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Abstract. The present paper concerns the individualization of the training of
aircraft pilots. Specifically, it presents the data collection, and modeling efforts
carried out to assess trainees’ transition from a controlled, effortful piloting expe‐
rience (i.e., System 2), to an automatic, effortless process (i.e., System 1). It is
argued that cardiovascular activity can be associated with deployment of effort,
and therefore be used for assessing the transition across systems. Heart rate,
respiration rate, and heart rate variability were sampled on 11 pilots (5 students
“novice” and 6 instructors “experts”), performing 6 one-hour flights (5 flights in
tandem: one student and one instructor, the 6th flight with an instructor flying
alone). These data were used for the development of a prediction model
computing the probability of a pilot being an expert or a novice. After a “leave-
one-tandem-out” validation, the accuracy of the model was 86.86%. The results
are discussed in terms of effortful processes and skill acquisition. Further work
will consist in implementing contextual parameters in the model in order to
improve the prediction. Such a model could be used by instructors and trainees
as a supporting tool for tracking progress of the training at the individual level.
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1 Introduction

In a complex and dynamic environment such as piloting a fighter plane, a pilot must
constantly be prepared to react to unexpected situations, and engage additional cognitive
resources for carrying out his mission. Hence, an important part of military pilot training
is to appreciate the unpredictable nature of the mission (Fornette et al. 2015). This
educational approach is all the more demanding since it begins early in the formation
of the trainee and should allow him to perform well in spite of the uncertainty of the
operating environment.

For the instructor, identifying the specific moment to go from an expected to an
unexpected situation is crucial, as the change must only be operated once the trainee has
acquired the fundamentals of the flight, that is to say a set of knowledge devoted to
maintaining the aircraft in a safe area (i.e. maintain altitude, heading, etc.). If unexpected
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changes are brought too early in the training, the trainee will not be able to fully integrate
the basis, and will not reach the optimal and target state which is referred to as “ease in
flight”. Indeed, excessive demand on resources imposed by the attended task(s) typically
results in performance degradation (Nourbakhsh et al. 2013; Stanton et al. 2005). On
the contrary, a delayed addition of unexpected situations will have no benefit and inef‐
ficiently extend the training time. Currently, instructors exclusively rely on their expe‐
rience and subjective observations to detect this key moment.

From a cognitive point of view, ease of flight could be associated with automatic
processes (i.e., System 1) as opposed to controlled processes (i.e., System 2). Over the
last decades, this multiple system theory of decision making has been widely studied
and has accumulated a large body of evidence (see Sanfey and Chang 2008 for a brief
review). System 1 has been described as fast, effortless, and unconscious whereas system
2 has been depicted as slow, effortful, and conscious.

Skill acquisition can be viewed as a shift from system 2 to system 1. Kahneman
(2003) has even linked System 1 to “intuition”, frequently associated with how experts
make decisions (e.g., Dreyfus 2014 [in Zsambok and Klein]).

Automated processes require very little cognitive resources, as opposed to controlled
processes. An expert pilot has automated the majority of recurrent piloting tasks and
procedures (e.g., take-off), which, for him, do not require an important engagement of
cognitive resources. In comparison, a novice who has not fully automated the procedures
will have to spend more energy to reach a similar performance. In a systemic view of
the phenomenon, this difference in terms of energetic cost is expected to have physio‐
logical corollaries, in particular cardiorespiratory, which can be used as indicators of
energetic spending. Indeed, several physiological corollaries of cognitive efforts have
been identified over the last decades, including in piloting tasks (Roscoe 1992).

For instance, increase in heart rate (HR) has been associated with effort, cognitive
(e.g., Kennedy and Scholey 2000) and physical. Notably, it was used by Dahlstrom and
Nahlinder (2009) to estimate mental workload for pilots in simulators and in-flight. It
has great potential for in-flight mental workload estimation because it is easily obtained,
and less subject to noise than other typically used measures, like electro-encephalogram.
HR variability (HRV) refers to the regularity of consecutive R-R intervals of the QRS
complex as measured by an electro-cardiogram (ECG). Although not as intuitive as HR,
HRV is one of the most frequently used metric associated with mental effort, both in
fundamental and applied research. For instance, HRV was associated with mental over‐
load in a simulated piloting task (Durantin et al. 2014), and with several fundamental
neuro-cognitive tasks (Gagnon et al. 2016). Finally, respiration rate (RR) has been linked
with energetic spending, has been considered a measure of task demands (Overbeek
et al. 2014) and was also associated with negative valance and arousal (Masa et al. 2003).

