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Abstract. Objective Video Quality Assessment (VQA) is often used to predict
users visual perception of video quality. In the literature, the performance eval‐
uation of objective measures is based on benchmark subjective scores of
perceived quality. This paper shows the evaluation of an algorithmic measure on
videos presented on mobile devices. The VQA measure is called Sencogi Spatio-
Temporal Saliency Metric (Sencogi-STSM), and it uses a spatio-temporal sali‐
ency to model subjective perception of video quality. Since STSM was previously
validated with a subjective test conducted on laptop computers, the goal of this
work was to verify whether the measure is able to significantly predict users’
perception of video quality also on mobile devices. Results show that, compared
to the standard VQA metrics, only Sencogi-STSM is able to significantly predict
subjective DMOS. This paper describes Sencogi-STSM’s biologically plausible
model, its performance evaluation and the comparison with the most commonly
used objective VQA metrics.
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1 Quality Assessment Today

1.1 Introduction

Subjective testing with human participants is still the most reliable method to assess the
perceived quality of an image or a video, even though it requires high cost and time
effort. In order to measure participants’ opinion scores of quality, standard recommen‐
dations are currently used, but the whole evaluation procedure often results in time-
consumption and requires high costs. To avoid the cost and delay of subjective quality
evaluation, objective quality assessment methodologies that do not involve participants
are proposed in the literature to be used instead of subjective tests.
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As Chikkerur and colleague highlights in 2011 [1], “the fidelity of an objective
quality assessment metric to the subjective assessment is considered high if the Pearson
and Spearman correlation coefficients are close to 1 and the outlier ratio is low. Some
studies use the Root Mean Square Error (RMSE) to measure the degree of accuracy of
the predicted objective scores. For the 95% confidence interval, it is desirable that the
RMSE be less than 7.24”. Following the methodology recommended by the ITU Tele‐
communication Standardization Sector [2], this study uses the aforementioned four
analyses to compare objective and human video quality scores. None of the most used
objective measurements seems to be able to adequately model human vision in the range
of conditions used in typical subjective tests [3].

There are three types of objective video quality assessment methods: full-reference,
wherein a an undistorted image or video is fully used for comparisons with distorted
videos, reduced-reference, which use only some features of the undistorted quality
reference image or video, and no-reference methods, wherein the reference video is not
available at all [2]. This paper considers only full-reference methods.

1.2 Image and Video-Frame Quality Assessment

The next two paragraphs briefly show the state of the art of both image and video quality
assessment. They also describe some of the most used image quality assessment metrics
because they are often used to predict subjective video quality too.

Image Quality Assessment (IQA) metrics aim to measure the quality of a single static
image. IQA metrics can also be used to measure video quality by treating the video
stream as a collection of images, and calculating an aggregate score. In the literature,
there is a wide choice of IQA metrics, such as Peak Signal to Noise Ratio (PSNR),
Structural Similarity index (SSIM), Mean Structural Similarity (MSSIM), Universal
Quality Index (UQI), Information Content Weighted Peak Signal to Noise Ratio
(IWPSNR), Visual Information Fidelity (VIF), Feature Similarity Index (FSIM), Gener‐
alized Block-edge Impairment Metric (GBIM), NR Blocking Artifact Measure
(NBAM), NR Perceptual Blur Metric (NPBM), Just Noticeable Blur Metric (JNBM).
These IQA metrics include full reference and no reference metrics, and range from the
purely pixel-based IQMs without the characteristics of the human visual system (HVS)
to IQA metrics that contain complex HVS modeling. The ITU recommendations suggest
using full reference measure in order to directly compare objective estimates of subjec‐
tive quality and human quality evaluations. For this reason, and since video encoders
have access to full reference, in this paper we only focus on full reference measures.

