
Affective Recognition Using EEG Signal
in Human-Robot Interaction

Chen Qian, Tingting Hou, Yanyu Lu, and Shan Fu(B)

School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

{qian chen,sfu}@sjtu.edu.cn

Abstract. Human-robot interaction is a crucial field in human factor
field and mechanical arm operation is a widely used form in human-
robot interaction. However, the mistaken operations caused by the affect
influction of operators are still one of the dominant reasons causing acci-
dents. Because of the close link between affective state and human error,
in this paper, we analyzed the EEG signal of five subjects operating
mechanical arm and the track record of the mechanical arm movement.
A combination label model including the subjective part and the objec-
tive part are proposed to reflect the real time affective state influction.
Additionally, in subsequent recognition experiment, the results indicate
that the affect is a state of mind that requires a relatively longer period
of time to be effectively represented and the frequency domain features
are significantly more important than time domain features in affective
recognition process using EEG signal.
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1 Introduction

Hitherto, mechanical arm, as a vital product in industry field, has been broadly
used in medical, exploration, rescue field etc. However, the mistaken operation
caused by human error, which should have been avoided, is still one of the dom-
inant reasons causing accidents. As we all know, the performance of human has
a close link to the cognitive state of human and to some degree affect is the main
reason causing the change of the cognitive state. Therefore, one of the critical
ways to avoid human error in mechanical arm operation is recognizing the affect
during the operation process through detecting the physiological signal. Since
R. W. Picard has defined Affective Computing (AC) [1] in 1995, affective com-
puting has been a critical field in human-computer interaction area. There are
numerous physiological signals which could reflect the cognitive state of human,
such as Blood Volume Pressure (BVP), Skin Conductance Response (SCR), Res-
piration (RESP), Electrocardiogram (ECG), Electromyogram (EMG), Electro-
corticogram (ECoG), Electroencephalogram (EEG), Heart Rate (HR), Oxygen
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Saturation (SaO2) and Surface Temperature (ST) [2]. In all physiological signals,
EEG is no doubt the most capable signal directly reflecting the brain activity.
Therefore this paper chooses to use 32 dry electrodes EEG signal acquisition
equipment to obtain EEG signal data during mechanical arm operation.

There are lots of models which have been proposed to describe the affect, such
as six basic emotions model proposed by Ekman et al. [3], eight basic emotions
model proposed by Plutchik [4] and the valence-arousal scale proposed by Russell
[5]. For simplifying this problem, this paper chooses to use the valence in the
valence-arousal model of Russell to evaluate the emotion of the subjects. And
the valence reflecting the positive or negative aspect of the subjects is enough
to describe the cognitive state of the subjects.

Besides the affective model, the way to obtain the ground truth of the subjects
cognitive state is also crucial. Almost all research in Affective Computing field
use the self-assessment scores to estimate the true cognitive state of the subjects.
However, even the subjects themselves could hardly to retell the exact affective
state in the mechanical arm operation and using one single scores to estimate the
cognitive state during the entire operation process is obviously not reasonable in
detail. So this paper proposes to use objective and real time indexes to represent
the cognitive state of the subjects. In this paper, we record the track of the end
point of the mechanical arm and extract the features of the track to represent
the fluctuation of the cognitive state of the subjects. Meanwhile, we assume that
the workload and the time pressure could stimulate the affective change of the
subjects, so we give a basic score, which reflects the affective state the subjects
should be, and add the weighted track features scores to the basic score to reflect
the fluctuation of the affective state.

In our experiment, we designed three levels of operating tasks in different
difficulty to stimulate the affective state change. And the level of difficulty is
determined by the workload and the time pressure. To eliminate the influence
of unfamiliarity, one minute of free exploration is added before these three tasks
and to eliminate the interaction of different tasks, a 30 s reset time interval is
added between the different tasks.

