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Abstract. Multitasking conditions prevalent in many environments
such as critical operations in defense activities, evaluating user interfaces
in man-machine interaction, etc. require assessment of mental workload
of operators. However, mental workload (MWL) cannot be perceived
directly as it is a complex and abstract property of human physiol-
ogy. The techniques available in the literature for its assessment usu-
ally depend on subjective analysis, performance analysis and psycho-
physiological measurements. But, these approaches despite being followed
often prove to be inadequate due to high inter-personal variations and
inconvenient procedures and subjective to the bias of evaluators. With
the recent advancements of proliferation of Brain Computer Interface
(BCI) devices and machine learning algorithms, it is possible to esti-
mate MWL automatically. Nevertheless, there is a need to address issue
like managing a high dimension and high volume data in real time. In
this work, we propose an approach to estimate the mental workload using
electroencephalogram (EEG) signals of an operator while in operation. A
thorough investigation of different features, optimization of features and
selecting an optimal number of channels are the some of the crucial steps
have been addressed in this work. We propose a novel feature engineer-
ing method to extract a reduced set of features and utilize only a sub-set
of channels for the purpose of classification of workload into different
levels with the help of supervised machine learning techniques. Further,
we investigate the performance of different classifiers and compare their
results. It can be inferred from the observed results that mental work-
load estimation using machine learning algorithms is a better solution
compared to the existing approaches.
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1 Introduction

Rapidly increasing growth and development in various industrial sectors like avi-
ation, transport, military or space requires multitasking and continuous vigilance
from operators to perform various jobs. This often over burdens the operators by
placing huge mental workload upon them and leads to work-related stress and
possibility of human errors. According to [7], Mental workload (MWL) refers
to the amount of resources needed for processing of a certain task. It depends
on characteristics of the task, the situation and the person. It is an abstract
property of human-machine interaction which is not directly observable as there
exists inherent difficulties in defining MWL and in understanding the factors
which describe it in the best possible manner. It also poses difficulty in building
a general/robust model for predicting performance. However, in the literature
the level of workload has been inferred through three prime approaches, namely
(1) subjective measures, (2) performance-based measures and (3) physiological
measures [7]. Subjective approaches rely on the self assessment from the sub-
jects about the difficulty of various tasks; performance-based measures depend
on user performance for determining and assessing the cognitive state [12] and
physiological methods attempt to interpret the cognitive workload with the help
of invasive, semi-invasive and non-invasive physiological techniques.

Out of the above-mentioned categories, physiological measurements are com-
paratively better as they provide continuous and objective measurement of oper-
ator state. These measurements attempt to interpret the psychological processes
through their effect on the body state, rather than through task performance
or perceptual ratings. There are a number of diverse techniques available in the
literature under this category [8]; however, each one of them is associated with
some merits and demerits. In this regard, measurement technique such as ECoG
(electrocorticography) provides better spatial and temporal resolution and better
signal quality. But, it is a semi-invasive technique, which requires risky surgery.
On the other hand, MEG (magnetoencephalography) is a non-invasive measure-
ment technique, but incurs huge equipment cost and is not suited for everyday
applications. fNRIS (functional magnetic resonance imaging) is relatively inex-
pensive and portable, but provides shallow spatial resolution of the order of few
centimeters, while the time resolution of around 200 ms. An EEG (electroen-
cephalography) based mental workload assessment which in earlier days utilized
costly, wired and bulky devices posed serious limitations for application in real
world applications. However, recent developments in brain-computer interfaces
targeting real-life applications include wireless EEG acquisition systems that a
person can easily wear while performing everyday activities. Of late, such a low
cost, portable and wireless EEG devices have gained immense popularity for
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studying cognitive workload [19] and vigilance task [17], as they allow for direct
mental state assessment and because of their high temporal resolution, which
is in the order of milliseconds. This makes EEG an appropriate tool for cap-
turing fast and dynamically changing brain wave patterns in complex cognitive
tasks. Besides, it seems that the use of wireless data acquisition systems to assess
mental workload can enable more novel applications of mental workload mea-
surement. This development supports exploring the feasibility of wireless data
acquisition devices in MWL assessment [1,2]. Therefore, in this work we aim to:

– Explore the feasibility of wireless data acquisition devices in MWL assess-
ment.

