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Abstract. Path prediction is a fundamental task for estimating how
pedestrians or vehicles are going to move in a scene. Because path pre-
diction as a task of computer vision uses video as input, various infor-
mation used for prediction, such as the environment surrounding the
target and the internal state of the target, need to be estimated from
the video in addition to predicting paths. Many prediction approaches
that include understanding the environment and the internal state have
been proposed. In this survey, we systematically summarize methods of
path prediction that take video as input and extract features from the
video. Moreover, we introduce datasets used to evaluate path prediction
methods quantitatively.

Keywords: Path prediction · Trajectory · Pedestrian · Survey
Datasets

1 Introduction

Path prediction is the task of estimating the path, or trajectory, along which
a target (e.g., a pedestrian or vehicle) will move. Predicting paths from video
is an important task receiving much attention as it is expected to have many
potential applications, such as surveillance camera analysis, self-driving cars,
and autonomous robot navigation.

Path prediction has to estimate much more information—such as informa-
tion of the surrounding environment, moving direction, and status of predic-
tion targets—than other simple image recognition tasks. As a result, prediction
methods are often built on top of other computer vision tasks, such as pedes-
trian detection [1,2], pedestrian attribute recognition [3], and semantic segmen-
tation [4]. Moreover, in the prediction task, future observations of predicted
paths are not available. In tasks of pedestrian detection and tracking, observa-
tions from the past to the present are used to locate and track the target in the
current frame of the video. In contrast, the prediction task localizes and predicts
the locations of the target in future frames of the video, using observations made
until the present time and prior information on the surrounding environment and
knowledge of the target motion.
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Fig. 1. Overview of path prediction, modified from [6].

Path prediction has been studied for decades in the field of robotics. At
stations and airports, robots need to move without interfering with the many
people present [5] and to plan a path of efficient motion in the environment. Path
prediction is necessary to achieve such tasks. However, in addition to information
from cameras, robots are able to use information from many types of sensor, such
as a LIDAR sensor, to obtain the three-dimensional (3D) geometry of the scene.
The environment in which the robot can move around is sometimes explicitly
given as an environment map. The present survey is of path prediction methods
involving video only as a computer vision task.

There is an alternative task called early recognition, which predicts future
human behaviors in video. This task predicts future actions in the video but is
excluded from the survey because the predicted categories are discrete whereas
predicted paths are sequences of continuous locations.

As the task of path prediction in the field of computer vision is difficult
and challenging, a number of various methods have been proposed. A common
approach is shown in Fig. 1. As input, a video (or a frame of video) is given
in addition to the location of the target in the current frame or a sequence of
locations over the past frames of several seconds. Features useful for prediction
are then extracted from the video (or frames) to predict the path in future
frames. There are two important parts to the overview of Fig. 1: (b) feature
extraction where many features are extracted to understand the environment
and target; and (c) path prediction where a variety of methods are proposed,
categorized into four types.

In this paper, we survey path prediction methods taking video as input and sys-
tematically summarize feature extraction and prediction approaches and datasets
used for evaluation. We explain feature extraction methods in Sect. 2 and catego-
rize prediction methods in Sect. 3. In Sect. 4, we review datasets used in evaluating
the performance of path prediction. We conclude the survey in Sect. 5.
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Table 1. Categories of feature extraction for path prediction.

Feature Types Methods

Environment Scene label Stacked hierarchical labeling [7]

Superpixel-based MRF [8]

Fully convolutional networks [9,10]

Cost Bag of visual words

Spatial matching network [11]

Global scene feature Pre-trained AlexNet [12]

Siamese network [13]

Target Location HOG + SVM detector [14]

Direction Bayesian orientation estimation [15]

Orientation network [11]

Attribute AlexNet-based multi-task learning [16]

Feature vector Mid-level patch features [17]

2 Feature Extraction from a Video

This section introduces methods of feature extraction from video for path pre-
diction. The path that the pedestrian takes is implicitly affected by many factors
of the surrounding environment and the status of the pedestrian his self or her-
self. The performance of path prediction is expected to be improve when using
information that largely determines how the pedestrian decides the way to go.
Given the video, such information is extracted prior to the prediction. Table 1
presents information extracted from video for path prediction. Such information
can be broadly categorized into that of (1) the environment and (2) the target.