In the context of air force pilot training, we hypothesize that during identical flights,
the trainees will have to deploy a greater amount of mental effort than instructors for
reaching similar performances. Therefore, trainees should exhibit a specific pattern of
physiological parameters: HR and RR should be higher, and HRV should be lower than
for instructors. Based on this premise, we hypothesize that it is possible to predict the
role of the pilot (trainee or instructor) using physiological measures.
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Moreover, the use of physiological measures could allow the identification of
“expected pattern” among experienced pilots, which would be used as references when
considering the same metrics among trainees in identical situations. The variation of the
difference between the expected pattern (expert) and the observation (trainee) could be
interpreted as a consequence of the levels of cognitive automation of the processes in
the given situation for a trainee. Hence, this paper considers the possibility of quantifying
learning by comparing his metrics to the reference measured on his instructor.

1.1 Objectives

The main goal of the present paper is to open the way towards an objective measure of “ease
in flight”, which would assist instructors and their students during training. Such an objec‐
tive measure would be a key element in the process of individualizing the training of pilots.
As learning skills have a great variability between trainees, objectively quantifying to which
degree a student easily performs a task could allow a great improvement in the training.
Specifically, this paper is organized around two objectives, described below.

Objective 1
The first objective is to assess the impact of roles and flight phases on physiological
measures. Specifically, three variation of the main hypothesis are formulated:

• H1. Mean physiological values will differ across roles
• H1a. Mean heart rate will be higher for trainees when compared with instructors
• H1b. Mean heart rate variability will be lower for trainees when compared with

instructors
• H1c. Breathing rate should be higher for trainees when compared with instructors

Objective 2
The second objective is to develop a model for predicting the level of expertise based
on physiological measures. The physiological predictors will be comprised of statisti‐
cally significant predictors that varied across roles. The model will be applied to the
physiological measures and predicted expertise will be assessed. This model assumes
that instructors have greater expertise than trainees.

The goal is to evaluate if such a model could help dynamically (1) quantify the
progression of training and (2) identify periods of time where the instructor might not
be fully in control of the flight.

2 Method

Eleven pilot participants were equipped with a Zephyr Bio Harness 3.0 chest strap
measuring the electrical activity of the heart (ECG), RR, and accelerations on 3-axis.
They were also equipped with an Android mobile phone on which the Sensor Hub
(Gagnon et al. 2016) application was installed. The application integrates all generated
data, processes HR, HRV (frequency and temporal domain), accelerations (3-axis),
respiration rate, and global positioning system coordinates.
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Participants were organized in tandems consisting of an instructor (assumed expert)
and a trainee (assumed novice). The data were collected on five comparable aerobatic
flights with trainees of approximately the same skill level. One of the flights was
performed by an instructor flying alone. Each flight was broken down into five phases:
pre-flight (briefing), take-off, flight, landing, and post-flight (debriefing).

During the flight, instructors performed specific maneuvers that the trainees had to
perform immediately after, therefore transferring the control of the plane from one to
another. Instructors were responsible for take-off and landing.

3 Results

Results are described in two sub-sections, aligned with the objectives. First the statistical
significance tests are reported to evaluate the impact of the key factors (role and phases)
on individual physiological measures. Second, a classifier of expertise is developed and
described.

3.1 Factors Influencing Physiological Parameters

Three mixed ANOVAs were carried out to test the effect of the role (Trainee vs
Instructor), phase (repeated 5 levels), and their interaction on (1) mean HR in bpm, (2)
mean HRV in ms, and (3) mean RR in bpm.