During the data process part, because of the low signal-to-noise ratio (SNR),
the disturbance of EMG signal and the electromagnetic interference, the raw
data have firstly been filter to the 1–64 Hz frequency band [6]. After normaliza-
tion process, different scales sliding window are induced in extracting features.
Because of the real-time label we obtain from the track mentioned above, it
allows us to consider the data in single sliding window as one sample.

The feature extraction methods are detailed summarized in paper [6], we
choose three time domain features and one frequency feature to represent the
raw data according to the value of the weighted relative occurrence. And at
the feature selection process, we apply Principal Component Analysis (PCA)
to select the extracted features above. And at the classification design process,
we apply Support Vector Machine (SVM), which is an effective classification
discriminator, to predict the affective state.

Here is the reminder organization of this paper: Sect. 2 introduce the appa-
ratus used in the experiment and the detail experiment protocol. Section 3
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describes the data preprocess procedure, including EEG data preprocess and
real time label data synthesis. Section 4 focuses on affective recognition meth-
ods, including multi-scale feature extraction, feature selection and classification
design. Section 5 focus on the results of the experiment and the analysis of these
results. Section 6 summarizes the conclusion of this paper.

2 Experiment Setup

2.1 Apparatus

There are 3 key equipments we use in our experiment: EEG Signal Acquisition
Equipment, Mechanical Arm and Joystick. And there are 3 personal computers
for communicating with EEG equipment, controling movement of mechanical
arm through joystick and showing the end point of the mechanical arm.

EEG Signal Acquisition Equipment: The EEG Signal Acquisition Equipment we
apply is the Cognionics HD-72 Dry EEG Headset [7] (see in Fig. 1).

Fig. 1. Cognionics HD-72 Dry EEG Headset

Considering the difficulty of wearing EEG equipment and the comfort of
the subjects, we choose 32 dry electrodes, according to the international 10–20
system, to obtain the EEG signal, which are showed in Fig. 2. The sampling rate
is 500 Hz which is sufficient for obtaining EEG signal.

Mechanical Arm: The mechanical arm we apply is the Dobot Magician mechan-
ical arm [8] (see in Fig. 3), because it supports reprogramming according to the
need of users and the control precision (0.2 mm) is adequate for our experiment.

Joystick: The joystick we use is the flying joystick named Extreme 3D Pro [9]
produced by Logitech (see in Fig. 4). The perfect ergonomic design with a custom
twist-handle rudder relies its one-handed control resulting in a smaller device
footprint. There are six programmable buttons on the base. Each programmable
button can be configured to execute simple single commands or intricate macros
involving multiple keystrokes, mouse events, and more. In our experiment, we
only operate the rocker in six basic direction movement, which are left-right
direction, front-behind direction and left-right rotation.
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Fig. 2. 32 dry electrodes sensor location

Fig. 3. Dobot Magician mechanical arm

Fig. 4. Logitech Extreme 3D Pro joystick

In our experiment, we use Robot Operating System (ROS) to receive the
control signal from joystick, release the control signal to mechanical arm, receive
the position information of the end point of the mechanical arm and record
the track information with real time mark point in a sampling rate of 10 Hz.1

Meanwhile, real time EEG signal are recorded with mark information which
could be used in subsequent time correcting process.

1 Code url: https://github.com/QCH1993/DobotMagician.

https://github.com/QCH1993/DobotMagician


340 C. Qian et al.

2.2 Experiment Protocol

Five healthy participants (two females, three males), aged between 23 and 25,
participated in the experiment. Before all experiments, all participants were
asked to have adequate sleepness.

In our experiment, firstly, participants were asked to read the experiment
procedures and notes and the experimenter would read out the procedures and
notes for a second reminder. And the experimenter was also present there to
answer any questions. At the beginning of each experiment, one minute of free
exploration were given to remove the interference caused by unfamiliarity. And
then the subjects were asked to operate the mechanical arm to touch the different
color point on the desktop according to a certain order. We designed three levels
of operating tasks in different difficulty (easy, medium and hard mode) according
to the number and position of points and the time constraint. In easy mode, the
subjects were asked to touch three colored points without time pressure. In
medium mode, the subjects were asked to touch five colored points without time
pressure. In hard mode, the subjects were asked to touch five colored points in
90 s. To eliminate the interplay between the three tasks, a 30 s break time for
resetting was added after each task.

