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Abstract. In a world full of distractions, keeping an audience focused on a
presentation is getting increasingly difficult. In this paper, we propose a system
that supports presenters in a nearly subliminal way to regain attention of the
overall audience. The system uses a measure of motion complexity inside the
audience area as an estimate for overall attention. It then applies low-level visual
overlays over presentations if the estimated level of attention is getting too low.
Ideally, these dynamically adapted visual overlays can be detected in the periph‐
eral field of view but not in the foveal field of view. In a pilot study with 14
participants, we tested the feasibility of this approach with a simplified version
of the system, limiting stimuli to red colored overlays up to an opacity of 20%.
First results show that motion complexity can indeed be a good indicator of
distractions and low-level visual overlays can lead to a higher perceived level of
agitation. However, the visual effects used in this pilot study have been partly
perceived by the audience. Further work is needed to identify visual stimuli that
are best fitted for recapturing attention without irritating those already focused on
the presentation.
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1 Introduction

Remaining focused on presentations in today’s world is getting increasingly difficult,
given the countless distractions offered by smartphones and other personal electronic
devices, in addition to the various external and ambient distractions. This imposes a big
challenge on presenters to perfectly prepare their presentations for their audience.

In a study, Ward et al. (2017) report that even having phones in silent mode makes
it harder to stay focused and reduces cognitive performance compared to having no
phone at all. But also without smartphones the available attention span is limited. Reports
on the typical attention span duration vary broadly. McKeachie and Svinicki (2013)
mention a 10-min attention span, which they base on a study about note taking during
lectures by Hartley and Davies (1978). Bunce et al. (2010) mentioned that students self-
reported an attention decline already after 4–5 min into a presentation after the initial
settling in period, and that they would also alternate between attention and nonattention
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states in briefer and briefer cycles during a lecture. In general Wilson and Korn (2007)
criticize the lack of consideration of individual differences in various attention span
studies. A widely-reported study conducted by Microsoft, which described an attention
span of just 8 s in 2013, has been disregarded in this context, as it basically referred to
the time people typically spent on a web page before moving on, and not to actual
attention span durations (Bradbury 2016).

Independent of the actual length of the attention span, it’s not only a matter about
attention itself, it’s also about where members of the audience divert their attention to,
or expressed differently, what might distract them. Pratto and Oliver (1991) describe
negative social information as a powerful source to grab attention. Smith et al (2003)
reported about a negativity bias in attention allocation, meaning negative stimuli can
divert the attention away from the current focus more easily than positive ones.

As soon as some individuals of an audience get distracted, this state might be passed
on to others subconsciously by mood transfers, which could possibly lead to an agitated
audience (Tudor et al 2013). This process is caused by the same mechanisms as the ones
underlying for example contagious yawning, which is described as nonverbal commu‐
nication to synchronize behavior within a group (Guggisberg 2011). The mechanism of
mood transfers has originally been discussed in birds’ research, where one bird fleeing
causes all others of the group to flee too at virtually the same time (Lorenz 1935).

There are, of course many ways presenters can prepare for these challenges in first
place. Having the information perfectly selected and prepared according to the interests
of the expected audience is an important first step. Obeying best practices for preparing
presentations is another important step towards captivating the attention of an audience.

However, an interesting question arises. Could a presentation system possibly
support the presenter in a subliminal way to regain the attention of an audience? What
would be needed to distract the audience from the countless distractions back to the
presentation? In this paper, we present a concept for such a system and describe a brief
pilot study to test the feasibility of this approach.

Such a system should be able to judge the overall level of attention of an audience
and to present stimuli in a way, that recaptures the interest of distracted people without
distracting those people already focused on the presentation. In the next section, we look
at some of the related work before we present our approach.

2 Related Work

Measuring the level of attention in classroom settings has been of interest to researchers
since a long time. One approach is described by Helmke & Renkl in their Münchner
Aufmerksamkeitsinventar (MAI). The basic idea is to observe students in a classroom
during a lecture and sequentially code the attention state of individual students in fixed
time intervals of 5 s. For this, attention states are classified in two layers. The first one
discriminates between no-task, on-task, and off-task states. In the second layer the on-
task state is further divided into compliance with task-requirements, self-initiated, or
externally initiated activities. The off-task state is further divided into active (e.g.
distracting others) or passive (e.g. dreaming) state (Helmke and Renkl 1992). Hommel
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presented an adjusted variant that’s modified to better fit higher education and makes
use of videography to analyze all students in 30 s intervals over the whole time (Hommel
2012). Both approaches also consider the lecture context in addition to attention state.

