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Abstract. Unmanned aerial vehicles (UAVs) have extensive applications in
both civilian and military applications. Nevertheless, the continued development
of UAVs has been accompanied by security concerns. UAV navigation systems
are potentially vulnerable to malicious attacks that target their Global Posi-
tioning System (GPS). Thus, efficient GPS hacking detection with high success
rate is paramount. Significant effort has been put into developing autonomous
hacking detection techniques. However, little research has considered how a
human operator can contribute to the security of such systems. In this paper, we
propose a human-autonomy collaborative approach for a single operator of
multiple-UAV supervisory control systems, where human geo-location is used
to help detect possible UAV cyber-attacks. An experiment was designed and
conducted using the RESCHU-SA experiment platform to evaluate this
approach. The primary results show that 65% of all experiment sessions reached
over 80% success rate in UAV hacking detection, while only 17% of partici-
pants lost one or more UAVs because of incorrect hacking detections. These
results suggest that such an approach could help achieve better security guar-
antees for human-in-the-loop autonomous UAV systems that are prone to
cyber-attacks.
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1 Introduction

Unmanned aerial vehicles (UAVs) have significantly increasing commercial market
and extensive applications in both civilian and military realms [1]. Many of these
UAVs rely on the Global Positioning System (GPS) for navigation, however, this
reliance leaves UAVs vulnerable to malicious attacks targeting GPS signals. One
common attack is GPS spoofing, in which attackers deceive GPS receivers to override
the navigation systems and redirect UAVs to unexpected destinations [2, 3].
A well-known such incident garnered public attention in 2011 when, a US RQ-170
Sentinel UAV was captured by Iranian forces using GPS spoofing attacks [4]. Thus,
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detecting GPS spoofing attacks with a high success rate is important for UAV control
systems.

We propose a human-autonomy collaborative approach of human geo-location in
that humans can aid in the detection of possible GPS spoofing attacks on UAVs. This
approach was evaluated via an experiment, which was designed and conducted using
the Research Environment for Supervisory Control of Heterogeneous Unmanned
Vehicles (RESCHU) platform. Experiment sessions simulated human supervisory
multi-UAV control scenarios with potential UAV GPS spoofing attacks. In this paper,
we focus on answering the following questions based on the experiment results:
(1) Can human operators successfully identify UAV GPS spoofing attacks? (2) What
factors affect human operator general operation? (3) Would hacking detections affect
the performance of operators’ primary tasks? (4) What types of landmarks used in
human geo-location affect operator decisions to hacking detections?

2 Background

A common UAV control scheme is human supervisory control, in which a human
operator monitors the multi-UAV system, intermittently navigating UAVs, and con-
ducting other higher-level tasks [5]. The architecture of human supervisory UAV
control is shown in Fig. 1. Human supervisory UAV control can be introduced with
various level of automation. In this study, we assume that human operators are
responsible for higher-level decision, and autonomous systems are in charge of
lower-level UAV control and navigation operations [6].

2.1 GPS Spoofing Detection

UAVs typically rely on an embedded navigation system known as GPS, which pro-
vides accurate position, velocity and time information for GPS receivers in most areas
on Earth. GPS receivers calculate precise latitude, longitude and height with speed
information based on the received satellite signals. Furthermore, GPS receivers can
report their locations to UAV control interface to provide location views for operators.
However, GPS receivers are vulnerable to GPS spoofing attacks, in which GPS
spoofers generate counterfeit signals to attack GPS receivers by manipulating the target
position, velocity and time information [2, 3].

Fig. 1. Human supervisory UAV control architecture.
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Many researchers have presented autonomous GPS spoofing detection methods [7–
12], however, false alarms and detection mistakes still exist while applying autono-
mous detection techniques [13, 14]. Thus, supplementary detection methods are
needed.

In the common design of military UAVs, a UAV is usually equipped with both a
GPS navigation system and a payload camera, whose signal is independent of the
UAV GPS signal [15]. Thus, the UAV payload camera view could be used as an
independent reference for detection of GPS spoofing (i.e., navigation based) attacks,
which is further explored in the remainder of this paper.

2.2 Human Visual Task

In order to utilize a UAV payload camera to detect UAV GPS attacks, interpreting the
UAV real-time location through the camera view and comparing this to a certain
landmark or position estimate from a map could be the central mechanism for making
such an assessment.