Among the above listed measures, the full reference measures are Peak Signal to Noise
Ratio (PSNR), Structural Similarity Index (SSIM), Multiscale Structural Similarity
(MSSIM), and Universal Quality Index (UQI). PSNR calculates pixel-by-pixel the mean
squared error between a distorted image and its high quality copy. PSNR is widely used
since it returns a measure of distortion and noise that is easy to calculate. PSNR has also
been extended with a pooling strategy of the locally calculated distortions, in order to
incorporate some of the temporal features of human vision into PSNR. However, PSNR
does not account for human visual perception, since its model treats pixels as being of
equal importance and is unaware of any relationship between pixels. For this reason, PSNR
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is increasingly becoming inadequate for newer video codecs that apply visual perception
models to remove data that falls beyond the threshold of visual perception.

SSIM aims to calculate how much an image or a video frame is “structurally similar”
to the way the human visual system perceives quality. When an image or a video-frame
is compressed, there is a change in structural information. SSIM has been also extended
with a pooling strategy (i.e., the information content weighting) of the locally calculated
distortions. Compared to PSNR, SSIM also considers pixels interdependency, which
conveys important information about the structure of visual scene. Three visual compo‐
nents of an image are considered to calculate an SSIM value: luminance (high values
are weighed more) contrast (locally unique values for pixels are weighed more) and
structure (the more pixel values change together with their neighbors, the more they are
weighed). The structure of each point is the covariance of x and y over the product of
the variance x and y [4].

The perception of static images, such as video frames, is different than the perception
of an entire moving video. Compared to static images, the continually changing visual
stimuli of video-frames require more visual attentional from a viewer to process salient
information. For this reason, the most-used image and video quality assessment metrics
are not able to fully account for the HVS observing video. In a large-scale subjective
study conducted by Seshadrinathan and colleagues to evaluate different video quality
assessment algorithms [5], the authors found low correlation values for both PSNR
(Spearman rho = 0.36; Pearson r = 0.40) and SSIM (Spearman rho = 0.52; Pearson r =
0.54) when compared to subjective values. The traditional video quality metrics, such
as speak-signal-to-noise ratio (PSNR) or signal-to-noise ratio (SNR), are known to
neglect the characteristics and the viewing conditions of human visual perception [6].

PSNR and SSIM are the most used measures to estimate image and video-frame
quality, even though their model is not able to account for some aspects of the HVS,
such as saliency processing. Therefore, new objective VQA models are still needed that
are able to calculate the salient parts of video information.

1.3 Saliency Perception Models

One of the most important attention processes guiding visual perception is saliency.
Saliency works like a filter that directs cognitive resources toward a subgroup of
elements that may be significant for a certain visual context, allowing the HVS to process
only partial amounts of information from a wide amount of information. Without the
saliency regulation of attentional processes, large amount of information could overload
the cognitive system [7] by accessing higher level processing systems in the brain.

In the literature, saliency perception models are based on either a bottom-up or a top-
down main theoretical approach. The bottom-up approach is based on the visual saliency
hypothesis, which describes visual attention as a data-driven answer to visual informa‐
tion [8], whereas the top-down approach is based on the cognitive control hypothesis [8,
9]. The bottom-up approach is the most studied one, and describes the process of
selecting an area to fixate as a feature-guided process. On the other hand, according the
top-down approach, visual attention is guided by context, task-related demands, and
perceivers’ needs. In the top-down approach, visual stimuli are still relevant as for the
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bottom-up one, but they are strictly related to cognitive information rather than on the
saliency of visual data in itself [7].

Saliency is the primary process involved in subjective quality perception [10]. Many
image quality assessment approaches attempt to use visual saliency to predict visual
quality [11], and some efforts combine saliency with traditional measures of quality to
produce saliency-weighted SSIM and PSNR performance [12].

1.4 Video Quality Assessment Based on Saliency Models

In order to determine salient areas, some spatial saliency algorithms [13] use frequency
domain methods [14–20] reacting to patterns in the image. The algorithms that are based
on frequency domain spatial saliency are biologically plausible and in line with the
features of the human visual cortex [21] and are able to deal with most of the issues that
usually arise in spatial salience calculation methods [9, 22], such as, for example, low
resolution salience maps, and distorted object borders.