The experiment enviroment is showed in Fig. 5. The Fig. 5(a) is the overview
of the entire experiment environment. The subject operation platform (see in
Fig. 5(b)) is insulated from the mechanical arm platform and all the information
helping the subjects to move the mechanical arm was from three camera set
around the mechanical arm and on the end point of the mechanical arm (see
in Fig. 5(c)). The screen interface presenting the information from cameras are
showed in Fig. 5(d).

(a) overview (b) the subject operating
joystick

(c) the mechnical arm oper-
ation platform

(d) the screen showing cam-
era information

Fig. 5. The experiment environment
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3 Data Preprocess Methods

In data science field, data preprocess is the key procedure before any data anal-
ysis procedure. The quality of data preprocess directly affects the final accuracy
of recognition. In EEG experiment, because of the low signal noise rate (SNR)
and various interference, filtering and amplifying EEG signal is a crucial step
before EEG data analysis. And in our experiment, we need to do some label
data preprocess to obtain more objective real time label of EEG data because
of the use of sliding window which would be mentioned in Sect. 4 and the need
of combining self-assessment with objective data.

3.1 EEG Data Preprocess

For one subject experiment, the raw data are drawed in Fig. 6(a). And then
according to the track mark and EEG signal mark, the EEG signal and the
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track were aligned in time. And we divided the entire EEG signal to easy mode,
medium mode and hard mode procedure according to the mark information.
The divided easy mode raw data, as an example, are showed in Fig. 6(b). Next,
to remove the disturbance of EMG signal and the interference of various electro-
magnetic signal which are generally high frequecy signals, we use band filter to
filter out 1–64 Hz signal, which are the dominant frequency band of EEG signal
(see in Fig. 6(c)). Because the EEG signal has extra low SNR, the filtered signal
at the beginning and end part is unstable. Therefore we selected to remove the
first and last 5 s data (see in Fig. 6(d)). And for the computing convenience, the
selected data are normalized to [−1,1] area according to all 32 channels signal
by min-max normalization.

3.2 Real Time Label Data Synthesis

Label data includes three parts in total: the self-assessment of subjects, the dif-
ficulty level experimenters design and the performance the track reflects. The
self-assessment is the subjective label data and the difficulty level and the per-
formance are the objective data.

For the self-assessment, after the entire experiment were finished, each sub-
jects were asked to fill a table about their affective state during operating dif-
ferent tasks. There were seven level the subjects could choose. “1” means the
most positive affective state, “4” means neutral affective state and “7” means
the most negative affective state. The greater the number, the worse the affective
state. And then we used each score to weighted each task.

For the the difficulty level experimenters design, we simply gave the scores of
difficulty according to the workload and the time pressure. In easy task, we asked
the subjects to touch three points without time constraint, which means that
we assumed the most positive affective state could be stimulated by this task.
On the contrary, in hard task, we asked the subjects to touch five points with
a ninety seconds constraint, which means that we assumed the most negative
affective state could be stimulated by this task. We used “2.5”, “4” and “5.5”
to represent the affective states that different difficulty levels could stimulate in
our assumption.

For the performance, we recorded the tip trajectory of mechanical arm. As
showed in Fig. 7, in easy mode, the subjects were asked to touch orange point,
purple point and pink point in order from a random start point. We assumed that
the subjects would feel positive when they moved the mechanical arm smoothly,
so we counted the numbers of direction change, in selected sliding window men-
tioned in Sect. 4, as the estimation of the affective state of the subjects.

We use the formula below to calculate the final label.

