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Abstract. We have developed the liver surgical navigation system composed of
three subsystems: the liver position and orientation estimator, the surgical knife
position estimator and the liver surgical navigator. These subsystems work sepa‐
rately for estimating the liver position and the knife position, and the liver surgical
navigation system will use those positions to navigate surgeons accurately. The
liver position is estimated by comparing two depth images; an image come from
a depth camera targeting the liver and an image rendered by OpenGL using the
Polyhedrons with STL-format data previously scanned from a patient. The knife
position is estimated by tracking markers put at the top of the knife. The surgical
navigation system holds precise data such as positions of vessels or the surgical
steps, and show appropriate navigation data to the surgeons. In this paper, we
describe the overview of this system and how we integrated these subsystems into
the liver surgery supporting system.
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1 Introduction

Liver surgery requires extremely delicate treatment for several types of blood vessels
such as arteries or veins while they are living inside the soft organ. Surgeons often use
X-ray imaging, computed tomography (CT) scanning or magnetic resonance imaging
(MRI) previously to the surgery for determining precise positions of those vessels in the
liver. However, those vessels are naturally located sterically in our three dimensional
world and surgeons face to difficulties in matching those imaging and scanning data to
the real liver of the patient. In most of the cases, surgeons have to use projected data
around the liver on two dimensional monitors during the surgery. To solve the problem,
some approaches are suggested such as making 3D vessel models using 3D printer [1]
or matching postures of a virtual liver on a computer and a real liver of the patient in
real time for the computer navigation as we have developed [2].

The goal of our system is to navigate surgeons according to the paths previously
prepared using the liver models scanned from patients, and to alert surgeons visually
and audibly to be careful around the high risk areas.
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2 Liver Surgical Navigation System

2.1 System Overview

Our liver surgical navigation system is composed of two cameras located above the liver
and the surgical knife and a computer that communicates with those cameras as shown
in Fig. 1. These cameras have different features and each camera will be used by different
program.

Fig. 1. System overview of our liver surgery support system

One camera (illustrated as a yellow camera in Fig. 1) is a marker tracking camera,
which can track multiple two dimensional markers in real time. This marker tracking
camera is used by the knife position estimator. As shown in the figure, multiple markers
are put on the bottom of the surgical knife, and those markers will be captured and
tracked by the camera. The knife position estimator uses position data of those markers
put on the bottom to estimate the position of the knife tip.

Another camera (illustrated as a black camera in Fig. 1) is a depth camera, which
can capture depth images in its measuring range. The liver position estimator repeatedly
gets the depth image of the liver and perform an image processing for estimating current
position and rotation of the liver.
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We are currently using MicronTracker 3 as the marker tracking camera and Kinect
v2 sensor as the depth camera, however, those cameras can be replaced with other
cameras or sensors if precision allows.

2.2 Knife Position Estimator

The knife position estimator periodically gets marker data from the marker camera, and
utilize the recognized marker information including positions and rotations for esti‐
mating the position of the knife tip. This estimator firstly calculate the average position
of the markers put on the bottom of the knife, and then calculate the tip position by
sliding the average position from the bottom to the top according to the preset length of
the knife. Figure 2 shows how 2D markers are put on the bottom of the knife. The tip
position is then converted to the depth camera coordinate, as it is well discussed in the
next chapter.

Fig. 2. A knife model with markers and a 3D printed liver model

2.3 Liver Position Estimator

The liver position estimator periodically gets a depth image using the depth camera, and
then comparing the shape with Polyhedrons loaded on the memory for finding the exact
location of the liver and its orientation. Figure 3 shows how the real liver model (A) is
captured as a depth image (B) and how it will be compared with the depth images (C)
rendered on the graphics memory using OpenGL.

Fig. 3. Real liver model (A), a depth image (B) and a rendered liver image (C)
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2.4 Liver Surgical Navigator

The liver surgical navigator reads and integrates the knife position data and the liver
position data from the named shared memories. It also loads the polyhedrons data with
STL-format independently, for separately showing sub parts of the liver such as the
hepatic artery, the portal vein, lobes and so on for the surgical navigation. In Fig. 4, the
experimental implementation of the navigator is shown.

Fig. 4. The liver surgical navigator using knife and liver data from estimators

2.5 Testing Setup

Unfortunately, it is very difficult to attempt to verify our system repeatedly on human
bodies. Instead, we have prepared DICOM based liver images captured by MRI, and
integrated those images into polyhedrons with STL (Standard Triangulated Language)
formatted data. Thereafter, we can make a 3D liver model from the STL data using a
3D printer, and the STL data also can be loaded in a computer memory to be rendered
from any direction (Fig. 5).

