
Implementing Node-Link Interface
into a Block-Based Visual
Programming Language

Ryo Suzuki(✉), Takuto Takahashi, Kenta Masuda, and Ikuro Choh

Waseda University, 3-4-1 Ookubo, Shinjuku-Ku, Tokyo 169-8555, Japan
reputeless@gmail.com

Abstract. We developed a novel node-link style interface that can be introduced
into a block-based visual programming language as an alternative representation
of named variables. By using our new interface, the programmer no longer needs
to decide the name of a variable. Tracking the data flow in the program can be
easily achieved. Since keyboard typing is not required, the coding is expected to
be more accessible to children and persons with disabilities, and it is also suitable
for touch operations on mobile phones and tablets.

In our system, as the number of variables increases, the intersections of the
links increase, which makes the appearance complicated. To avoid this problem,
we implemented improvements in the design, such as emphasizing the focused
link list, and making the curves of the links consistent.

Keywords: Visual programming language · Blocks-based programming
User interface

1 Introduction

1.1 Visual Programming Languages

A visual programming language is a programming language that expresses data, flow, and
logic by correlation of visual elements such as graphics, icons, and texts. The visual
programming language contrasts with text programming consisting of plain text. Many
visual programming languages are developed for beginners of programming. In such
languages, instead of typing the source code with a keyboard, code is edited by placing
elements of the graphical user interface using a mouse or touch. By those design, the effort
required for learning coding is made smaller than that of text programming. In program‐
ming education for young people, such as computer classes in elementary schools and
events like Hour of Code [1], visual programming languages are widely used.

1.2 Block-Based Visual Programming Languages

Visual programming languages that express flows and scopes by aligned blocks are called
block-based visual programming languages. A block expresses one unit of programming

© Springer International Publishing AG, part of Springer Nature 2018
M. Kurosu (Ed.): HCI 2018, LNCS 10902, pp. 455–465, 2018.
https://doi.org/10.1007/978-3-319-91244-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91244-8_36&domain=pdf


elements such as variable definition and function call, and the execution order is defined
by the direction in which the blocks are connected. Generally ordered from top to bottom,
from left to right. The blocks are basically rectangular, and they often have irregularities
like a piece of a puzzle, and they visually represent connectable blocks.

1.3 Representation of a Variable

Visual programming languages are often used as introductions to text programming
languages. Structures such as loops and branches seen in Scratch [2] and Blockly [3] corre‐
spond to those of text programming languages such as C and Java. The concept of varia‐
bles is also commonly used in these languages.

In this paper, we investigate existing methods for representing variables in visual
programming languages and propose node-link interface as a new method.

2 Previous Approach

2.1 Block-Based Visual Programming Languages

Block-based visual programming languages such as Scratch (Fig. 1) and Blockly have been
developed for programming education for novices, and they are widely used in introduc‐
tory computer science classes [4]. This type of interface makes better productivity, makes
less syntax errors, and provides better learnability compared to text programming.
However, even in such visual programming languages, the concept of variables is still
expressed in text form and the advantages of expressive visual programming languages are
not utilized. The programmer always needs to read the code carefully to understand the
name of the variable, where it is defined, where the value is modified, and where it is used
as an argument of the function. Furthermore, naming variables takes time, and causes
problems when the entire program is translated into a language of another country for
localization.

Fig. 1. An example of block-based visual programming language. (Scratch 3.0)

456 R. Suzuki et al.



2.2 Node-Based Visual Programming Languages

Node-based interface is also famous option for visual programming languages. In the node-
based interface as shown in Fig. 2, a program is created with the directed flow of data
between operation and operation in a graph. The programmer connects the output node of
the block corresponding to the return value of a function or a variable to an input node of
the block to reuse the value. Since a programmer can place the blocks everywhere, space
efficiency is poor compared to aligned blocks. In general, variables are not required to be
named.

Fig. 2. A classic node-based visual programming language.

3 Node-Link Interface Overview

We developed a new visual programming language “Enrect” [5] that introduces a node-
based interface into a block-based visual programming language. In Enrect, flows and
scopes are expressed by aligned blocks as well as a block-based visual programming
language. Variables are represented by nodes and link curves as shown in Fig. 3.

Fig. 3. Node-link interface is used instead of named variables in our visual programming language.

Implementing Node-Link Interface 457



The node is displayed at the left end of the block corresponding to a variable, and the
user extends the curve of the link by dragging it and connects it to the parameter node
(white box) of the argument on the function block. The connected box can be used as a new
node that represents the same variable, and a new link can be created by dragging from the
node. When a user drags outside the scope of a variable, it is displayed as an invalid oper‐
ation. To remove the link from the argument box, the user grabs the node and releases it
on the box. The order of the nodes and links to be visualized is updated each time when
reconnection or block rearrangement event has occurred. The link always starts from the
variable block, and the nodes are connected in the order in which they appear in the code.
When a variable is statically typed, connectable boxes that accept the value are highlighted
while dragging. This is one of the useful interface that cannot be achieved with a text-based
IDE. Our code structure using the node-link instead of named variables is essentially the
same as the ordinary block-based language, thus it can easily be converted to a text code
as a traditional block-based language can.