Calculating saliency of videos is more complicated than analysing still images
because the regions of consecutive frames have a spatio-temporal correlation. Spatio-
temporal correlation among video-frames changes the importance of each image in a
scene, thus leading to different saliencies [23]. Some VQA methods deal with the
changing salience of videos by incorporating spatial measures of salience, thus
performing significantly better than traditional VQA methods [11]. However, these
models only consider within-frame spatial saliency, neglecting to calculate between-
frames spatio-temporal saliency. The primary reason why spatio-temporal saliency is
rarely used for video compression is that it is difficult to discriminate salient motion
from the noise produced by compression codecs or camera sensors [23, 24]. New meas‐
ures are able to overcome noise related issues are still needed.

2 Spatio-Temporal Saliency for Video Quality Assessment

2.1 Cogisen’s Video Compression Algorithm

This paper describes a saliency VQA metric called Sencogi Spatio-Temporal Saliency
Metric (Sencogi-STSM), which looks at change in saliency as a measure of distortion
and calculates video quality by applying spatio-temporal saliency principles. The
Sencogi VQA metric is able to predict subjective quality of videos compressed by sali‐
ency-based codecs. The metric is based on a video compression spatio-temporal saliency
algorithm developed by Cogisen [25].

Lossy image and video compression algorithms are closely related to quality assess‐
ment metrics because a successful compression algorithm must remove the maximum
amount of information with minimal effect on quality. To achieve this trade-off, image
and video compression algorithms include a tuned model of the human visual system.
A compression algorithm generally calculates which parts of a video frame would
influence the human perceived quality, and uses this information to compress data more
heavily in the parts that are less visually salient, in order not to affect perceived image
quality [9] (Fig. 1).
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Fig. 1. Cogisen’s saliency algorithms used to differentially compress video.

2.2 Cogisen’s Saliency Algorithm

The VQA metric developed by Cogisen is based on saliency algorithms for video
compression. Cogisen developed a very fast frequency-domain transformation algo‐
rithm called Sencogi, and used it to calculate frequency-domain saliency for a saliency-
based image compression algorithm [26, 27]. Cogisen’s saliency algorithm differs from
most other saliency algorithms because it also predicts whether compression artifacts
will cause a change in saliency. This is particularly important when saliency is used as
a driver for varying compression levels, because perceptible image quality degradation
can lead to perceptible changes in an image’s low-level features on which bottom-up
saliency models are based [11].

When working with low resolutions, the number of pixels to calculate edges and
contrasts may be not enough, so video encoders may find it difficult to estimate saliency.
However, due to the pervasive use of devices such as smartphones and tablets, video
compression algorithms that are able to compress low resolution video recordings or live
videos streamed with devices with limited processing capacity and bandwidth are needed.

As described in [27], Cogisen’s algorithm uses four saliency drivers so that infor‐
mation removal in one domain does not introduce salient artifacts in another domain. In
Cogisen’s algorithm, “four different types of saliency algorithms are simultaneously run
on a real-time video stream and combined to drive the codec’s variable macro-block
compression” [27]. In order to create Sencogi- STSM, Cogisen’s saliency-based
compression algorithms were used. The four types of saliency computed are:

• Pixel noise detection. Pixel noise detection is developed to discern between motion
and pixel noise because video codec’s cannot discern genuine scene motion from
sensor pixel noise.

• Static image saliency. The static image saliency algorithms calculate saliency within
each video frame.

• Spatio-temporal saliency. The spatio-temporal saliency algorithms calculate saliency
between video frames.

• Delta-quality saliency. The delta-quality algorithm calculates whether the quality
changes of a video can affect the scene saliency [28] by introducing artifacts that are
subjectively perceived by viewers.

556 M. L. Mele et al.



The combination of all four saliency algorithms are used to make a saliency map
that drives the codec’s variable macroblock compression. The use of four simultaneous
saliency algorithms on a real-time video stream is possible because of the very fast
Sencogi frequency-domain conversion. The four saliency drivers ensure that informa‐
tion removal in one domain does not introduce salient artifacts in another domain. The
four algorithms are weighted by tunable thresholds, and then added to form a global
saliency map (Fig. 2).

