machines,
Cloud Flair for website requests) that smooth out the stream, trading variable
volume for variable lag. Another option for handling variability is to simply
“drop” stream content when it exceeds the design threshold (as is done in the
ethernet networking protocol).

In the interface, stream cadence influences how updates are communicated.
Whether irregular or regular, the cadence of updates itself may be part of the sig-
nal of interest. Displaying the distribution of updates can alleviate the cognitive
burden of wondering about update frequency. The interface design should also
consider the expected cadence range when implementing updates to minimize
noise in the display.
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3.5 Time Spans vs. Time Moments

The content of a stream may have drastically different semantics, even if the
content is substantially similar. Returning to the sensor example, there are many
valid configurations. A sensor may take measurements at given intervals and
report each. It may take measurements at given intervals and only report those
that differ from the prior. In the first case, the measurements are for moments
in time, in the second reported measurements are for spans.

4 Crossing Streams

Many issues are compounded when multiple streams are brought together [22].
Stream velocities may differ in their rates, dimensionality, and variability. The
contrast between different streams introduces many new characteristics, like
cross-correlations or asynchrony, that must be dealt with in both analysis and
interpretation.

4.1 Relative Skew

Audio and video are common streams encountered in a time-correlated fashion.
YouTube, television, and films all rely on small temporal skews to maintain the
illusion that the elements of the images are in fact the sources of the sounds. If
the skew between the two streams becomes too large, the illusion of causality is
broken. Whenever combining streams, issues of skew need to be considered. Do
the streams travel similar paths, or is there an inherent lag between them? If
they are produced together, do they travel together?

4.2 Multiple Resolution

Data from different sources often do not match in temporal resolution. This
problem is often masked by a time-stamp convention that records all time as
offset seconds (such as Unix timestamps). Regardless of the granularity of the
measurement, the granularity of the time-stamp is driven by the accuracy of
the available clock. Detecting that different resolutions are at play is the first
problem.

The second problem is working with values recorded from different res-
olutions. For values with well-defined summarization properties, this can be
straightforward operationally, but still requires users apply knowledge of con-
text. For example, if one stream reports daily temperature and another reports
hourly temperature from another location, what is the best way to mix the two?
Maximum, minimum, averaging, random selection, and periodic selection can all
be trivially applied to the more frequently reporting stream, but a key question
is: which will provide the best comparison to the less frequent stream? Knowledge
of how the slower stream is created likely dictates what is “best”. Consequently,
combinations are operationally simple while remaining contextually difficult.
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4.3 Stream Interdependence

Streams may not be independent. Consider a UI for an industrial control appli-
cation. The display shows the results of a stream of a data, capturing the current
state of the system. The user inputs are a stream back to the system that influ-
ences future values. In other words, human inputs are in response to events on
task streams. They can also influence what happens later on that task stream.

5 Implications for Design of Effective Human/Machine
Teams

We have conceptualized human/machine teams as systems designed for non-
trivial interactions at the core, and that those non-trivial interactions produce
streams of data. Thus, we have a way to capture the velocity of human and
machine behaviors, as well as the relative impact of those velocities on each
other. All human and machine data streams can be analyzed by the machine,
meeting its responsibility for handling all the data. We next consider some of the
system behavior considerations that are known to influence the effectiveness of
human/machine teams. In light of adopting the perspective of human/machine
teams as interacting data streams, we elucidate some implications for these fac-
tors, particularly with respect to the management of differing velocities. And we
identify open research questions for the human-centric system design process.

5.1 Different Working Speeds

The working speed difference between humans and machines is an obvious point
of both conflict and complementary abilities. If every shift of machine atten-
tion were presented to a human to interact with, the machine would be left
largely idle. Human relative slowness provides a mediating reservoir of atten-
tion. Thus, system designs can use the slower speed of humans to aggregate and
synthesize machine activities and outputs before presenting to the user. Using
the interacting data streams to be aware of the human attention availability and
engagement, the machine can manage this timing adaptively.