Fig. 5. A real liver model and a virtual liver model

The polyhedrons with the STL formatted data will be printed out as a real 3D model
and also rendered on a graphics memory as depth images using OpenGL. The 3D liver
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model will be used for moving its position and rotating its orientation, and then it is
captured by a depth camera connected to the liver position estimator. The result of the
liver position estimation can verify the precision of our system.

Of course, it is important not mind the influence of surgeons’ shadows and the char‐
acteristics of surgical lighting (for heat reduction and shadow dilution) after the verifi‐
cation is well performed. But it is totally efficient way to construct the base of the liver
position estimator of our system.

Figure 6 shows 3D printed surgical knife models used with the 3D printed liver model
to verify the precision of the knife position estimator. The first model was introduced in
[3], and it was totally made from course plastic and it had an average 2.5 mm error. An
improved version was introduced in [4], and it was made from fine plastic. It had an
average 2.0 mm error. The well improved version introduced in [5] is currently used
and it has an average 0.8 mm error.

Fig. 6. Three types of 3D printed surgical knife models with bottom markers

3 Inter-process Communication

3.1 Data Flow

As we described above, three subsystems called the knife position estimator, the liver
position estimator and the liver surgical navigator will work simultaneously and commu‐
nicate each other. As each subsystem can be verified and improved each other, those
subsystems are separately developed and are working as different programs in different
processes.

Figure 5 shows how and what kind of data is flowed between the subsystems. The
knife tip position is repeatedly written by the knife position estimator at a regular inter‐
vals. The position and the rotation of a liver is also repeatedly written by the liver position
estimator at a regular intervals. Those data are written into separate named shared
memories as illustrated in Fig. 5.

Shared memory is the memory that can be accessed by different processes simulta‐
neously. Comparing to the other inter-process communication methods such as socket
communication or named pipe, it is expected to be much faster as it is just writing and
reading to/from the memories (Fig. 7).
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Fig. 7. Data flow in our system using named shared memories

The knife position estimator writes the knife tip position data in the shared memory
named “KNIFE.” The knife position is expressed as three double values (x, y, z). The
unit used in the position value is discussed in the next section about the coordinate
conversion.

The liver position estimator writes the liver position and the rotation in the shared
memory named “PAO.” (The name “PAO” for the liver position and rotation comes
from “Position And Orientation,” while the knife tip data has just the position.) The liver
position is expressed as three float values (x, y, z) and rotation is expressed as three float
values (roll, pitch, yaw). Those six float values are continuously written in position-
orientation order. The unit used in the position values is discussed in the next section
about the coordinate conversion. The unit used in the rotation values is degree.

The data flow design is very simple and they would not do other work. That is very
important design to make subsystems so robust that they can continuously work and will
not stop during the surgery.

3.2 Coordinate Conversion

In this section, the coordinate conversion between multiple data is precisely discussed.
Because there are two cameras and the virtual rendered liver is located in the OpenGL
space, those data should be converted in a common coordinate system.

In Knife Position Estimator. Multiple marker positions are captured by the marker
tracking camera, and by calculating an average position of those positions, the knife
position estimator calculates the tip position of the knife. Those calculations are
performed in the coordinate system of the marker tracking camera. Because the body of
the marker tracking camera and the body of the depth camera should be located in
different position, and because they have different characteristics, those camera uses
different coordinates. Therefore, the eight-point algorithm is used to calculate a conver‐
sion matrix after setting up those cameras. That conversion matrix is used to convert the
knife tip position to the coordinate system of the depth camera, and the matrix is held
as long as the same set up is used.
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In Liver Position Estimator. A depth image is captured by the depth camera. As
shown in Fig. 8, the STL-formatted liver model is loaded at the launch time and rendered
from some different directions using an OpenGL renderer for one depth image. The
number of the rendered image depends on the machine power, as the rendering process
will be terminated after a certain duration has passed (currently the duration is set as ten
processor time units in our implementation). Thereafter, the simulated annealing method
is used to match the depth image with those rendered images to estimate the closest
position and orientation of the liver. To simplify the comparison, the OpenGL rendering
uses the same value of the actual depth camera characteristics for making a projection
matrix: currently the field of view is set to 90 degrees and the aspect ratio is approxi‐
mately 1.21. Here we can assume that the rendered images and the depth image are in
the same coordinate system of the depth camera.