2.1 Environmental Features

The pedestrian decides the way and walks along a path while being affected by
the surrounding environment. For example, we usually walk along the sidewalk
while avoiding obstacles on the way (e.g., parked cars and trash cans) and drive
a car on the roadway as is common social practice. The movement of the tar-
get is dynamically affected by the environment, and environmental features are
therefore extracted from the video.

Semantic segmentation [18–21] is a task of assigning an object class to each
pixel, which is the most common task in understanding the environment in the
field of computer vision. Semantic segmentation can be conducted to estimate
where obstacles exist in the scene and where there are regions available for walk-
ing. Kitani et al. [18] assumed that pedestrian paths are mainly affected by the
physical environment, such as sidewalks, roadways, flower beds, and buildings,
and predicted posterior probabilities of each label using hierarchical segmenta-
tion [7] as shown in Fig. 2. These probabilities are used as feature vectors to
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Fig. 2. Examples of environmental attributes [18]

form scene feature maps, which are used for path prediction. Rehder et al. [20]
used segmentation results obtained using a fully convolutional network [9,10] for
prediction.

Alternative approaches do not explicitly use environmental features affecting
paths but implicitly represent probabilities of paths as cost (or reward) func-
tions [11,22]. These methods create cost maps of the entire scene from cost func-
tions independently estimated for each superpixel. Walker et al. [22] searched for
patches that have similar texture from training samples using a nearest-neighbor
approach, and assigned the costs of the training samples to superpixels to gen-
erate cost maps of the scene. Huang et al. [11] proposed a convolutional neural
network (CNN) called the spatial matching network, which estimates rewards
of local regions by comparing similarity between the patch of the target and
surrounding superpixel patches.

Yet another approach represents the scene as a single feature vector, whereas
the above approaches extract local features from superpixels. Assuming that
similar scenes prompt similar paths, this approach retrieves similar scenes in
a training dataset with feature vectors to predict paths using the paths of the
retrieved scenes. To this end, CNNs are usually used to efficiently extract scene
feature vectors because of the recent success of deep learning architectures. In
predicting paths in first-person video, Park et al. [23] used AlexNet [12] to extract
features when retrieving scenes, and transferred paths of the retrieved scenes for
prediction. Su et al. [24] used an AlexNet-based Siamese network [13] to retrieve
features.

2.2 Target Features

While environmental features strongly affect the target in terms of the path
decision, internal factors of the target are also important. Specifically, attributes
of the target, such as age, gender, and internal demand, affect the path decision.
We herein introduce methods for extracting target features.

The most common target feature is the orientation of the target [11,16,25]
because the estimated orientation can be used to predict in which direction the
target is going. In other words, the orientation constrains the moving direction
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(a) (b)

Fig. 3. Estimation of head orientation [25]. (a) Detection of heads and bodies of pedes-
trians. (b) Estimation of the orientation of the head in eight directions.

of the target and thus reduces errors of prediction. Kooij et al. [25] detected
pedestrians employing a histogram of oriented gradients (HOG) and support
vector machine (SVM) [14] and estimated the head orientation [15] to predict
the path of a pedestrian in front of a car on which a camera was mounted,
focusing on whether the pedestrian will stop before stepping forward onto the
roadway as shown in Fig. 3. If the head faces the camera, then the pedestrian
is assumed to notice the car and is predicted to slow down or stop before the
roadway.

Physical attributes, such as age and gender, are also important to prediction.
When walking in places where there are a number of people, pedestrians take
actions to avoid colliding with each other. Aspects of such avoidance—when
and where pedestrians start to avoid others—are different for pedestrians of
different age and gender; e.g., a younger person walks faster and responds more
rapidly to others than senior people. Wei et al. [16] used AlexNet to estimate
the orientation, age, and gender of pedestrians as multi-task learning. Estimated
attributes are used in deciding the walking speed of pedestrians.

Walker et al. [22] proposed unsupervised path prediction by extracting mid-
level feature vectors directly from patches containing the target, instead of direct
attributes.

3 Prediction Methods

Path prediction follows feature extraction from video. Table 2 summarizes meth-
ods of prediction, categorized according to their approach. This section describes
each category and its properties.

3.1 Bayesian Models

The first approach uses online Bayes filters, such as Kalman filters (KFs) and
particle filters, and infers the model to predict paths. Such modeling introduces
internal states and observations as variables, and defines probabilistic models by
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Table 2. Categories of path prediction methods

Category Paper Year Method Scene Input Output Feature

Env. Target

Bayesian [26] 2013 KF Car Coord. Coord.