The purpose of our node-link interface is to achieve the following usability during
the coding with a visual programming language.

• Keyboard is not required
• Works on small mobile screen
• Can be operated with one finger
• Can translate source code into other languages (e.g. from English into Japanese).

3.1 Node

As shown in Fig. 4, a node is an element which is used as a starting point of a link that
expresses a data flow. Colored circular or square nodes are attached to the left side of
variable blocks or function blocks with return values, and white circular or square nodes
are inside function blocks that accept arguments. Especially, we call the latter as a
parameter node. By starting the drag operation with the mouse or touch from the node,
the programmer can create a link and connect it to another node.

Fig. 4. Variable node is attached to a left side of a variable block or a function block that has a
return value.

458 R. Suzuki et al.



3.2 Parameter Node

The parameter node is an element expressing the argument of the function as a node.
As shown in Fig. 5, a programmer can write a value directly instead of using a variable.
The parameter node accepts a specific type of input, dependent on the value type.
Programmer cannot connect a node when they don’t match.

Fig. 5. A block usually has one or more parameter nodes. They are represented as a white box
or circle inside the block.

3.3 Link Curve

The curve connecting the nodes is a link. As shown in Fig. 6, it is usually drawn as a
cubic Bezier curve connecting the nodes. At the present Enrect specification, there are
a maximum of two links connected to one node, but there is also a possibility that it will
be increased due to implementation of branch representation in the future.

Fig. 6. Nodes are connected by a link curve.

4 Design Features

Enrect has several unique interface features for improving usability of programming.
Large font size makes touch operation accurate. The input annotation provides additional
information for the user to grasp the specification of the function. In-app software
keyboard provides visual consistency and prevents source code from being covered. The

Implementing Node-Link Interface 459



shape of a parameter node changes depending on whether the argument may be modified
or not. Allowing blank lines improves the expressiveness of source code.

4.1 Font Size

Enrect uses larger fonts compared to other visual programming languages (Table 1). It
was designed to make it easier to operate with touch. This size is helpful for a teacher
looking at the student’s tablet screen in the classroom.

Table 1. Height of the minimum block in block-based visual programming languages.

Scratch 3.0 Blockly Enrect
33px 24px 58px

It is planned to implement semantic zooming which supports adaptive scaling like
online map service.

4.2 Input Annotation

As shown in Fig. 7, in some parameter nodes that receive numerical values, small symbols
indicating the use of the numerical values are displayed as input annotations. In the param‐
eter node corresponding to the width, arrows in both directions indicate that it is the thick‐
ness of the line. In the parameter node corresponding to the angle, the arrow rotating clock‐
wise indicates the rotation and its direction visually to the programmer. Color and emoji
are represented by image indexes and RGB values internally, but they are displayed visu‐
ally in the source code.

Fig. 7. Some parameter nodes have input annotations that represent their usages.

4.3 Anonymous Variable

By using our interface, variables in the source code are not required to be named by the
programmer. Thus, programmer can save time and effort to devise the name of a variable
and input it. The source code of Enrect can be translated into the language of each country
by switching the system language setting. Since the variables in the source code do not

460 R. Suzuki et al.



have names, it is accessible for people who don’t understand English. For example, a
Japanese student and an American student can share their code with no barrier.

4.4 Software Keyboard

Although it is no longer necessary to input the name of a variable, the keyboard is still
needed to input the numerical value and the text to be handled by the program. A general
problem while coding a visual programming language on a tablet PC is that a software
keyboard obscures the editor as shown in Fig. 8. We solved the problem partially by imple‐
menting an in-app input window in the editor (Fig. 9). Node link interface is used in the
window for consistency.

Fig. 8. A text input window and a system software keyboard may hide the source code editor.

Fig. 9. In-app text input window connected to a parameter block with node-link interface.

4.5 Constant Value

Blocks that represent constants are implemented to make Enrect close to practical text
programming languages. Constants cannot be connected to parameter nodes which perform
destructive operation. To express it visually, the parameter node which modifies input has
circular shape and an immutable variable block has a square node. Then a programmer can

Implementing Node-Link Interface 461



connect variable nodes (circle or square) to square parameter nodes, but only circle vari‐
able nodes can be connected to circle parameter nodes. This is a visualization of the lvalue/
rvalue in C++ showed in the following code (Fig. 10).

Fig. 10. A circle parameter node only accepts mutable variable.

4.6 Blank Line

When the link curve is complicated, and the readability drops, a programmer can elimi‐
nate complexity by inserting blank lines between blocks. This also has a secondary effect
on the ease of programming. In text programming, a programmer can write blank lines in
the code. A blank line is sometimes used to indicate that the contents of the function are not
implemented or to express boundaries of processing units. Block-based visual languages
generally do not allow elements corresponding to empty lines in consecutive blocks, but
Enrect allows blank lines.