Fig. 2. Figure shows Cogisen’s saliency algorithms combined to form an overall saliency map.

Fig. 3. The Sencogi-STSM VQA is measured as a change in saliency map.
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2.3 Sencogi Spatio-Temporal Saliency Metric

The Sencogi Spatio-Temporal Saliency Metric is a VQA score calculated by comparing
the saliency maps of the compressed video to the saliency map of the reference video.
The comparison of saliency maps is performed using SSIM (Fig. 3).

3 Performance of Sencogi Spatio-Temporal Saliency Metric

3.1 Methodology

In a previous paper [27], the performance evaluation of Sencogi-STSM with laptop
computers was described. The aim of this paper is to verify whether Sencogi-STSM is
able to significantly predict users’ perception of video quality also on mobile devices,
in a way that is significantly more accurate than the most commonly used VQA metrics,
i.e., PSNR and SSIM.

The evaluation of the performance of the Sencogi-STSM followed the same meth‐
odology as in the previous work [27]. We used a subjective a benchmark database to
compare with objective measures calculated with PSNR, SSIM, and Sencogi-STSM.
Finally, the performance of all objective models was tested by the Spearman Rank Order
and the Pearson Linear correlation measures, the Outlier Ratio, and the Root Mean
Square error, between subjective and objective scores.

3.2 Subjective Evaluation

Method. A benchmark subjective video quality database was created by using five video
clips compressed at two different Constant Rate Factor values (CRF 21 and CRF 27),
and by two different compression methods, i.e. X264 and a saliency based compression
model. We used a saliency-based model to create a version of reference videos that keeps
similar subjective perception of quality but uses higher compression levels [26, 27].
Finally, the subjective quality of five reference videos compressed by two compression
methods at two compression levels (CRF) was evaluated in order to create a video quality
assessment database.

Material. The subjective test used five high technical-complexity benchmark videos,
lasting less than 10 s. Videos were in the uncompressed YUV4MPEG 4:2:0 format, in
426 × 224 landscape resolution. Reference videos were compressed with a visually
lossless CRF value of 10, and then compressed to CRF 21 and CRF 27 by both the H264
model and the saliency based model.

Procedure. The procedure used for the subjective test was the Single Stimulus Contin‐
uous Quality Scale (SSCQS) method with hidden reference removal [3], which shows
only one video at a time. The test was administered to mobile devices users only, by
means of a web-based survey software tool called SurveyGizmo [29] with a method‐
ology that has been previously validated by the authors [26, 27].
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At the beginning of the subjective test, an example of a high quality video is shown,
then reference high quality videos and compressed videos are randomly presented for
each participant, in order to make sure that each video is presented only once in the
succession. For each video, viewers are asked to rate the quality by using a slider marked
from 1 to 100. The scale was divided into 5 equal parts labeled with the adjectives “Bad”,
“Poor”, “Fair”, “Good”, and “Excellent”.

Pre-screening conditions were set. Before beginning the test, users were asked to:
plug their smartphone to a power connector, set the smartphone display to its maximum
brightness; use only the Wi-Fi connection and disable any other type of internet connec‐
tion mode; set the display orientation in the vertical (landscape) mode. Download speeds
were tested and those with less than 40 megabits per second were excluded from the
test. Users were also asked to report the lighting conditions under which they were
performing the test, their position of use (e.g. seated on a chair, standing up), and the
model of the smartphone they were using, its display size and resolution.

Subjects. Thirty-six participants completed the subjective test in a single session on
June, 2017 (mean age 31.9 years old, 36.1% male, 13.8% expert viewers, 22.3% indoor
with artificial lights, 77.7% indoor with natural lights, 100% sitting position, smartphone
brands: 38.8% Apple iPhone 5/6/7, 36.1% Samsung Galaxy S6/S7, 25.1% other brands
and models, smartphone screen-size: 41.7% 4.7/4.87 in., 58.33% 5.1/5.5/5.7 in.). Twelve
outliers were removed.