[25] 2014 DBN Car Video Coord. � �
[19] 2016 DBN Top view Video Coord. �

Energy
minimization

[27] 2013 Dijkstra Top view Video Distribution �

[22] 2014 Dijkstra Surveillance Video Distribution �
[11] 2016 Dijkstra Surveillance Image Distribution � �

DL [28] 2016 CNN Surveillance Coord. Coord.

[29] 2016 LSTM Top view Coord. Coord.

[30] 2017 LSTM Top view Coord. Coord.

[31] 2017 LSTM Top view Coord. Coord.

[21] 2017 RNN Enc.-Dec Car Video Coord. �
IRL [18] 2012 IRL Top view Video Distribution �

[32] 2016 IRL Top view Video Distribution �
[33] 2016 IRL First person Video Distribution �
[34] 2017 IRL First person Video Distribution �
[16] 2017 IRL Surveillance Image Distribution �
[20] 2017 IRL Car Video Distribution �

Others [35] 2014 Optical flow Car Video Coord.

[36] 2015 Markov process Car Video Coord. �
[23] 2016 Data driven First person Video Coord. �
[24] 2017 Data driven First person Video Coord. �
[37] 2011 Social force Top view Video Coord.

[38] 2016 Social force Top view Video Coord.

assuming that the observations are the internal states contaminated by noise.
This approach iterates the prediction step that computes the current internal
states from the previous states, and the update step that updates the current
states with the observations. In a common setup, internals states are actual coor-
dinates of pedestrians, and observations are coordinates obtained by pedestrian
detection. This is person tracking if we apply the approach to track from the
past to present, and path prediction if we only repeat the prediction step to
obtain the sequence of coordinates of the pedestrian, without the update step;
i.e., there are no future observations.

Schneider et al. [26] used the extended KF to update the internal state of the
pedestrian in front of a car. This was an early work of path prediction and showed
what kind of primitive information (e.g., the walking speed and acceleration) is
useful for path prediction.

Instead of using online Bayes filters, some works have used a dynamic
Bayesian network (DBN) [19,25]. Kooij et al. [25] considered a more restricted
case; estimating if the pedestrian will walk across a roadway in front of a car on
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Fig. 4. Graphical model of a DBN with an SLDS [25]

which a camera is mounted. They defined a DBN model with a switching linear
dynamical system (SLDS) that is shown in Fig. 4 and that uses features extracted
from the movie, such as the pedestrian’s head orientation, distance to the car,
and distance between the pedestrian and roadway. This method performs better
than using coordinates of pedestrian detection only.

3.2 Energy Minimization

The Bayes approach described above is on-line in which it estimates the coordi-
nates of the pedestrian frame by frame in the video. Another (off-line or batch)
approach is an energy minimization approach that estimates the entire sequence
of coordinates at the same time. This approach constructs a two-dimensional
grid graph of the scene and assigns costs for moving to edges in the graph, and
then finds the combination of edges that gives the minimum energy. This is for-
mulated as a shortest path problem solved employing the Dijkstra method. The
prediction accuracy is therefore largely affected by how the cost is defined.

Huang et al. [11] proposed a path prediction method using a single image.
First, a patch containing the target is extracted to estimate the orientation of
the target. Next, the cost for moving across the location of the patch is estimated
by comparing the texture of surrounding patches. In addition to this cost, the
estimated orientation of the target is used as a constraint and added to the edge
weights. Walker et al. [22] compared the texture of superpixels using patches
along the path that the target traced without involving any training procedure.

Appearance information (texture) of the scene can be used to define the
cost function, but objects in the scene can also be used. Xie et al. [27] assumed
that pedestrians have decided their goal (e.g., a food trunk) according to their
potential demands (hunger), and defined cost maps where the pedestrians are
attracted to objects in the scene.

3.3 Deep Learning

Deep learning methods such as those involving the CNN and long short-term
memory (LSTM) have been used for path prediction since the emergence of deep
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Fig. 5. Overview of RL, modified from [38].

learning frameworks. Methods of this type take as input the series of coordinates
of the target over the last several frames, and produce a series of target coor-
dinates in several successive frames. Feature extraction, described in the last
section, is not explicitly performed as feature extraction and prediction are not
explicitly separated in deep learning models.