More advanced approaches make use of emotion recognition systems that analyze
facial expressions (Magdin et al. 2016; Magdin and Prikler 2018; Heyjin 2017; Ayvaz
and Gürüler 2017; Daouas and Lejmi 2018), eye movements (Krithika and Lakshmi
2016), voice characteristics, written text or a combination of different modalities (Nedji
et al. 2008; Bahreini et al. 2016) to deduce the emotional state of a person. These systems
are mostly used and tested in an e-learning context, where the knowledge of the
emotional state should allow for better feedback by the remote lecturer. However, most
of these systems are optimized for observations of individuals, but not suited as an
overall measure for a whole audience. Furthermore, members of an audience (e.g.
students in a lecture or in general listeners to presentations) would not feel comfortable
if they would be tracked individually by cameras.

The human eye features different capabilities in the foveal and the peripheral field
of view. In its periphery, the eye has a higher temporal resolution and sensitivity for
light changes than in the foveal area. This higher sensitivity to light changes is caused
by a higher rod density in the periphery (Curcio et al. 1990; Jonas et al. 1992; Wells-
Grey et al. 2016). Rod mediated vision also seems to cause more activation in the brain
area that is associated with motion, compared to cone mediated vision (Hadjikhani and
Tootell 2000). The reason for the difference between cone- and rod-density could be
originated in evolution: humans with this feature were able to detect dangerous situations
outside of their current field of view faster and could react to the situation in time and
thus survived.

These characteristics might also be exploitable by a system that targets people not
directly looking at it.

Adaptive systems that react to some form of user input in an indirect/non-obtrusive
way to better support users have been used in various fields. Ward et al. (2000) demon‐
strated a novel text input interface, which used previous input and learned language
statistics to make it easier to select probable succeeding characters. This mechanism
enables efficient text input even by only using an input modality with 1- or 2-dimensional
input capabilities. The same principle is used for modern touch keyboards that auto‐
matically increase the sensitive area around certain keys that are more probable to be
typed next than others, and therefore make them easier to reach. Kempter et al. (2003)
discussed the benefits of analogue communication in the human computer interaction
context, where a system’s behavior can be influenced by analogue channels with no
explicitly/pre-defined meanings. Ritter (2011) described different approaches where
subliminal feedback loops in human computer interaction, based on these analogue
communication patterns, could be used to support users in a transparent and unobtrusive
way. In a widely-criticized study for its ethical aspects, Kramer et al. (2014) have shown
that emotional states can be transferred over social networks. Users tend to take on the
same emotions as conveyed in their news stream, even without the users being aware
of this process. These studies demonstrate that systems can be used to influence people
in subliminal ways.
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While people might feel uncomfortable, when they hear they can be influenced in a
subliminal way, the process of influencing people is one of the corner stones of adver‐
tising and is already happening all around the clock.

3 Concept and Implementation

Based on the insights of the work described in the previous section, we aimed to create
a presentation system that observes the audience, deduces an estimate for overall atten‐
tion and applies evolving visual stimuli to recapture the attention of people looking away
from the presentation.

The system shown in Fig. 1 depicts the basic system stages. The input processing
layer consists of an image analysis module that takes input from a webcam and calculates
a motion complexity index. This index is then forwarded to the adaptation loop stage.
The input processing layer also contains an environment module that monitors air
conditions inside the room, like CO2 level, temperature, and humidity. These measures
are currently logged but not yet used as input for the adaptation loop. The adaptation
loop module implements a simple genetic algorithm that uses the motion complexity
input as fitness values for its candidate adaptations. Once fitness values are available for
each candidate in the population, a new generation of adaptation candidates is generated
using a roulette wheel algorithm for parent selection. Each candidate is then applied for
a situation with exceeding motion complexity and again assigned a corresponding fitness
value based on the motion complexity. In our current system, candidate solutions are
encoded using a 10-bit string shown in Table 1.