While autonomous localization techniques may have limited performance [16, 17],
human vision has advantages in such complex search and surveillance tasks. The
process of human vision obtaining information from objects can be divided into two
stages. The first stage is the preattentive stage, in which human observers can gather
basic information about the target even before the observer become conscious of it
[18]. Thus, human vision can process target information relatively fast in complex
environment. Human observers also tend to choose areas that maximize information of
the target in salience-driven visual search strategy [19], which means human vision has
effective strategies to obtain target information. In addition, the direction discrimination
threshold of human vision has a low average of 1.8° [20], which means human vision
can detect relatively small changes in orientation. Based on these visual advantages, a
human operator can potentially aid in UAV localization and thus detect potential
UAV GPS spoofing attacks.

Based on the assumption that UAV cameras can show the true surrounding scene of
UAVs, we propose that human operators can act as supplementary sensors and assist
autonomous system to detect UAV hacking attacks through comparative geo-location
between the camera and map position estimates. In human geo-location, the operator
can compare the non-tempered video feed coming from the UAV to the potentially
falsified GPS location; this allows the user to detect inconsistencies between these two
sensing feeds (i.e., whether the feed and the reported locations match). If the operator
thinks the location interpreted from camera view does not match the location shown on
the map, then the UAV is most likely hacked via GPS spoofing.

An example of applying human geo-location in UAV hacking detection is shown in
Fig. 2. If the UAV is hacked, the operator will observe a location other than the GPS
reported UAV location through the camera, like shown in the upper left camera view in
Fig. 2. When a GPS spoofing attack is discovered, the operator can prevent a hacking
event by overriding its physical control.
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3 Experiment

An experiment was designed utilizing a modified version of the RESCHU experiment
platform [21], known as Security-Aware RESCHU (RESCHU-SA) [22]. RESCHU-SA
is a Java-based single operator with multi-UAV supervisory control simulation plat-
form, which provides the capability to design multi-tasking scenarios that include both
navigational and imagery search tasks. Moreover, the platform allows for simulating
GPS spoofing attacks, in which hacked UAVs deviate from their originally assigned
path and target to other unexpected destinations, along with warning notifications that
simulate autonomous GPS spoofing detection systems.

Fig. 2. An example of GPS reported location on the map.
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3.1 Experiment Platform Interface

The interface of the RESCHU-SA platform is shown in Fig. 3. The interface features
five main components: the payload camera view, message box, control panel, mission
timeline and map area.

• The camera view displays the video stream from the payload camera of the selected
UAV. The primary purpose of this view is to conduct real-time image analysis
tasks. In this study, it can also be used to determine the actual location of UAVs by
locating landmarks.

• The message box displays events that occur during the simulation such as UAV
arrival at a target. It also allows operators to communicate the results for the
imagery analysis tasks to a “supervisor” that is, in actuality, a bot.

• The control panel provides the UAV damage level, which is caused by UAVs
intersecting with hazard areas, as well as instructions for imagery analysis tasks and
vehicle updates.

• The timeline shows the estimated remaining time of all UAV arrivals at waypoints
and assigned targets.

• The map displays the area of surveillance with real-time locations of all UAVs,
hazard areas and targets. For this experiment, the map was created using CityEngine
from ArcGIS, a modeling software package that is used for urban planning and
architecture design.

Fig. 3. RESCHU-SA operator interface.
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3.2 Experiment Scenarios

The primary objectives for operators in RESCHU-SA are to control multiple UAVs to:
(1) perform reconnaissance imagery tasks of counting road intersections when UAVs
reach assigned targets, (2) ensure UAVs do not encounter hazard areas, and (3) de-
termine whether UAVs are under GPS spoofing attacks.

For this experiment, GPS spoofing attack events followed a pre-defined schedule,
unknown to the participants. When triggered internally, the hacked UAV changed its
heading by a random angle within 30 to 60, or 300 to 330, degrees, which was larger
than the human direction discrimination threshold. A hacking notification appeared 10
to 20 s after the attack event, simulating an external agency detection of a possible GPS
spoofing attack. However, as in real systems, the notification could be a false alarm. In
fact, about half of all notifications in this experiment were false alarms in the
pre-defined schedule of each test session. Although change blindness and vigilance
declination [23, 24] are known problems for humans in such settings, they were not
examined in this study, given there was a clear signaling of a potential hacking event.
Thus, a detection failure on the part of the human is not considered in this experiment.

Once the operator received notification from the system that a certain UAV was
under possible cyber-attack, the operator could then investigate the UAV by checking
the UAV’s camera view and matching it against the position of the UAV on the
map. The operator was expected to make a decision before the hacked UAV either
exceeded the map boundary or the experiment ended. If the operator decided the UAV
was hacked, the operator could override the hacked UAV and send it home.