– Estimate MWL induced via various n-back and Dual n-back tasks and extract
desired features using feature engineering.

– Study the effect of channel selection and feature optimization on classification
performance.

– Investigate the capability of supervised machine learning algorithms for effi-
cient classification of mental workload.

– Study the performance accuracy obtained using item-class classification.

In this work, we have used Emotiv Epoc+ device to explore the feasibility
of inexpensive EEG devices for assessing MWL and for collecting data. We per-
formed a variety of n-back and Dual n-back tasks for inducing different levels
of mental load on participants brain. Moreover, we utilized feature engineering
step for extracting and selecting most effective features. Next, for classifying
the MWL we have resorted to machine learning as it is a popular research field
devoted to the development of inductive models, algorithms and procedures that
can learn from data, extract trends and make predictions. The choice of machine
learning algorithms is done from a pool of such algorithms, so as to have an opti-
mal configuration of these algorithms. We have chosen seven different types of
machine learning approaches, namely:

– Similarity based: K-nearest Neighbours
– Information based:

• Random Forest
• Decision Tree

– Error based:
• Support Vector Machines

∗ Linear
∗ Radial Basis Function (RBF) Kernel

• Multi Layer Perceptron
– Statistics based: Linear Discriminant Analysis

The rest of the paper is organized as follows: Sect. 2 presents the literature
survey of works related with the classification of mental workload. Section 3
describes materials and methodology. Section 4 elaborates the process of EEG
signal analysis. Next, we discuss about the obtained results in Sect. 5. Finally,
Sect. 6 concludes the paper.
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2 Literature Survey

In [5], authors estimated the mental workload, by using EEG features, for design-
ing the intelligent learning systems. The developed workload index uses a Gaus-
sian Process Regression model for predicting the workload of the individuals.
The potential of both fNIRS and EEG (in combination) for classification of
users’ mental workload has been explored by the authors in [8]. In the recent
years, rigorous efforts are being made to classify the mental workload into dif-
ferent levels. For example, in [14] classification of workload has been done using
EEG based features. In [12], stepwise regression and multi-class linear classifi-
cation has been utilized to extract statistical EEG features and to classify the
workload into four levels. Authors in [20] have classified workload in seven lev-
els by applying discrete wavelet transform and using artificial neural network
(ANN). Further, in [9] EEG features that are sensitive enough to detect work-
load changes were identified. Variation of workload in different tasks has been
found to be correlated with the EEG patterns in [4]. In [11], authors utilized
cross-task performance based feature selection and regression model to classify
mental workload. Binary classification of mental workload has successfully been
done with the help of Fisher LDA and ERP based EEG features in [16]. Besides,
the traditional mental workload assessment techniques were compared against
the classification models built using machine learning approaches in [13].

3 Materials and Methodology

3.1 Subjects

Five healthy male and five healthy female volunteers participated in the experi-
ment. The participants were between 20 and 24 years old, and except one, all were
right handed. The participants were under-graduate and post-graduate students
studying at the Indian Institute of Technology, Kharagpur. The participants
had normal or corrected-to-normal vision. Further, participants were not on any
medication and had no psychiatric or neurological disorders. Informed consent
was taken from each participant before beginning of the experiment and were
given liberty to select a time for the experiment in which they would feel alert.
Moreover, the participants were also instructed to refrain from ingesting alco-
hol and/or sedative medications 24 h prior to the experiment and from caffeine
and/or nicotine two hours prior to the experiment.