Fig. 1. System overview of an adaptive presentation system, consisting of an input processing
stage, an adaptation loop module, a presentation mapping stage, and the output layer.
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Table 1. Example genetic encoding of visual overlay parameters, each consisting of 2 bits

Parameter Values
Opacity 0.0, 0.1, 0.15, 0.2
Transition time 0.025, 0.050, 0.100, 10
Fade-In curve EaseInOut, Linear, EaseIn, EaseOut
Fade-Out curve EaseInOut, Linear, EaseIn, EaseOut
Color black, red, blue, white

New evaluation cycles are triggered every 60 s during situations with too much
motion. The following 30 s are used as timeframe for measuring the reactions of the
audience following a stimulus (see Fig. 2).

Fig. 2. Scheduled stimulus application and evaluation timeframes

The presentation mapper takes a candidate bit string as input and maps this to specific
adaptation animations that are then overlaid over the presentation. The main idea of these
adaptations is to be very low-level and fast, effectively producing a lighting change, and
therefore being more noticeable in the peripheral field of view while hardly being visible
for people looking directly at the presentation.

Motion complexity (MC) inside the audience area is derived via an image processing
algorithm, taking a video stream from a webcam as input and performing grayscale conver‐
sion, background subtraction, thresholding, and morphing operators to the individual
images (see Fig. 3) using OpenCV. This results in a black and white image with connected
and independent motion areas.

Fig. 3. Image processing steps for retrieving motion complexity
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From this, two different indices are calculated (see Eqs. 1 and 2).

MCrel = image area with changes ∕ total image area (1)

MCcnt = count of independent movement areas (2)

MCrel should give an overview of the overall action taking place in the camera’s field
of view and can also be used to detect lighting changes inside the room (e.g. a percentage
higher than 50%). MCcnt reflects the number of independent disturbance areas and helps to
counter the effect that moving objects closer to the camera have a bigger influence on MCrel.

We set up a small pilot study to explore the usefulness of the two different motion
complexity indices for estimating an audience’s attention level, and to test the feasibility
of this approach in a real-life setting.

4 Pilot Study

In a small pilot study, we used a simplified version of the system described in the previous
section, to mainly investigate the plausibility of the motion complexity indices and to see
if a background color overlay would cause a noticeable effect. Since the genetic algorithm
adaptation loop would have added too much variability, we chose to apply a red back‐
ground overlay of varying opacity with a maximum value of 20%, depending on the
current motion complexity. Red was chosen because of the common signal-meaning of it.
This overlay will also result in a lighting change depending on the opacity, which should
mainly be recognizable from the visual periphery.

4.1 Method

The system was installed in a lecture room with the camera placed so that it was observing
the audience but not covering the lecturer area. During the presentation, text-based and
image-based slides were shown, both with and without dynamic overlays. Figure 4 shows
the sequence of the lecture slides. The audience was not told in advance that there would
be overlays. They were informed however, that they would have to fill out a brief ques‐
tionnaire after some slides. Each slide was shown for exactly 60 s.

Fig. 4. Timeline of the test sequence. Duration of each slide is 60 s
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In the pilot study 14 persons (6 female, 8 male) attended the test presentation. After
each segment the participants had to rate the following properties on a 7-step rating scale:

Q1: “I followed the presentation…” from “exactly (1)” to “not at all (7)”
Q2: “At the moment I feel…” from “very calm (1)” to “very agitated (7)”
Q3: “The presentation content was…” from “very exciting (1)” to “very boring (7)”
Q4: “The slides were…” from “very intrusive (1)” to “very conservative (7)”

4.2 Results

Table 2 lists the descriptive statistics of the questionnaires. The text-based slides with
ongoing adaptations were rated the most boring (M = 4.36, SD = 1.50). Text based slides
without overlays were rated the most conservatives (M = 4.0, SD = 1.47). The reported

Table 2. Descriptive statistics of ratings

Q1 Q2 Q3 Q4
Stimulus M SD M SD M SD M SD
Adaptive text 3.00 2.00 3.71 1.82 4.36 1.50 3.64 1.15
Static pictures 1.93 0.92 2.71 1.54 3.29 1.49 3.71 1.14
Adaptive pictures 2.62 1.50 3.15 1.82 3.77 1.36 3.31 1.38
Static text 2.71 1.20 2.86 1.56 3.57 1.34 4.00 1.49

Fig. 5. Mean rating values on a scale from 1 to 7 of the different slide types (n = 14). Error bars
show the 95% confidence interval.
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attention (Q1) was rated highest for the static pictures (M = 1.93, SD = 0.92) and adaptive
pictures (M = 2.62, SD = 1.50). Agitation was rated lowest for the two static slide types
(Mpictures = 2.71, SDpictures = 1.54, Mtext = 2.86, SDtext = 1.56). See Fig. 5 for a graphical
illustration.