Fig. 8. Coordinate conversion between multiple camera coordinates

In Liver Surgical Navigator. As the knife position estimator and the liver position
estimator now use the same coordinate system of the depth camera, the liver surgical
navigator can read those data from each shared memory and combine those data for
simulating the liver surgery. The liver surgery navigator independently loads STL
formatted data and calculates distances between the knife tip and some vessels. Those
distance data is also written in a named shared memory for the future application such
as visual or sound alerts.
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4 System Performance

In this chapter, performance of the whole liver navigation system is discussed, especially
focusing on the knife and the liver position estimators while the navigation system is
currently implemented as an experimental version. In our laboratory, a Windows PC is
being used for the liver navigation system, with which the knife position estimator and
the liver position estimator are simultaneously working. The PC has 6 cores of Intel
Core i7-7800X CPU (@ 3.50 GHz) and 12 logical processors with 32.0 GB RAM and
a graphics card of NVIDIA GeForce GTX 1080, on which Windows 10 Home edition
is working. The QueryPerformanceCounter() function was used for the measurement,
which can record a high resolution (under 1 ms according to the Microsoft API docu‐
ment) time stamp. Therefore, we assume that the measuring method gives us enough
precision when counting in milliseconds.

4.1 Inter-process Communication Cost

At first, we measured the cost of writing and reading to/from the named shared memories
both in the knife position estimator and the liver position estimator. However, writing
or reading to/from each named shared memory took just one or two CPU clocks, that is
less than 0.001 ms. As we described above, it is absolutely faster than any other inter-
process communication methods like the BSD sockets.

4.2 Performance of the Knife Position Estimator

The knife position estimator is currently working on the OpenGL rendering flow with
GLUT (OpenGL Utility Toolkit). The display callback function specified by glutDis‐
playFunc() function is repeatedly called in constant intervals, and within the callback
function, marker positions captured by the marker camera are checked and the tip posi‐
tion is calculated by getting an average position of the markers.

An experiment was performed for measuring the performance of the knife position
estimator. We firstly checked the callback intervals, secondly checked the, by changing
the number of the marker captured by the marker camera from zero to two.

The callback intervals were almost constant with any number of captured markers,
and the average duration of the interval was 16.668 ms that is precisely equivalent to
1/60 s, which is the basic vertical synchronizing signal interval of today’s displays.

The calculation of finding the average position including coordinate conversion
took 0.016 ms in average, for any number of markers captured. As Fig. 10 plots the
calculation times for each frame within 500 frames (8.33 s), we can see that there is
no explicit difference between the different number of captured markers for calcu‐
lating the average position. Because the average 0.016 ms is definitely small
comparing to 16.668 ms (= 1 frame), the calculation around the knife position esti‐
mation does not affect the callback ratio of the display function (Fig. 9).
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Fig. 9. Time for calculating knife tip positions

As the summary, we can say that the knife position estimator is running and writing
the estimated data on the shared memory at 60 frame per second ratio, and the number
of makers will not affect the rate.

4.3 Performance of the Liver Position Estimator

For the liver position estimator, we measured how many neighboring liver positions and
orientations can be rendered using OpenGL and compare them to the depth image
captured from the real liver. In our system, a parameter called “saTime” (prepared as a
global variable) can be changed to specify the cutoff time for each simulated annealing
process. The unit of the “saTime” variable is clocks per second same as the clock()
function declared in time.h as a standard C language function.

Figure 10 shows how many times the liver position estimator can try neighboring
liver positions and orientations at the specific saTime (shown as “saΔ” in the figure).
Figure 11 shows how many simulated annealing processes (one process including
multiple neighboring calculations) can be performed in a second at the specific saTime
(shown as “saΔ” in the figure).

We can see that count of the neighboring calculation can be increased by increasing
saTime as shown in Fig. 10. Even Fig. 11 also shows us that the simulated annealing
performing count will not drastically changed with the different saTime setting,
however, the performing count will not be decreased so much around the saTime
between 150 to 300 clocks. It is strongly considered that the setting of this parameter
should be well discussed in the future.
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5 Conclusion

In this paper, we described the overview of our liver surgical navigation system
composed of subsystems and its data flow between different coordinate systems. The
performance of our estimators are discussed and the data showed how the inter-process
communication using the named shared memories is effectively transmitting the knife
position and the liver position data needed in the liver surgical navigator.

For the future enhancements of our system, few things should be mentioned. First,
the performance of the liver position estimator varies quickly by changing the parameter
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named “saTime.” That parameter setting should be well discussed with the other param‐
eters described in [6]. Second, the way of mutual exclusions over the usage of the named
shared memories should be deeply concerned because it affects the performance of the
entire system. The names of the shared memories currently do not have the unity among
the system (the names of “KNIFE” and “PAO” do have asymmetry just now), so it
should also be improved in the future. The “KNIFE” and the “PAO” shared memories
have different data types by the historical circumstances, but it should be properly meas‐
ured and united in the future.
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