Several methods thus use LSTM to deal with paths, which are sequences
of two-dimensional coordinates, have been proposed. Alahi et al. [29] proposed
the social-pooling (S-pooling) layer for avoiding collisions between pedestrians. A
pedestrian is represented by LSTM, and hidden layer outputs of LSTMs of other
people are connected to the S-pooling layer of the pedestrian. This layer allows
the LSTM of the pedestrian to represent the spatial relationship with nearby
people (e.g., the distance to each other), and thus predict the path avoiding
collision.

LSTM has a limitation of long-term memory; i.e., paths in the distant future
are difficult to predict. Fernando et al. [31] assumed the necessity of more elab-
orate long-term memory, and proposed the tree memory network that hierarchi-
cally selects useful information of the past stored in memory cells and performs
better than other LSTM models.

Besides LSTM, the CNN is also used to directly make predictions. Yi et al.
[28] proposed the behavior-CNN that predicts the future path from the past path.
This method first creates three-dimensional sparse data whose channels store the
pedestrian two-dimensional coordinates of the last several frames. The sparse 3D
data are encoded using convolution and pooling layers and then decoded using
deconvolution layers. They also added location bias maps to each channel of
encoded information to account for different behaviors at different locations in
the scene, such as the locations of entrances and obstacles.

3.4 Inverse Reinforcement Learning

The three approaches above are examples of supervised or unsupervised learning,
while the approach presented here is an example of reinforcement learning (RL).
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RL learns a policy to decide actions to be taken by an agent under the current
status in an environment. RL is usually defined as a Markov decision process that
learns the optimal policy to allow the agent to take the best actions maximizing
the reward. Figure 5 shows that an agent of RL is the target of prediction, an
environment is the scene given as video, a status is the pedestrian location, and
an action is the movement of the pedestrian.

RL needs to define the reward of the action of moving from one state to
another, which indicates how good the action taken by the agent is. However, it
is difficult to explicitly define the reward function for practical problems such as
the path prediction task. This problem is called the reward design problem, and
inverse reinforcement learning (IRL) is one approach taken to solve the problem.
IRL estimates rewards that reproduce optimal sequences of actions, and decides
actions of the agent in the test phase with the estimated reward so that the
agent can take similar actions.

IRL has been used to learn and control the optimal motion of robots [5].
Kitani et al. [18] first introduced IRL to vision-based path prediction. Instead of
estimating target locations, they estimated actions that the agent may take at a
certain time or location, and predicted possible paths by sequentially applying
the estimated actions to the current target location. This task is therefore called
activity forecasting, in contrast to path prediction that directly estimates loca-
tions of the target in the future. Activity forecasting is a much more complex
and challenging task than path prediction while it has great potential in terms
of having a variety of predictions adapted to each possible application.

Kitani et al. [18] assumed that the physical attributes of a scene strongly
affect pedestrian paths, and used scene attributes estimated by semantic seg-
mentation as feature maps. Rewards of each scene attribute are defined by the
inner product of the feature maps and weight vectors, and the optimal weights
are estimated from training data. For prediction, a sequence of actions that arrive
at the predefined goal is generated by giving the goal and the current location of
the target pedestrian. Lee et al. [32] used a similar approach to predict paths of
football players in a game video. Wei et al. [16] introduced a game theory called
fictitious play to predict paths of multiple pedestrians who arrive at a goal while
avoiding collisions between pedestrians.

Without any predefined goals, Rehder et al. [20] proposed the destination
network to estimate the goal of the target using the last several frames. The
estimated goal and the environmental attributes obtained using a fully convolu-
tional network were used to predict pedestrian paths.

For first-person vision, Bokhari et al. [33] used objects held by a person and
the object states to predict goals in the future. While this work considered a
limited scene (e.g., a kitchen), Rhinehart et al. [34] dealt with wider areas, such
as a home including a kitchen, bathroom, and living room.

3.5 Other Approaches

Most prediction methods can be categorized into one of the four approaches
described above, but there are other approaches.
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Fig. 6. Prediction from first-person videos; (left) [23], (right) [24].

The social force model [39] assumes energy called a “social force” that acts
between pedestrians and objects in the scene, and generates pedestrian move-
ment through interaction via the force. Yamaguchi et al. [37] proposed a model
with additional states, such as the preferences of pedestrians, walking speeds,
goals, and the existence of other people walking together. This work was moti-
vated by a desire to improve the accuracy of pedestrian tracking, but performed
path prediction to evaluate the proposed model. Robicquet et al. [38] proposed
social forces of multiple classes for avoiding collisions. They estimated “social
sensitivity features” using the distances between other people, and applied K-
means clustering of the features to get several clusters of avoidance behaviors.
The cluster of the target behavior of avoidance was estimated using the tar-
get feature, and paths of the cluster were then projected back to the scene for
prediction.