T-tests were performed between the static and dynamic phases. The results show
that there were significant differences between the reported agitation-level (Madaptive =
3.57, Mstatic = 2.79, p = .019) and the feeling-bored-level of the slides (Madaptive = 4.18,
Mstatic = 3.43, p = .007). See Table 3 for more results and Fig. 6 for a graphical overview.

Table 3. Rating differences between adaptive and static slides

Question Madaptive SDadaptive Mstatic SDstatic Mpaired-diff p
Q1 2.96 1.90 2.32 1.12 0.64 .098
Q2* 3.57 1.89 2.79 1.52 0.79 .019
Q3* 4.18 1.52 3.43 1.40 0.75 .007
Q4 3.50 1.23 3.86 1.29 −0.36 .321

Fig. 6. Differences between adaptive and static slides. Significant differences could be found for
agitation (Q2) and excitation (Q3). Error bars show the 95% confidence interval.

To also check the influence of the slide type (picture or text), a t-test has been
performed between these groups. However, no significant differences could be identi‐
fied.

Both motion complexity indices show a peak at the beginning of the lecture and then
at the questionnaire slots 3, 6, and 9 (see Fig. 7), indicating that both measures reflect
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the settling in period of a presentation and react to distractions during the presentation
(filling out the questionnaires). It’s also interesting to note that the motion complexity
levels for the picture slides (4,5 & 7,8) are above the ones for text slides (1,2 & 10,11).
This could relate to the higher self-reported attention level of picture slides.

Fig. 7. Motion complexity indices through the course of the presentation. Peaks can be observed
at the start, and at phases 3, 6, and 9 (questionnaire action).

5 Discussion and Conclusion

The results show that there was a significant difference between slides with and without
adaptions taking place, hinting that we might indeed be able to influence the perception
of slides using low-level visual overlays. However, the difficult part is to find the right
balance between the noticeability from the peripheral field of view and the center field
of view. In the mapping of the pilot study, the strongest visual overlays were too notice‐
able when directly looking at it – this was probably the reason for the relatively high
self-reported agitation level of the slides with adaptions. Overall, the derived motion
complexity for picture slides was higher than for text slides. This contrasts with the
reported agitation level, where the slides with adaptations were rated higher independent
of slide content type, but falls in line with the higher self-reported attention level for
picture based slides. A decline from the first to the second slide within a condition could
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be observed for each variation, which was to be expected due to the settling in phase
from the preceding questionnaire section.

One downside of our motion complexity indicators is the susceptibility to overre‐
action when massive motion occurs (e.g. a person leaving the room or is coming in late).
While this is a little improved with MCcnt compared to MCrel, it is still present there too.
One workaround could be to set a narrow threshold for valid motion complexity levels,
and if this threshold is exceeded, pause the system until things get back to normal. This
would also be advisable for filtering out abrupt light changes.

A possible concern is the influence of such a system on people with Epilepsy. Even
if our overlays are within the same specs as e.g. movies or games that could also play
in the peripheral field of view, further clarifications with experts in this field must be
done, before using such a system in real-life settings.

In a next step, different stimuli will be tested in a lab setting regarding their potential
to grab peoples’ attention while they are focused on a different task, where the stimulus
screen is placed outside the foveal field of view. The most promising properties will
then be encoded for use with the genetic algorithm. Also, the motion complexity param‐
eters could be compared to attention level ratings using e.g. the ModAI instrument. Once
attention levels are rated for specific lectures, the motion complexity parameter algo‐
rithms can be fine-tuned using video recordings of the rated lectures.

After this, further tests of the overall system with more participants will have to be
done.
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