L = [
1
2
Lself−assessment +

1
2
(Ldifficulty−level + Ldirection−change) +

1
2

] (1)

where [x] means the largest integer not exceeding x. And in this equation
Lself−assessment means the self-assessment score, Ldifficulty−level means the dif-
ficulty level score, and Ldirection−change determined by equation below:
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Fig. 7. The tip trajectory of mechanical arm in easy mode

Ldirection−change = 3
Ndirection−change − Nmin

Nmax − Nmin
− 1.5 (2)

where Ldirection−change means the direction change score, among them,
Ndirection−change means the number of direction changes, Nmin means the
minium of Ndirection−change and Nmax means the maxium of Ndirection−change.

4 Affective Recognition Methods

Traditional pattern recognition process includes 4 steps: data preprocess, fea-
ture extraction, feature selection and classification design. In this paper, we use
several classic methods in feature extraction, feature selection and classification
design procedure to explore their performance in our experiment data.

4.1 Multi-scale Feature Extration

The multi-scale feature extraction procedure are divided in two steps: (1) sliding
window selection and (2) feature extraction.

Sliding Window Selection
Because uncertain relation between time interval and affective state change, we
chose every 2 s between 4s to 30 s as the length of sliding window and 0.2 s as
the length of stride to extract multi-scale features.

Feature Extraction
According to the paper [6], we chose 18 dimensions time domain features, which
are statistical features, higher order crossings (HOC) features and fractal dimen-
sion feature, and 53 dimensions frequency domain features, which are band
power, bin power and the ratio of mean band powers β/α.
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Time Domain Features
In this paper, we selected 3 classic time domain features in recognition process:
statistical feature, higher order crossing (HOC) features and fractal dimension
(FD) feature.

There are seven statistical features representing the raw EEG time series.
These are:

(a) Mean: μη = 1
T

∑T
t=1 η(t)

(b) Power: Pη = 1
T

∑∞
−∞ |η(t)|2

(c) Standard deviation: ση =
√

1
T

∑T−1
t=1 (η(t) − μη )2

(d) 1st difference: δη = 1
T−1

∑T−1
t=1 |η(t + 1) − η(t)|

(e) Normalized 1st difference: δ̄η = δη

ση

(f) 2nd difference: γη = 1
T−2

∑T−2
t=1 |η(t + 2) − η(t)|

(g) Normalized 2nd difference: γ̄η = γη

ση

To find more robust features and pattern of EEG, Petrantonakis and Had-
jileontiadis proposed higher order crosssings (HOC) features [10]. Therefore we
applied HOC to represent the raw EEG time series. The higher order series could
be calculated by the formula below:

Hk{η(t)} = ∇k−1η(t) (3)

where ∇ means η(t)−η(t−1). Therefore, the features of HOC could be caculated
by counting the sign changes or equation below:

Fk =
T−k∑

t=1

ψ(Hk{η(t)}Hk{η(t + 1)}), k = 1, 2...10 (4)

where ψ(x) is a section function which is defined below:

ψ(x) =

{
0 if x ≥ 0
1 if x < 0

(5)

The fractal dimention (FD) as a feature measuring the complexity is widely
used. There are many methods computing the FD feature. In this paper, we
chose to use the Higuchi algorithm [11] to caculate the FD feature. To compute
the FD feature, the EEG series is rewritten as:

{η(p),η(p + q),η(p + 2q), ...,η(q + [
T − q

q
]q)}, p = 1, 2, ..., q (6)

where [x] means the largest integer less than x. Then we could define the series
Mp(q) as below:

Mp(q) =
T − 1

[T−p
q ]q2

[T−p
q ]

∑

k=1

|η(p + kq) − η(p + (k − 1)q)| (7)
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Therefore we could further define the average:

F (q) =
1

Np

Np∑

p=1

Mp(q) (8)

where Np means the maxium of p. According to paper [11], we knew that F (p)
is proportional to p−FFD (where FFD means the feature of FD). Therefore we
could assumed:

F (q) = r · p−FFD (9)

when we log the equation, we could obtain:

log(F (q)) = log(r) − FFDlog(p) (10)

Therefore we could obtain FD feature FFD by the slope of log(F (q)) to
log(p).