When UAVs that were not hacked reached a target, the operator engaged in an
imagery task of counting the road intersections from the UAV’s camera view at a
pre-specified zoom level. This side task represents the primary purpose of such a
mission, which is typically information gathering. While engaging in a counting task,
the operator was required to enter an answer before the counting task was finished. The
counting task allowed us to assess participants’ performance based on the number of
attempted tasks and the task correctness percentage.

The path planner for the UAVs was intentionally suboptimal, i.e. the planner did
not necessarily pick the most efficient assignment of UAVs to targets. In addition,
UAVs would possibly encounter hazard areas that appeared and disappeared randomly.
The suboptimal planner and the dynamic nature of hazard areas allowed experimenters
to assess how much spare attention participants could devote to optimize the navigation
and target assignment.

3.3 Experiment Participants

Thirty-six participants took part in this experiment, including 22 males and 14 females.
Age ranged from 19 to 34 years with an average of 25.2 and a standard deviation of 3.8
years. Among the participants, 18 had little video game experience, 6 participants had
monthly gaming experience, 5 participants played video game several times a week,
another 5 participants had weekly gaming experience, and only 2 participants had daily
gaming experience.
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3.4 Experiment Procedure

The experiment procedure consisted of four main sections. The first section was a
self-paced tutorial session, during which participants went over the tutorial slides, and
the experimenter answered questions that the participants might have had. The second
section was a practice session to allow participants to get more familiar with the user
interface. In the first half of the practice session, participants were shown how to
operate UAVs and complete all major tasks.

In the second half, participants controlled all UAVs and accomplished different
tasks by themselves. The practice session lasted 18 min, which was the same as a
single experiment session. The third section included the test sessions with two sce-
narios of different task loads, which were counterbalanced in terms of order of pre-
sentation. The fourth section was the debriefing session, in which the experimenter
asked the participant several questions related to participants’ performance and
strategies for navigating UAVs and detecting hacking events.

Given that many related studies on the RESCHU platform [21, 25, 26] showed a
significant impact of task load on system performance, task load was a primary factor
in this experiment looking at hacking detection. It should be noted that high task load
does not necessarily represent high operator mental workload, since operator mental
workload is an individually subjective interpretation of an objective task load.

Thus, for a high task load scenario, operators controlled 6 UAVs with 9 different
targets and 9 hacking events, and in each low task load scenario, operators controlled 3
UAVs with 6 different targets and 6 hacking events. In both scenarios, the number of
hazard areas, which generated and disappeared randomly, was constantly twenty-one.
Each test scenario lasted 18 min, and each participant completed both high and low
sessions. Each participant’s performance scores were calculated based on the total
vehicle damage, the correct percentage of imagery counting tasks, and the correct
percentage of hacking identifications.

4 Results

4.1 Performance Statistical Results

We used a multivariate repeated-measures ANOVA model and Pearson correlation
with a significance level of 0.05 to analyze data. In data analysis, independent variables
included task load, which task load was experienced first, gender and video game
experience as a covariate. Task load (low and high) was a within factor variable.
Dependent variables included percentage of correct hacking detections, the aggregated
damage sustained by vehicles over a test session, and the overall correct percentage
intersection counts per test session. These variables represent the primary objectives of
performing the counting tasks, keeping vehicles out of the damage areas, and suc-
cessfully detecting hacking events.

An important question was whether human operators could successfully detect the
UAV hacking events. A successful detection was indicated by a correct decision for a
specific hacking event, including overriding the UAV and sending it home if the UAV
was hacked, or recognizing the notification was a false alarm.
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Each high task load experiment session included 9 hacking events, and each low
task load session included 6 hacking events. Among all hacking events in both test
sessions for each participant, 7 (4 in high task load and 3 in low task load) were
predefined as false alarms, which meant the threshold for incorrect hacking notifica-
tions was 47%. As shown in Table 1, out of all real hacking notifications across all
participants, the overall success rate was 78%, and for the false alarms, the success rate
was 84%. In other word, the type one error (false positive, operators considered UAV
not hacked with real hacking notification) was 22%, which was slightly higher than the
type two error (false negative, operators considered UAV hacked with false alarm
notification) of 16%. Thus, operators were slightly better at detecting false alarms than
identifying real hacking notifications.

When looking at each individual’s performance per test session, even though they
had to multitask in RESCHU-SA in managing multiple vehicles and detecting potential
hacking events, results showed that 23 out of total 72 experiment sessions (32%)
resulted in 100% of successful hack identifications in a single test session, with another
24 (33%) above 80% successful attack identification. Thus, 65% of total experiment
sessions exhibited 80% correct hacking detection or better without having any prior
formal training. In terms of incorrect hacking identifications, 12 (17%) participants lost
one or more UAVs, meaning that these UAVs were successfully hacked and could not
be further controlled.