Hypothesis H1a
Results show that both role F(1,6) = 9.27, p < .05 and phase F(4,30) = 14.51, p < .001
had a statistically significant impact on mean HR in bpm. Interaction of role and phase
was not statistically significant F(4,30) = 1.81, N.S. In line with hypothesis H1a, mean
HR in bpm is statistically higher in the trainee condition (mean = 113.56, sd = 22.73)
when compared with the instructor condition (mean = 74.82, sd = 11.21). Results are
presented in Fig. 1.

Fig. 1. Mean HR in bpm by role and phase.
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Hypothesis H1b
Results show that both role F(1,6) = 11.30, p < .05 and phase F(4,30) = 3.50, p < .05
had a statistically significant impact on mean HRV in ms. Interaction of role and phase
was not statistically significant F(4,30) = 1.77, N.S. In line with hypothesis H1b, mean
HRV in ms is statistically lower in the student condition (mean = 36.58, sd = 16.93)
when compared with the instructor condition (mean = 65.66, sd = 17.80). Results are
presented in Fig. 2.

Fig. 2. Mean HRV by role and phase.

Hypothesis H1c
Results show that phase F(4,30) = 5,48, p < .001 had a statistically significant
impact on mean RR in bpm. Role did not have a significant impact F(1,6) = 1.11,
N.S. However interaction of role and phase was statistically significant F(4,30) =
4.39, p < .01. Unsupportive of hypothesis H1c, mean RR in bpm is not statistically
higher in the student condition (mean = 19.80, sd = 2.21) when compared with the
instructor condition (mean = 18.23, sd = 3.26), but there is a significant interaction
of the two factors F(4,30) = 4.66, p < .01 on respiration rate. Results are presented
in Fig. 3.
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Fig. 3. Mean respiration rate in bpm by role and phase.

3.2 Modeling Effort Linked with Expertise

In addition to statistical significance tests, an integrated model was developed to predict
the role of the participant based on HR, HRV, and RR as predictors. In an attempt to
remain parsimonious and explainable, the generalized linear model (GLM) was
employed. However, rather than using phases as temporal separations, equal non-over‐
lapping bins of 10 min were created. For each of these bins, mean HR in bpm, mean
HRV in ms and mean RR in bpm were calculated. The model was developed using this
data. The reason for the creation of bins is that the flight phases are highly variable in
terms of length and would therefore induce a bias in the statistical representativeness of
metrics within the model. For instance, a very short phase of two minutes would have
the same statistical weight than a phase lasting 45 min.

The model was validated for generalization using a “leave-one-tandem-out” proce‐
dure. The final model used for predictions was retrained on all the data.

Results show that the model achieved an accuracy of 86.86% (95% confidence
interval = 80.03–92.02), ϰ = .74. The predictors (and associated betas β) are represented
in order of relative influence in Table 1.

Table 1. Model predictors and associated β.

Predictor β
Heart rate in bpm −2.6211
Heart rate variability in ms 1.1584
Breathing rate in bpm 0.4858
Intercept −0.1214

The model was then applied to each individual data to see how the predictions unfold
in time during a flight. The numeric prediction represents the probability that the
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observed physiological pattern (composed of HR, HRV, and RR) is the one of an
instructor. Hence, when the probability exceeds 50%, the point is classified as
“instructor”, and conversely when below 50%. By showing the predicted probability,
we can track changes in the progression of each individual. We plotted the predictions
of two tandems that were deemed interesting for discussion. Tandem 1 model predictions
were plotted in Fig. 4, and tandem 5 in Fig. 7. Alongside the predictions of the model,
we plotted the most influencing factor of the model (i.e., heart rate in bpm), and altitude
in meters to provide some context.

Fig. 4. Tandem 1 - Probability of being an instructor according to the model, by role for the
whole flight. The classification threshold corresponds to the point where the most probable
classification changes from one role to another. The points over the horizontal line (Classification
threshold, 0.5) represent the data which were classified as being those of an instructor.

Tandem 1 (Figs. 4, 5 and 6) shows that the instructor was classified as an instructor
all the time. Interestingly, results show that the student was above the 50% threshold (so
classified as an instructor) for a long period of the flight, but still had punctual states
corresponding to the typical state of a “trainee”.