Optical flow extracted from car-mounted cameras was used by Keller et al.
[35] to predict pedestrian paths. They used optical flows over the last several
frames and computed orientation histograms as motion features of pedestrians.
The sequence of histograms was used to retrieve similar scenes in the training
set, and paths of the retrieved scenes were then mapped back to the scene for
prediction.

The use of the Markov process framework was proposed by Rehder et al. [36].
They used normal and von-Mises distributions to represent the state (location)
and speed of the pedestrian, and sequentially estimated the state by taking
products of these distributions at each time step for prediction. To improve
accuracy, the goal of the pedestrian was estimated from environmental attributes
to constrain the direction of motion.

The retrieval-based approach shown in Fig. 6 was proposed by Park et al.
[23] to predict the future path in a video showing the first-person view. They
first extracted scene features using AlexNet and then found similar scenes in the
training set by comparing extracted features. Paths of retrieved training samples
were mapped onto the video. They predicted paths even in scenes with occlusions
by estimating regions behind occluding objects, such as walls and obstacles. Su
et al. [24] extended this work to the prediction of multiple basketball players
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Fig. 7. Datasets and results of prediction, taken and modified from [16,18,21,23,25,
28,29,31,34,38].

in a game scene. In one first-person video, they estimated the region of “joint
attention” to which multiple players commonly paid attention. Multiple paths
were predicted by selecting the optimal path of each player and by minimizing
an objective function defined by the estimated joint attention region, locations
of players, and paths projected back to the scene.

4 Datasets

This section briefly introduces datasets used to evaluate path prediction meth-
ods. Various datasets have been used as shown in Table 3 and Fig. 7. The diver-
sity of datasets is due to the difficulty of using a single universal dataset for
many different conditions, e.g., different numbers of scenes and paths needed for
learning and different types of scenes. We therefore categorize datasets into four
categories in terms of the viewpoint of the camera.

4.1 Videos of Entire Scenes

The most commonly used type of dataset is video that captures the entire scene
taken by a wide-angle camera (for surveillance) at stations and market places.
These datasets are usually used to evaluate pedestrian tracking methods; how-
ever, they are also used in evaluating path prediction because sequences of pedes-
trian locations are given as the ground truth.
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Table 3. Comparison of datasets

Year URL #People Viewpoint #Scenes Other targets Additional
information

UCY [40] 2007 1 786 Top view 3 – –

ETH [41] 2009 2 750 Top view 2 – –

Edinburagh

informatics

forum [42]

2009 3 95,998 Top view 1 – –

Stanford drone
[38]

2016 4 11,216 Top view 8 Bikers,
skateboarders,
cars, buses,
golf carts

–

VIRAT [6] 2011 5 4021 Surveillance 11 Car, bike Object
coordinates,
activity
category

Town centre
[43]

2011 6 230 Surveillance 1 – Head
coordinates

Grand central
station [44]

2015 7 12,600 Surveillance 1 – –

Daimler [26] 2013 8 68 Car – – Stereo camera

KITTI [45] 2012 9 6336 Car – Car Stereo
camera,
LIDAR, Map

EgoMotion [23] 2016 – – First person 26 – Stereo

First-person
continuous
activity [34]

2017 – – First person 17 – Object
information

1: https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
2: http://www.vision.ee.ethz.ch/en/datasets/
3: http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/
4: http://cvgl.stanford.edu/projects/uav data/
5: http://www.viratdata.org/
6: http://www.robots.ox.ac.uk/∼lav/Papers/benfold reid cvpr2011/benfold reid cvpr2011.
html
7: http://www.ee.cuhk.edu.hk/∼xgwang/grandcentral.html
8: http://www.gavrila.net/Datasets/Daimler Pedestrian Benchmark D/
daimler pedestrian benchmark d.html
9: http://www.cvlibs.net/datasets/kitti/

Top view
The UCY Dataset [40] and ETH Dataset [41] contain videos of pedestrians
walking along streets where no other moving objects exist, which is a relatively
simple situation compared with situations of other datasets. The Edinburgh
Informatics Forum Pedestrian Database [42] consists of videos of pedestrians
walking at the campus of the University of Edinburgh taken by a fixed camera.
This dataset is large and has more than 90,000 paths.