Additionally, those factors that affected human operators’ performance were
studied. For the three performance scores of vehicle damage, the correct percentage
intersection counts, and correct percentage of hacking events, the only variable affected
by task load was vehicle damage ((F(1, 31) = 32.93), p < 0.001). In the high task load
scenario, the average UAV damage was 31.4, which was much higher than 9.6 in the
low task load scenario. Participants with less workload suffered less damage as they
had more time to optimize their paths and avoid hostile areas.

One result showed an interesting significant negative correlation between the time
expended in hacking detections and correct hacking detections (Pearson = −0.375,
p = 0.001), which meant that participants who took longer to detect the hacking events
had a lower percentage of correct hacking identifications. This suggests that early
detection was better from the operator standpoint, which is at odds with those who
would argue that longer detection times should yield more correct identifications.

Gender was examined because of the potential difference in self-assessment in
cognitive tasks between different genders [27]. However, gender did not affect the
participants’ general performance. Another covariate, the video game experience, did
have a significant effect on participants’ correct hacking detections (F(1, 31) = 4.652
p = 0.039). This means that the more video game experience, the higher the chance of a

Table 1. The confusion matrix of hacking detection decisions in different notifications.

Real hacking
notification

False alarm
notification

Consider UAV hacked 224 40
Consider UAV not hacked 63 207
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correct hacking detection. Not surprisingly, seven participants who lost UAVs had no
video game experience, and the other 5 who lost UAVs ranged from some to moderate
gaming experience. Participants with daily gaming experience did not lose any UAVs
and were 100% correct in hacking identification.

Another result showed that participants’ task inputs were effective in that the more
time they navigated the UAVs, the less time UAVs intersected with hostile areas
(Pearson = −0.345, p = 0.003). This result suggests that improved path planning could
reduce operators’ workload and free their cognitive resources to attend to other tasks.

We also investigated whether hacking detection affected the performance of
operators’ primary tasks of counting road intersections. The results showed that the
correctness of imagery counting tasks was not affected by either the correctness of
hacking detections (Pearson = −0.022, p = 0.854) or the time expended in hacking
detections (Pearson = 0.024, p = 0.841). However, time expended in the imagery task
was negatively correlated with the percentage of correct hacking detection (Pear-
son = −0.275, p = 0.019). This result was expected as participants who spent more
time in counting tasks were less likely to detect hacking events.

In addition, an interesting observation is that the first experiment scenario affected
participants’ abilities to correctly finish their primary task of counting the intersections
at each target (F(1, 31) = 5.324, p = 0.028). The participants who had the high task
load scenario as the first experiment session tended to have higher correct intersection
count percentages. This suggests a fatigue effect since these participants did worse on
their second scenarios with low task load, which should have been easier.

4.2 Map Analysis for Hacking Detection

While using human geo-location in UAV hacking detections, operators will compare
the non-tempered UAV camera video feed to the potentially falsified GPS location to
detect inconsistencies between the UAV video feed and UAV GPS location. After
receiving a hacking notification, operators can purposely navigate the notified UAV to
some specific areas that can potentially provide more inconsistencies to increase the
confidence of making a correct decision to a hacking event. Thus, analyzing the map
usage in hacking detections will benefit the future design of autonomous decision
supporting tool for hacking identification.

The resulting heat map, which represents the frequency distribution of areas of
participant interest during hacking detections, is shown in Fig. 4. Different colors
represent varying frequency of operations, including adding waypoints and switching
targets for UAVs, on a specific point. The warmer the color, the more participants
interacted with a specific point, for example, red represents 5 or 6 operations. The heat
map shows that the lower left quadrant is the most popular region, however, some
regions, like the middle right of the map, have few operations. Understanding that the
density of targets on the lower left quadrant of the map is slightly higher than other
regions, this quadrant is more attractive to operators since operators can navigate UAVs
between targets to get engaged to more imagery tasks in a shorter time range. Thus,
more operations occurred on the lower left quadrant. In addition, red areas on this
quadrant indicate the existence of some interesting landmarks that operators tend to
investigate during hacking detections.
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Landmarks used in hacking detections are classified into three categories, including
special road patterns, geographic feature transition, and special buildings, like shown in
Table 2. Using these different landmarks in hacking detections, operators can inves-
tigate the moving orientation of a certain UAV or the relative motion between a UAV
and a specific landmark to investigate whether a UAV is potentially hacked. Shown in
Table 2, special road patterns were the most frequently used landmarks in hacking
detection with an occurrence percentage of 59.3%.