3.2 Data Acquisition and Experiment Protocol

The data collection has been carried out using the bluetooth enabled Emotiv
Epoc+ EEG device, having sampling rate of 128 Hz. The device comprises of 14
channels, namely AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and
AF4 plus two references (P3/P4) and follows the international 10–20 standard
for locations of electrodes. A minimum distance of five meters was maintained
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between all power sources and the place of experiment. Further, the use of mobile
phones was prohibited inside the laboratory during the experimentation. Two
dedicated systems were used for the purpose of data collection, one for data
recording and the other one for running the workload generating tasks. The tasks
were run on a 21′′ all-in-one PC kept at a distance of 75 cm from the subjects.
To minimize the artifacts originating from muscular movement, that is, due
to electromyographic (EMG) activity, subjects were asked to avoid unnecessary
physical movements during data recording. Furthermore, their hands were placed
in a fixed position such that they could easily tap their fingers on the keyboard
in response to the correct answer.

3.3 Workload Generating Task

We used the open source application, namely “Brain Workshop” [10] for gener-
ating the mental workload (MWL). The n-back task available in this application
is a cognitive task which is mostly used as an assessment tool in cognitive neu-
roscience. The main advantage of n-back task is that it does not introduce any
bias due to experience of an individual participating in the experiment. In other
words, repetitive experiments with same participant introduces seldom bias. In
this work, we have considered two variants of n-back task (n-back and dual n-
back task) for MWL generation. The n-back/dual n-back tasks have all three
ingredients of cognitive load namely:

– Intrinsic load, which is the load induced by the inherent nature of the task
being processed. The inherent difficulty of task can be increased firstly by
increasing the value of ‘n’ from 1 to 2 and secondly by migrating from n-back
to dual n-back task.

– Extraneous load, which is induced by external factors like time pressure, noise,
situation, work organization, etc. This type of load can be increased by reduc-
ing the time between the stimuli. In our experimental setup, we kept it con-
stant at 3 s.

– Germane load, which is the load placed on working memory during schema
formation and automation. Such a kind of load can be increased by increasing
the value of ‘n’ which leads to increased amount of information required to
be stored and processed in the working memory.

Further, we used five different tasks to generate five different load levels,
namely idle, 1-back, 2-back, dual 1-back and dual 2-back in our experimenta-
tion. During the idle task, the participants were asked to remain still with eyes
closed. In the 1-back and 2-back task scenarios, a 3 × 3 grid was shown with
stimuli appearing randomly at one of the grid locations on the screen. On the
appearance of a stimuli, or trial, the participants were asked to respond whether
or not the current stimulus is the same as the one that they saw n (that is, 1 or
2) presentations ago. Hence, for each trial, participants needed to memorize the
previous n sequence of stimuli and perform a matching task mentally. Succes-
sively, the dual n-back task involves remembering a sequence of spoken alphabet
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and a sequence of positions of the stimuli at the same time, and identifying when
an alphabet or position matches the one that appeared n trials back. Each task
in the experiment had a total of 60 audio/visual stimuli (depending on various
tasks) appearing after every three seconds.

3.4 Procedure

The experiments for data collection were conducted in an electrically isolated
BCI laboratory under controlled environmental conditions so as to ensure ade-
quate comfort to the participants. Here, we have performed experiments and
tried to develop a method to classify mental workload not only when training
and testing is done on the same task, but also when training and testing is done
on different tasks. We utilized five distinct task levels in this experiment. Each
participant performed all five levels of experiment successively.

Before beginning the experiment, each participant first filled the consent form
and personal details form containing information about their age, gender, sleep
duration, medication, status of mental health, education background, etc. Next,
the experiment was started with the minimum load task, that is, idle task which
was followed by the 1-back, 2-back, dual 1-back and dual 2-back tasks, respec-
tively. In the n-back (n = 1 or 2) task, the participants responded to the ‘position
matching’ of the stimuli by pressing the alphabet ‘A’ from the keyboard if the
position of the current stimulus matched to the position of stimulus presented
n-trials back. While in the dual n-back (n = 1 or 2), the participant pressed ‘A’
key for ‘position match’ and ‘L’ for ‘sound match’, respectively (refer Figs. 1 and
2). Switching from one task level to other was marked by a rest period of one
minute. In each task level, a total of 60 trials/stimuli were presented, wherein
each one appeared after every three seconds. EEG data recording for every load
level of n-back task has been done for three minutes. Thus in total, for all lev-
els, the duration of experiment was 20 min. The entire experiment protocol is
graphically shown in Fig. 3.