Frequency Domain Features
For time series signal, spectrum analysis is an important method extracting
features. Through short-time fourier transform (STFT) [12], which is a more
robust method, we could get the power value as a function of time and frequecy:
p(t, f). Further, the relation of the power and the frequecy could be written as
below:

P (f) =

√
√
√
√

T∑

t=0

[p(t, f)]2 (11)

As we know, effective EEG signals exists in low frequency band. Further,
this valid low frequecy band could be divided to five smaller parts: δ (1–4 Hz)
band, θ (4–8 Hz) band, α (8–12 Hz) band, β (12–30 Hz) band, γ (30–64 Hz) band.
Therefore, for each band on [fa,fb], STFT band power could be caculated by the
formula below. Additionally, the ratio of mean band powers β

α was computed.

(a) Mean: μP = 1
fb−fa

∑fb

f=fa
P (f)

(b) Minium: Pmax = max(P (f)), f ∈ [fa, fb]
(c) Maxium: Pmin = min(P (f)), f ∈ [fa, fb]
(d) Variance: var(P ) = 1

fb−fa

∑fb

f=fa
|P (f) − μp|2

Similarly, we could divide the frequency band in a higher resolution to obtain
STFT bin power features. We divided the 1–64 Hz band into 32 subband, which
means 32 (Δf = 2Hz) bands are extracted for further processing. And then, for
each Δf band, we could caculate the STFT bin power feature by the formula
above.

As showed in Fig. 8, We concatenate the time domain features and the fre-
quency domain features as the representation of original raw data. Therefore,
the features number of one channel of one sample is 71.
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Fig. 8. Feature vector composition

4.2 Feature Selection

Principal component analysis (PCA), proposed by Pearson [13], is a effective
and classic method to reduce dimensions of original matrix through keeping the
lower order principal components. Therefore we use PCA to select the original
features.

After the feature extraction steps, we could concatenate 32 channels feature
to a long features vector and use all samples to constitute a feature matrix
M = (φ1,φ2, ...,φN ), where φi means one sample features vector, N means the
number of samples.

Then we use the samples to estimate the mean and the covariance matrix:

φ̄ =
1
N

N∑

i=1

φi (12)

Σ =
1
N

N∑

i=1

(φi − φ̄)(φi − φ̄)T =
1
N

XXT (13)

Then we could caculate the eigenvectors (μi) and the eigenvalue (λi) of Σ.
The value λi means the importance of the corresponding eigenvector μi . We
sorted these eigenvalues in descending order to obtain the descending eigenvalue
series: λ′

1, λ′
2,..., λ′

i,..., λ′
L, where L is the number of features. Correspondingly,

the eigenvectors could be rearranged: μ′
1, μ′

2,..., μ′
i ,..., μ′

L . Then we define the
information integrity I by the formula below:

I =
∑k

i=1 λ′
i

∑L
i=1 λ′

i

(14)

In this paper, we chose

K = arg max
k

I(k) > 0.99 (15)

Then K is the feature dimension of feature matrix after dimensionality reduction.
And the mapping matrix is MPCA = (μ′

1,μ
′
2, ...,μ

′
K ).
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4.3 Classification

Support vector machine (SVM) is a effective classification proposed by Cortes
and Vapnik [14]. Because the advantages of SVM in non-linear and high-
dimensional pattern recognition, we applied it in our experiment as the clas-
sification.