4.7 Creating a New Node

A new link cannot be inserted between connected nodes in an ordinary node-based
language with one action, but Enrect can create new link for a variable from any nodes
as shown in Fig. 11. It can improve usability while editing a long source code.

4.8 Avoiding Confliction

We found that link curves can be complicated when many variables are used in single
source code. Then we improved the design of the link curves. The currently selected
variable and its link curves are emphasized with bold and highlight visual effect. Each
variable has unique color for its link curve. Random offset is added to the curve param‐
eter to avoid overlapping. Curves are rendered consistently and smoothly through the
all nodes instead of calculating the curve parameters on each link.

462 R. Suzuki et al.



5 Evaluation

5.1 Programming Effort

To investigate how much our programming language reduces the user’s effort compared
to the existing block-based visual programming language, we measure the minimum
number of clicks and drags, and key touches required to implement the sample program.
We used FizzBuzz [6] which is a famous programming practice as the sample program.
The pseudocode is as follows.

As shown in Table 2, Enrect user can implement the program with less actions.

Table 2. Action counts while coding FizzBuzz.

Language Click Drag Key touch Sum
Scratch
3.0

16 25 18 59

Blockly 24 24 22 70
Enrect 34 20 0 54

Fig. 11. A new link can be created from any active nodes.

Implementing Node-Link Interface 463



5.2 Understandability

To verify that our interface is comprehensible to beginners of programming, we
conducted a experiment. The experiment was conducted for 10 students aged 11 to 12
years. They all use Enrect for the first time. In the experiment, we first presented guidance
of Enrect for about 5 min, then let them develop freely for 40 min and collected operation
log data. As shown in Table 3, except for one student, all students succeeded in creating
multiple variables and links. The number of variable blocks created was 5.8 on average,
and the link was created 23.3 times on average.

Table 3. The numbers of variables and links created during the test.

User ID Variables
created

Links
created

#1 6 34
#2 4 16
#3 7 28
#4 12 29
#5 5 18
#6 4 21
#7 9 38
#8 4 12
#9 6 34
#10 1 3
Avg. 5.8 23.3

6 Future Work

6.1 Data Flow Animation

In complicated programs, it is difficult to infer the flow of data and the change in state
from the source code. By visualizing data moving on link curves between nodes with
animation, it is possible to implement a visual debugger that assists development.

6.2 Tagging

When using multiple variables, the meaning of each value is not explicit without its
name. It can be improved by providing several types of variable blocks with roughly
labeled as “count”, “time”, etc., or by allowing the user to attach pre-defined tags to
variable blocks.

7 Conclusion

We showed our novel node-link style interface that can be introduced into a block-based
visual programming language. By using our interface, variables are not required to be

464 R. Suzuki et al.



named, data flow in the program can be displayed clearly, and a programmer can make
a simple program with less effort. Our experiment showed our system is almost compre‐
hensible by novice programmers.

References

1. Hour of Code. https://code.org/learn. Accessed 1 Jan 2018
2. SCRATCH. https://scratch.mit.edu/. Accessed 1 Jan 2018
3. Blockly. https://developers.google.com/blockly/. Accessed 1 Jan 2018
4. Weintrop, D., Wilensky, U.: To block or not to block, that is the question: students’ perceptions

of blocks-based programming. In: Proceedings of the 14th International Conference on
Interaction Design and Children. ACM (2015)

5. Enrect. https://enrect.org. Accessed 1 Jan 2018
6. Using FizzBuzz to Find Developers who Grok Coding. https://imranontech.com/2007/01/24/

using-fizzbuzz-to-find-developers-who-grok-coding/. Accessed 1 Jan 2018

Implementing Node-Link Interface 465

https://code.org/learn
https://scratch.mit.edu/
https://developers.google.com/blockly/
https://enrect.org
https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/

	Implementing Node-Link Interface into a Block-Based Visual Programming Language
	Abstract
	1 Introduction
	1.1 Visual Programming Languages
	1.2 Block-Based Visual Programming Languages
	1.3 Representation of a Variable

	2 Previous Approach
	2.1 Block-Based Visual Programming Languages
	2.2 Node-Based Visual Programming Languages

	3 Node-Link Interface Overview
	3.1 Node
	3.2 Parameter Node
	3.3 Link Curve

	4 Design Features
	4.1 Font Size
	4.2 Input Annotation
	4.3 Anonymous Variable
	4.4 Software Keyboard
	4.5 Constant Value
	4.6 Blank Line
	4.7 Creating a New Node
	4.8 Avoiding Confliction

	5 Evaluation
	5.1 Programming Effort
	5.2 Understandability

	6 Future Work
	6.1 Data Flow Animation
	6.2 Tagging

	7 Conclusion
	References