Fig. 1. An illustration to represent a 2-back task
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Fig. 2. An illustration to represent a dual 2-back task

Fig. 3. Complete protocol

4 EEG Signal Analysis

The raw EEG signals captured through the scalp are contaminated with electri-
cal signals and other undesired cerebral activities, which makes them unsuitable
for feature extraction. These artifacts cause changes in the EEG measurements
and severely degrade the useful signal of interest. Thus, it is necessary to process
the EEG signals before we extract features from it. To process EEG signals, we
begin with signal pre-processing phase which is followed by channel selection
and feature extraction. Finally, we classify the data using the machine learning
algorithms.

4.1 Signal Pre-processing

The recorded EEG signals are mostly, severely contaminated signals and are not
actual brain signals. The contaminants are also known as artifacts. There are
different kinds of artifacts such as power line noise, muscle contraction or elec-
tromyogram (EMG), heart activity or electrocardiogram (ECG), and eye move-
ment or electrooculogram (EOG) [3]. These artifacts can be orders of magnitude
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larger than the EEG signal. Therefore, the removal of artifacts is necessary to
obtain the desired brain signals.

Many automated artifact removal methods have been proposed in the lit-
erature to remove artifacts from EEG recordings [18]. However, most of these
methods either works well with additional EOG and EMG recordings or were
designed to remove a single artifact. Hence, out of available artifact removal
methods, we have used fully online and automated artifact removal tool for
brain computer interfacing method (FORCe) [6] to remove all types of source
generated artifacts. The clean data thus obtained (after the artifact removal
phase) is further processed for baseline removal.

4.2 Channel Selection

Channel selection is done to choose the optimal subset of channels from the
complete set of available channels. It is done to improve the model performance,
provide faster processing, remove dimensionality curse, and to efficiently locate
brain area that is responsible for neural activity.

In this work, we have used a very simple non-linear approach of channel
selection which is called Mutual Information (MI). It helps to evaluate non-
linear dependencies between two or more random variables. Let X and Y be two
random variables. Then, the MI between X and Y is the measure of amount
of knowledge about Y which is provided by X and vice-versa. The MI between
two random variables X and Y can be defined as:

I(X;Y ) = H(X) − H(X|Y )
I(Y ;X) = H(Y ) − H(Y |X)

I(X;Y ) = H(X) + H(Y ) − H(X;Y )
(1)

where, H(X) and H(Y ) are the entropies of random variables X and Y , and
H(X;Y ) is their joint entropy. Their respective formulas are given here under.

H(X) = − ∫
X

pX(x) log pX(x) dx

H(Y ) = − ∫
Y

pY (y) log pY (y) dy

H(X;Y ) = − ∫
X

∫
Y

pX,Y (x, y) log pX,Y (x, y) dxdy

(2)

If MI between H(X) and H(Y ) is zero, then X contains no information
about random variable Y and vice-versa, which implies they are independent.

Based on MI, channels are either selected or rejected. We observed that AF3,
F3, FC5, F7, F8, FC6, F4 and AF4 channels are confined to frontal lobe, which
verifies the theory of cognition, according to which neuron activity related with
cognitive workload is observed in the frontal lobe of human brain.

4.3 Feature Extraction

The feature extraction step involves extraction/selection of some distinctive com-
ponents from the EEG signals. It is an extremely important step after signal
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preprocessing and channel selection, as extraction of useful features is needed
for classification of different levels of mental workload.