5.2 Communication and Reconciliation

How do team members communicate goals, findings, and the need for status
updates with each other? There are issues of interruption, non-computationally
represented information, and changing priorities to be considered. In verbal
communication between people, this often seems straightforward. Yet, between
humans and machines, the communication barriers often seem insurmountable,
despite advances in spoken-communication systems (like Siri and Alexa). Multi-
modal and bi-directional communication is enabled through interacting streams.
As the world and streaming data evolve over time, both the human or machine
may communicate a new context. The interacting stream capture the evolving
mental models or state of the agents. But a key open question remains: how does
the team’s shared state evolve?
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5.3 Workflows and Task Allocation

Division of labor between human and machine intelligent agents is informed
by a number of system attributes, including the nature of the tasks and the
specific capabilities of the computational resources. Interacting streams capture
fluctuations in working cadence, as well as information about what the machine
and user are working on through semantic and mixed-initiative interactions.
This enables adaptive and dynamic task allocations. It may also enable effective
multitasking in humans, who often think they are good multi-taskers but rarely
are [27,28]. Capturing the relative machine and human cadences further raises
opportunities to adaptively and effectively interrupt current activities. That is,
the streams may inform the time points at which can each teammate might
usefully provide input to the other, and in what form in which that interruption
might be most influential.

5.4 Trust, Verification, and Uncertainty

A number of open questions exist around how to ensure that users trust and
rely on the machine intelligence and autonomous system elements. How do you
present information at the right level of detail to be appropriately considered?
How do you develop an appropriate appreciation in the human of the machine’s
abilities, without introducing more work than the machine or human is able
to assume? What are the levers and limits of interrogation that a human can
employ against a machine? What does it mean for a machine to be certain? How
much of a model of the human can the machine effectively employ in building
the relationship? How complete a model does the human need of the machine?
Designs based on interacting streams may help to address a number of these
questions, and extensive research is needed to understand the relevant of design
options that facilitate human and machine trust and reliance.

5.5 Perceived Autonomy

We apply computational machinery to problems humans want to solve. How-
ever, machine capabilities are expanding and with them comes an expectation
of greater autonomy, meaning adaptive system behaviors to manage informa-
tion and operate on data without direct human supervision. For many existing
interactive systems, machine tasking for non-routine tasks is largely under the
control of the human operator. If interaction streams can inform models of user
intent and need, how well can we identify ways in which the machine make take
the lead? How much work is initiated by the machine? How many resources can
it apply to a task before asking for human input?

Autonomy deals with the adaptive ability to initiate lines of inquiry (auton-
omy in the large) and the adaptive ability to execute tasks without additional
input (autonomy in the small). Both forms carry benefits and pitfalls, and have
implications for the velocity of the related machine behaviors. Autonomy in the
large provides the appearance of an able assistant (like Jarvis from Iron Man or
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the Doctor from Star Trek’s Voyager) or a potential replacement. In a more con-
temporary context, contextually aware advisors such as spelling/grammar check,
auto-complete in web-search or the Active Data Environment [24] demonstrate
a level of machine autonomy. In potentially autonomous machines, how much
work “on their own” is the owner comfortable with? How much do they want
to direct themselves? Is it just “spare cycles” that the machine has for its own
inquiries, or can it use a baseline percentage?

In the small, machines that require constant attention can be an annoyance
and impediment rather than a benefit. Indeed, poor interaction design can lead
to a lack of autonomy for all team members as each blocks the other’s progress.
However, when context dictates the proper resolution of ambiguities, it may
be better to receive inputs than to simply guess. Humor around auto-correct
is derived from failures when there is too much autonomy in the small, while
dialog box fatigue that leads to everything being blindly accepted and installed
is a failure of too little autonomy.