When we classify data, each sample data is composed of a feature vector and
a label value: Di = (xi , yi), where xi is the feature vector in high dimension, yi

is the category the sample belongs. In particular, the classification problem of
two category is taken as an example, and the multi-classification problem could
be solved as the combination of multiple two classification problems. Specially,
in two classification problem, we define the distance between one sample and a
hyperplane is ηi, and ηi = yi(ωxi + b). And to normalize the distance, ω and b
are replaced by ω

‖ω‖ and b
‖ω‖ . The normalized distance could be rewritten as

δi =
|g(xi)|
‖ω‖ (16)

where g(xi) = ωxi + b. Because the relation between δ and misclassification
number N is

N ≤ (
2R

δ
)
2

(17)

where R = max‖xi‖, i = 1, 2, ..., n, the larger the distance δ is, the smaller the
N is. Therefore, the optimizing equation is

max δ

s.t. yi(ωxi + b) − 1 ≥ 0, i = 1, 2, ..., n
(18)

Further, according to Eq. 16, the optimizing target could be rewritten as below:

min
1
2
‖ω‖2

s.t. yi(ωxi + b) − 1 ≥ 0, i = 1, 2, ..., n
(19)

Because ω determined by sample data, ω could be assumed as:

ω =
n∑

i=1

aiyix
T
i (20)

ai would be unequal to zero only when the sample is on the closest hyperplanes.
In other word, hyperplanes are supportedfrac12 by the sample points which are
close to these hyperplanes. Therefore, discriminant function could be written as:

g(x) = ωx + b =
n∑

i=1

aiyix
T
i x + b (21)

Since the samples on hyperplanes are known, b could be caculated by yi(ωxi +
b) − 1 = 0 When test sample xtest need to be classify, the value of g(xtest)
decides the category xtest belongs.
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5 Results and Discussion

In our recognition experiment, we applied the ten-folder cross-validation method
to test the accuracy robustness of the recognition algorithm. We randomly
selected 10% original data as the test data, and chose the rest as the train
data, and this process has been done 10 times for each specific parameter pair
to eliminate the accidental errors.

5.1 Real Time Label Data Synthesis

As showed in Fig. 9, an example of the self-assessment score, the difficulty level
score and the performance score was depicted. The trend of the difficulty level
score and the self-assessment is basically the same.
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Fig. 9. Real time label data synthesis

After adding the performance score, as we assumed that the affective state is
unstable even in the same task, there are some real time influction which meets
the need for obtaining real time label data to study the influence for recognition
accuracy when the multi-scale sliding window were used.

5.2 Multi-scale Sliding Window

In our recognition experiment, multi-scale sliding windows were applied into
extracting features. Because the detecting window of the performance feature
extraction in real time label data synthesis is 2 s long, the scale of the sliding
window should be longer than 2 s. Therefore, we chose every 2 s time interval
from 4 s to 30 s to explore the relation between the accuracy and the length of
the sliding window.

As showed in Fig. 10, the recognition accuracy tends to increase slightly as a
whole when the sliding window grows longer. Specifically, when the length of the
sliding window is 4 s, the recognition accuracy using frequency domain features
is about 65%, which is obiviously lower than the other length of sliding window.
And when the length of selected window is longer than 20 s, the recognition
accuracy using frequency domain features is almost stable at around 80%. This
phenomena indicates that the affective state is a more stable state of mind that
requires a longer period of time data to represent.
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5.3 Feature Selection

As showed in Fig. 10, when we fix the parameter of the sliding window length,
the accuracy is highest in using frequency domain feature. And the accuracy is
about the same in using time domain feature and the combination of time and
frequency feature. This phenomena indicates that PCA could not select the more
important feature componets beacuse PCA reduces the dimension of feature map
just by using the information of covariance. Therefore, the PCA which could
barely use the label information is unsuitable for EEG signal process. And the
higher recognition accuracy also indicates that frequency domain features are
more important for affective recognition by using EEG signal.

6 Conclusion

In this paper, we combine the objective evaluation to the self-assessment to
obtain real time label of the affective state. The result of combination reflects
the influction of affective state. And the recognition experiment indicates that
the affect is a state of mind that requires a longer period of time to be effec-
tively characterized and recognized. In subsequent affective recognition experi-
ments, the results shows that relatively longer EEG data is more appropriate for
affective recognition. Meanwhile, the recognition experiment also illustrates that
the frequency domain features are significantly more important than the time
domain features. In future EEG analysis work, relatively long frequency domain
features might be a more preferred option.
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