Geographic feature transitions are defined as the transition between land and sea
areas, on which operators can clearly observe the sudden change of geographic pat-
terns. Special buildings are defined as distinctive shapes with contrastive colors that are
used to represent a single building or a group of buildings on the map. As the per-
centage of total special road patterns and special buildings are approximate the same,
special road patterns are more attractive to operators. Future work will determine why

Fig. 4. The heat map of reference points in UAV hacking detection. (Color figure online)
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exactly people prefer these over other options, but one hypothesis is that these are
easier to see than the buildings, and do not take as long to investigate as the sea/land
transitions (Table 3).

The frequency of different landmarks used in different detection decisions were
examined. In correct hacking detections with both real hacking and false alarm noti-
fications, the percentage of operations based on special road patterns is slightly over
60%, which is higher than the percentage in incorrect hacking detection with real
hacking notification (45.5%) and false alarm notification (56.0%). Another interesting
fact is that special road patterns lead to the highest success rate of 86.1% in hacking
detections, while geographic feature transition lead to 79.6% and special buildings lead
to 80.7%. These results provide insight for how a future advanced map-based hacking
detection support tool for human operators could be designed.

5 Discussion

The experiment results provide insight into our initial questions with implications for
future studies. In this study, we analyzed if a human operator could serve as a sup-
plementary sensor in supervisory UAV control systems by successfully detecting
spoofing attacks. Experiment results supported this hypothesis in that 65% of total
experiment sessions reached over 80% hacking detection correctness. This result was
achieved with no dedicated training and so greater emphasis on optimal search
strategies would likely yield even better results.

Table 2. The frequency of different types of landmarks used in hacking detections.

Special road
patterns

Geographic feature
transition

Special buildings

Occurrence frequency 380 152 109
Occurrence percentage 59.3% 23.7% 17.0%

Table 3. The frequency of different landmarks used in different detection decisions.

Real hacking notification False alarm notification
Consider
UAV hacked

Consider UAV
not hacked

Consider
UAV hacked

Consider UAV
not hacked

Special road
patterns

168 25 28 159

Geographic
feature transitions

69 17 14 52

Special buildings 42 13 8 46
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The experiment results also clearly indicate that some factors affected operators’
performance and operations. For example, higher task load tended to cause more UAV
damage. This result was supported by a previous study that higher mental workload
increased operator attention switching delays [21]. In high task load scenarios, oper-
ators tended to experience higher mental workload, which slowed down their attention
switches and causing more damage. This could be mitigated in future studies with more
optimal path planning as well as better target allocation.

Understanding that the operator’s video game experience significantly affected the
success rate in hacking detections, future personnel selection strategies for supervisory
control systems with human visual tasks could focus more on the experience in similar
applications or more training. This fact also raises interesting future research questions,
including how video game experience may affect human search strategies and how
different types of video games may affect human operators’ performance in hacking
detection? Also, the result of the negative correlation between the time expended and
the success rate in hacking detection provides implications for future studies of
increasing hacking detection correctness by guiding better search strategies and earlier
detections. However, a fatigue effect was potentially exhibited after just one 18-min
scenario, which raises the question of how sustainable such task load levels are over
time?

The map analysis shows the heat map of participants preferences for hacking
detection. Although the usage percentages of different landmarks in different hacking
detection decisions are similar, there was a clear preference for unusual road inter-
sections. These results provide some insights on a more efficient way to utilize different
landmarks and raise future research topics of investigating potential different operator
hacking detection strategies.

Lastly, all these results establish a baseline of performance of applying human
geo-location in UAV hacking detection. Future studies, enabled by an empirical model
of security-aware human-autonomy interaction will focus on how higher-level
automation or advanced decision support tools could be utilized to assist human
operators to improve the success rate of hacking identifications.

6 Conclusion

Navigational GPS systems used in UAVs can be prone to malicious cyber-attacks,
especially GPS spoofing attacks. In this study, we have shown that a human operator
can assist autonomous systems in hacking detection using human geo-location com-
parison between maps and downward-facing camera views, even without extensive
training. Moreover, we found that an individual factor, video game experience, and the
time expended in hacking detection and UAV navigation, affected operators’ hacking
detection performance. The results from this study indicate that human geo-location is a
potentially promising approach for hacking detection, which could be improved by
future efforts in improving operator decision support.
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