5.6 Influence

Machine autonomy implies the active metaphor for instruction is not command,
but influence. This influence can be inferred from the interaction of the user by
having the machine interpret the interactions in the context of computational
models of user intent. This is an indirect means of influence. At the opposite
end of the spectrum is more direct influence, such as allocating computational
resources to specific tasks or placing explicit priority markers. These are methods
for a human to influence a machine’s behavior. Machine influence of human
behavior may be observed in the order that options are presented in and in the
intrusiveness of interface elements. The salient aspect of influence is that it is
indirect and that it preserves choice in when and how actions are taken.

6 Case Study: Test Harness

Considering interaction as a core consideration of human/machine for streaming
data analysis leads to different considerations in system design than otherwise.
Our experience designing and implementing test infrastructure for interactive
streaming analytics is illustrative. Although human-in-the-loop data analytics
are desirable in many settings, humans contribute variable behaviors to the team.
This variability introduces novel challenges to system testing and evaluation.

In traditional software testing, algorithmic correctness and overall robustness
are the principle consideration. For algorithmic correctness, systems are tested
to see if inputs produce the expected outputs (or for stochastic systems, an
output in an acceptable range acceptably often). A system state may be supplied
artificially through mocks or stubs [29] to simulate the context developed over
longer executions. Acceptable system robustness is assessed through some form
of stress testing, checking for resource usage and the ability to remain operational
(or degrade gracefully). Inputs in either case are typically supplied by the system
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Fig. 2. System-level context for test harness.
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Fig. 3. Three test patterns. Fuzzy (left) tests for minor changes in timing. Blur (center)
tests for changes in sequence. Lazy (right) tests if the user input needed to be provided
mid-stream at all.

designer, possibly with guidance from a potential future user. Other properties
that are commonly tested for include resource utilization, system responsiveness,
data security or feature regression. Each of these properties is valuable in a
useful system, but the mock/stub/etc. architecture often glosses over the very
interactions that are central to the human/machine teaming experience.

In contrast, our experience developing a test harness for interactive
human/machine teaming has led us to propose some additional properties that
should be assessed. These properties include:

Timing sensitivity: How sensitive to exact interaction timing are results?
Sequence sensitivity: How sensitive to exact interaction order are results?
Input criticalities: Which interactions are essential to a result and which can

be omitted/ignored?
Output inflections: Does the output vary smoothly as inputs change, or does

it exhibit inflection points? Where are the inflection points?

These interaction-focused properties rest on the interactions that occur when
the sequence and timing of user input are considered. In other words, they arise
from treating user input as a stream that interacts with other input streams.

An architectural overview of our stream analytics test harness is shown in
Fig. 2. The test harness wraps an analytic system, recording user inputs with
a vector time stamp [30] derived from other input streams. The user inputs
are the manifestation of interaction points in the combined human/machine
teaming system. The recording is timed relative to the other input streams to
enable greater flexibility in the testing. (More details can be found in a prior
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publication [22].) With this architecture, modeling and simulation-based tests
for timing and sequence can be conducted with user inputs as the seeds of the
test. Figure 3 illustrates a few such tests. Each test entails structured change
of recorded input. The change may affect sequence, timing, exact values, pres-
ence/absence, or a combination of these things. By presenting slightly changed
inputs and comparing the results to the original results, velocity-relevant system
properties can be efficient explored. This also provides a way for user inputs to
be incorporated into the software development cycle in a meaningful way, with-
out requiring constant user input or insisting on unnatural user consistency of
action.

7 Conclusion

Human/machine teams are of growing importance to data analysis. Effectively
forging a human/machine team requires attention to the capabilities and lim-
itations of each. This is especially evident for streaming data analysis because
the data velocity is experienced substantially differently for the human versus
the machine. However, there is much work to build on to start constructing
effective human/machine team interfaces. Focusing on the interactions instead
of the state kept in either side of the team provides a useful perspective on this
problem.
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