Results. The internal consistency of the scale was validated by using Cronbach’s alpha
(alpha = 0.968) and Spearman Brown split-half value (rho = 0.942) (Cronbach’s Alpha
= 0.944 for the first half and alpha = 0.941 for the second half).

For each subject, the Mean Opinion Scores assigned to the reference videos were
used to calculate the Difference Mean Opinion Scores (DMOS) (CRF 21: H264 = 63,
Saliency based compression DMOS = 63.87, CRF 27: H264 = 56.9, Saliency based
compression DMOS = 54.35) (Table 1) between reference videos and the related
compressed videos using the formula explained in the previous work [27].

Table 1. Values of DMOS (range 1–100), PSNR (range 33–37), SSIM (range 0–1) and Sencogi-
STSM (range 3.0–3.4) for videos compressed with the H264 compression model or the saliency
based compression model at CRF 21 and CRF 27.

Compression CRF DMOS PSNR SSIM Sencogi SMST
H264 All CRFs 3.529 37.996 0.972 3.319
H264 CRF 21 3.966 38.195 0.972 3.333
H264 CRF 27 3.097 37.798 0.971 3.306
Saliency based compression All CRFs 11.337 33.799 0.931 3.060
Saliency based compression CRF 21 10.067 33.977 0.932 3.062
Saliency based compression CRF 27 12.608 33.622 0.930 3.058
All compressions All CRFs 7.470 35.898 0.951 3.190
All compressions CRF 21 3.604 37.996 0.972 3.319
All compressions CRF 27 11.337 33.799 0.931 3.06
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3.3 Objective VQA Prediction of Subjective Scores

Three objective VQA metrics were used to evaluate the same videos used during the
subjective evaluation: (1) PSNR; (2) SSIM; (3) Sencogi-STSM (means: PSNR =
35.898; SSIM = 0.951; Sencogi-STSM = 3.190). Detailed results are reported in Tab. 1.

3.4 Prediction Performance: Comparative Analyses

Method. Four analyses comparing objective and subjective scores were performed by
following the methodology recommended by the ITU Telecommunication Standardi‐
zation Sector [2]: (1) Spearman Rank Order Correlation Coefficient (SROC); (2) Pearson
Linear Correlation Coefficient (PLCC) (calculated after a nonlinear regression with a
logistic function, as recommended by the ITU standards [3]); (3) Root Mean Square
Error (RMSE); all calculating how much the VQA metric predicts subjective scores; (4)
Outlier Ratio (OR), which calculates percentage of the predictions number that falls
outside plus/minus 2 times the standard deviation of subjective DMOS.

Results

(1) Spearman Rank Order Correlation calculated on all types of compression combined
show a significantly positive correlation between all objective measures and subjec‐
tive scores: Sencogi-STSM values and DMOS values (rho = 0.655, p < 0.01), SSIM
and DMOS values (rho = 0.627, p < 0.01), and PSNR and DMOS values (rho =
0.464, p < 0.05). Results on highly compressed videos (CRF 27), show that both
Sencogi-STSM (rho = 0.503, p < 0.05) and SSIM (rho = 0.539, p < 0.01) are able
to significantly predict subjective DMOS, whereas PSNR (rho = 0.248, p > 0.05)
shows no significant correlation with DMOS values.

Fig. 4. Pearson Linear Correlation Coefficient between subjective and objective scores assigned
to videos compressed at a CRF 27 value.
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(2) Pearson Linear Correlation Coefficient on all videos and all types of compression
CRF show a significant correlation between Sencogi-STSM and DMOS (r = 0.625,
p < 0.01), between SSIM and DMOS (r = 0.632, p < 0.01), and between PSNR
and DMOS (r = 0.451, p < 0.05). Results on highly compressed videos (CRF 27)
show that only Sencogi-STSM (r = 0.472, p < 0.05) is able to significantly predict
subjective DMOS. No significant correlation between PSNR and DMOS (r = 0.001,
p > 0.05) and SSIM and DMOS (r = 0.246, p > 0.05) was found (Fig. 4).