https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
http://www.vision.ee.ethz.ch/en/datasets/
http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/
http://cvgl.stanford.edu/projects/uav_data/
http://www.viratdata.org/
http://www.robots.ox.ac.uk/~lav/Papers/benfold_reid_cvpr2011/benfold_reid_cvpr2011.html
http://www.robots.ox.ac.uk/~lav/Papers/benfold_reid_cvpr2011/benfold_reid_cvpr2011.html
http://www.ee.cuhk.edu.hk/~xgwang/grandcentral.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.cvlibs.net/datasets/kitti/
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The above datasets are constructed for pedestrian tracking and crowd behav-
ior analysis, while the Stanford Drone Dataset [38] focuses on path prediction.
This dataset has videos taken by drones flying at eight sites of Stanford Univer-
sity, and provides annotations of moving objects, such as cyclists, skateboarders,
and cars, as well as pedestrians.

Surveillance
Videos in the datasets described above are taken from a top view, while videos
in the datasets shown in Fig. 7(e, f) are taken from a bird’s eye view; i.e., the
videos are taken by surveillance cameras looking downward at an angle. The
physical attributes of pedestrians are observable in these videos and can be
used for prediction. The VIRAT Video Dataset [6] contains videos taken by
surveillance cameras at parking lots, and provides the locations of pedestrians,
cars, and objects in the scene and labels of activities, such as getting into a
car and opening a trunk. It contains 11 scenes, which is the largest number of
scenes among the datasets of surveillance cameras in Table 3. The Town Centre
Dataset [43] contains videos of pedestrians and provides bounding boxes of each
pedestrian as well as labels of head locations of pedestrians.

The Grand Central Station Dataset [44] contains videos taken by a fixed
camera mounted at a station, as shown in Fig. 7(g). It has a single scene but
is complex owing to the many people appearing in and disappearing from the
scene because the motivation is to analyze the behaviors of many pedestrians.

4.2 Car-Mounted Cameras

Datasets of videos taken by cameras mounted on vehicles are used because path
prediction is studied with the aim to develop automated driving. In this case,
cameras are mounted in the front of the car to look forward, and the main
objective is to predict paths of pedestrians in front of the car.

The Daimler Pedestrian Path Prediction Benchmark Dataset [26] consists of
videos taken by car-mounted cameras. There are four classes of cases, including
cases that the pedestrian walks across the roadway and cases that the pedestrian
stops walking to avoid an accident. In addition to the videos themselves, depth
information is available as the videos are taken by stereo cameras. There are
relatively few pedestrians; however, the dataset contains videos that are rare in
other datasets, such as videos of pedestrians crossing in front of moving cars.

The KITTI Vision Benchmark Suite [45] was constructed for the Intelligent
Transport System, and is used for various evaluations such as those of the detec-
tion of pedestrians, vehicles, and white lines on the road. It contains not only
RGB images but also stereo images, LIDER 3D data, GPS locations, and street
maps, and it is therefore useful for path prediction that uses rich information to
understand the environment.

4.3 First-Person View

Unlike videos of entire scenes and taken by car-mounted cameras for predicting
paths of targets in the scene, videos taken from the first-person view are used to
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predict the path of the person taking the video. Park et al. [23] used first-person
videos taken by wearable cameras moving through indoor and outdoor environ-
ments of 26 different scenes, such as on a street and inside a store. Rhinehart
et al. [34] collected first-person videos taken by a person walking around office
environments and assumed that an object held by the person (e.g., a mug or
towel) indicate where the person is going (e.g., the kitchen or bathroom).

5 Conclusions

We reviewed vision-based path prediction methods and common datasets. We
first categorized feature extraction methods of features used for prediction
attributed to the environment or target appearance and dynamics. We then
grouped prediction methods according to the approach taken. Bayesian meth-
ods define probabilistic models of the path and sequentially estimate internal
states. Energy minimization methods define a two-dimensional grid graph by
computing possibilities of pedestrians to move in each local region, and then
solve the shortest-path problem. Deep learning methods take a series of loca-
tions of the target over the past several seconds and output a series of future
locations. IRL uses the policy and reward estimated from training samples and
then selects actions iteratively to produce a future path. These approaches are
of course not exclusive and often used in combination [21]. Finally, we summa-
rized datasets used in evaluating prediction methods. Some datasets are used for
pedestrian detection and tracking, while others are used for path prediction.
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grant number JP16H06540.
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