Fig. 5. Tandem 1 - HR in bpm sampling values through the flight. The predictions made by the
model are largely based on this metric.
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Fig. 6. Tandem 1 - Altitude in meters of the aircraft.

Tandem 5 (Figs. 7, 8 and 9) resulted in a much different pattern than the previous
tandem. First, it is observed that the instructor is not classified with as much confidence
as instructor from Tandem 1. Punctually, the probability of being an instructor even falls
below the 50% threshold. On the other hand, the data shows a progression of the trainee
from trainee to instructor as the flight progresses.

Fig. 7. Tandem 5 - Probability of being an instructor according to the model, by role for the
whole flight. The classification threshold corresponds to the point where the most probable
classification changes from one role to another. The points over the horizontal line (Classification
threshold, 0.5) represent the data which were classified as being those of an instructor.

Fig. 8. Tandem 5 – HR in bpm sampling values through the flight. The predictions made by the
model are largely based on this metric.
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Fig. 9. Tandem 5 - Altitude in meters of the aircraft.

4 Discussion

Results regarding HR and HRV supported both hypotheses concerning the relationship
between physiological parameters and roles (H1a, H1b). Indeed, as expected, mean
HRV in ms was lower for the trainees when compared with instructors, and conversely
for mean HR in bpm. These findings support the assumption that expertise is associated
with effortless processes. This is not surprising, but not trivial either as the effects of
flight dynamics (especially in aerobic flight) on physiological parameters are still largely
unknown. Because aerobatic maneuvers probably require a greater deployment of phys‐
ical effort when compared with regular flights, the effects associated with aerobatic flight
might have prevented the effects associated with cognitive effort deployment from being
observed. Fortunately, the results show that roles had a statistically significant impact
on physiological parameters.

Results regarding all three variables suggested that flight phases have a significant
effect on physiological parameters. The results obtained also highlighted a significant
effect of the interaction of the role and phase the on the RR in bpm. These results, again,
were expected if we consider that different flight phases induce different levels of cogni‐
tive effort, depending on the difficulty of each phase.

Effect of flight phases can be considered as a reflection of the differences induced
notably by the different procedures associated within each phase, and the variation of
expertise of each pilot on these specific situations. By extension, these results raise the
importance of taking into account the context of the mission and several associated
external parameters, when modeling cognitive efforts and similar concepts. However,
the current model of mental effort does not capture flight phases or procedures, and more
generally does not take avionic parameters into account. A next step will be to link
physiology-based predictions with the context of the mission. The use of avionic and
contextual parameters will also allow the consolidation of the “expected good behavior”
of a pilot, depending on the situation and the mission which must be performed, and
hence improve the accuracy of the model. Such behavioral measures and context aware
systems are deemed essential for real-world application of mental effort models and
similar concepts (Elkin-Frankston et al. 2017, Bracken et al. 2016, 2017).

We argue that the model developed presented in this paper is linked with effort of
mental processes, and that it can be used to quantify learning associated with a given
procedure. Indeed, it can be argued that the only difference between the “role” of the
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pilots (either instructor or trainee) is expertise since they were measured in tandem on
similar flights. Expertise itself cannot be measured directly with physiology without
context. Given the nature of the physiological data, and the support to hypotheses in a
context where expertise plays a great role, it can be stated that we measured variations
in physiological parameters associated with effort. Such a model is interesting because
it could allow the identification of procedures which are not yet fully acquired by the
trainee. If we consider the example of Tandem 5, presented in Fig. 7, the predictions
made by the model do not allow the differentiation of the student from the instructor
during the second part of the flight (end of flight, landing, and post-flight). This can be
explained by the fact that the physiological pattern of the trainee was similar to the one
of an instructor, as captured by the model. Given this information, the instructor could,
if the decision of the model matches with his personal appreciation, make the decision
of spending more time on other, less automated exercises, and thus individualizing the
training. Such individualization lies at the heart of optimal training, especially for
combat aviation population (Meland et al. 2015).

Future work will focus on the development of a feedback mechanism to the instruc‐
tors and trainees, and quantification of the benefits – in terms of learning – associated
with the use of this tool.
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