(3) Paired t test of the Root Mean Square Error scores shows a significant differ‐
ence between Sencogi-STSM scores and PSNR scores (t(10) = 7.757, p =
0.000), and SSIM (t(10) = 4.667, p = 0.001), meaning that Sencogi STMS has
RMSE values significantly lower than both traditional objective measures
(Sencogi-STSM RMSE = 7.049; SSIM RMSE = 8.508; PSNR RMSE =
29.652). Results on highly compressed videos (CRF 27), show a significant
difference between both PSNR (RMSE = 23.153) and SSIM (RMSE = 11.207),
and Sencogi-STSM (RMSE = 9.290), which has significantly lower prediction
scores compared to the other objective measures (Sencogi-STSM vs PSNR: (t(4)
= −3.506, p < 0.01; Sencogi-STSM vs SSIM: (t(4) = −15.403, p < 0.01) (Fig. 5).

(4) Results on the Outlier Ratio analysis show that only 7.75% of the values predicted
by both SSIM (OR = 0.8) and Sencogi-SMST (OR = 0.75) fall outside ±2 of the
standard deviation (SD) of subjective DMOS, whereas all PSNR values (OR = 1)
fall outside ±2 of the SD of subjective DMOS.

Fig. 5. Figure shows the Root Mean Square Error value of PSNR, SSIM, and Sencogi-STSM.
The lower the RMSE value, the higher the degree of accuracy of the predicted objective scores
is. Results on paired comparisons showed that Sencogi-STSM has significantly better prediction
scores than PSNR and SSIM.
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3.5 Discussion

The perception quality of videos compressed at two different constant rate factor values,
and displayed on smartphone devices, has been calculated with three different objective
measures: two traditional VQA measures called PSNR and SSIM, and one new VQA
saliency based measure, called Sencogi-STSM. A previous study [27] proved the effi‐
cacy of the new Sencogi-STSM metric for predicting subjective quality scores of videos
displayed on laptop computers, finding an overall better prediction performance by
Sencogi-STSM than SSIM and PSNR metrics.

Results obtained in this study confirm the efficacy of Sencogi-STSM in predicting
subjective scores for mobile phone screens. Globally, all the compared objective VQA
metrics are able to significantly predict subjective scores of compressed videos displayed
on smartphone devices, but only Sencogi-STSM and SSIM accurately predict subjective
scores for highly compressed video (CRF 27), and only Sencogi-STSM is able to
significantly predict subjective scores with low error. Moreover, Sencogi-STSM has
lower RMSE values than PSNR and SSIM, especially for videos compressed at CRF
27. Sencogi-STSM obtained better prediction performance over the classic SSIM and
PSNR metrics especially for highly distorted videos. For non-salience-compressed
videos at CRF 27, STSM is 6.8% more accurate than SSIM. For salience compressed
videos at CRF 27, STSM is 14.44% more accurate than SSIM. Results show that, at high
compression levels, the logic behind Sencogi-STSM (which uses perceptual quality
features) ensures that high saliency areas are given more significance than low saliency.

4 Conclusion

The performance of Sencogi Spatio-Temporal Saliency Metric (Sencogi-STSM) with
mobile devices was compared to the most used objective Video Quality Assessment
metrics, i.e. Peak Signal to Noise Ratio (PSNR) and Structural Similarity index (SSIM).
Sencogi-STSM model uses spatio-temporal saliency to predict subjective perception of
video quality. Sencogi-STSM uses four visual complexity algorithms, which calculate
saliency within a video-frame, motion saliency between video-frames, delta-quality
saliency showing where a quality change may be subjectively noticed, and noise detec‐
tion. The performance evaluation with mobile devices showed that Sencogi-STSM is
significantly more accurate in predicting subjective scores of videos compressed at high
Constant Rate Factor (CRF) values than the other objective VQA metrics.
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