In this work, before extracting features, we divided the EEG data into epochs
of length 3 s. Thus, for each epoch we obtained: 14 channels × 128 Hz × 3 s =
14 × 384 = 5376 samples. Further, to classify the mental workload, we have
calculated six different categories of features from the EEG signals, which are
briefly discussed below:

– Statistical features: As EEG signal is a time-series signal and it can easily be
characterized by the distribution of the amplitude and its statistical features.
Therefore, for each epoch of an EEG signal, we calculated different statistical
features and tabulated them in Table 1.

Table 1. Statistical features

Features Description

MEAN Mean value

STD Standard deviation

MAX VALUE Maximum positive amplitude

MIN VALUE Maximum negative amplitude

SKEWNESS A measure of symmetry of the distribution

MEDIAN The middle value of the set of ordered data

FD Fractal dimension

AR Auto regression

– Derivative features: Derivative features are obtained by calculating the mean
of first and second derivative of EEG signals and the maximum value of the
first and second derivative of EEG signals. The extracted features are shown
in Table 2.

Table 2. Derivative features

Features Description

1st DIFF MEAN Mean value of the first derivative of the signal

1st DIFF MAX Maximum value of the first derivative of the signal

2nd DIFF MEAN Mean value of the second derivative of the signal

2nd DIFF MAX Maximum value of the second derivative of the signal

– Interval or period features: EEG signals can also be analyzed by measuring
the distribution of the intervals between zero and other level crossings or
between maxima and minima. The calculated interval features are listed in
Table 3.
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Table 3. Interval or period features

Features Description

LINE LENGTH Line length

MEAN VV AMPL Mean of vertex to vertex amplitudes

VAR VV AMPL Variance of vertex to vertex amplitudes

MEAN VV TIME Mean of vertex to vertex times

MEAN VV SLOPE Mean of vertex to vertex slope

VAR VV SLOPE Variance of vertex to vertex slope

ZERO CROSSING Number of zero crossings in the signal

MIN MAX NUMBER Number of local minima and maxima

COEFF OF VARIATION A statistical measure of the deviation of a variable
from its mean, standard deviation divided by mean

AMPL RANGE The difference between maximum positive and
maximum negative amplitude values

– Hjorth parameters: Hjorth parameters gives an idea about the complexity of
a time-series EEG signals. These values are very useful in EEG analysis and
prove to be of great importance for its quantitative description. Refer Table 4
for the parameters.

Table 4. Hjorth parameters

Features Description

HJORTH1 Ability

HJORTH2 Mobility (
σx′
σx

)

HJORTH3 Complexity (

σ
x′′
σ′

x
σ

x′
σx

)

– Frequency-domain features: These features are one of the most important
features for the analysis of EEG Signals. Based on the frequency content of
the EEG signals, we extracted the features shown in Table 5 by applying the
Fast Fourier Transform (FFT) to various EEG wave bands. Further, we also
calculated other important ratios of FFT from various bands.

– Wavelet features: The wavelet transform (WT) is capable of distinguishing
very small and delicate differences between time-series signals even from short
signal epochs. It can easily identify highly irregular and non-stationary sig-
nals. Further, WT based methods can localize the signal components in time-
frequency space in a better way than FFT analysis. Therefore, we evaluated
the features listed in Table 6 using WT.
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Table 5. Frequency-domain features

Features Description

FFT DELTA 0.1–4 Hz

FFT THETA 4–8 Hz

FFT ALPHA 8–13 Hz

FFT BETA 13–30 Hz

FFT GAMMA 30–40 Hz

FFT WHOLE .1–40 Hz

FFT DT RATIO DELTA/THETA

FFT DA RATIO DELTA/ALPHA

FFT TA RATIO THETA/ALPHA

FFT DTA RATIO (DELTA+THETA)/ALPHA

FFT SEF Spectral edge frequency

FFT SP ROLL OFF Below which 85% of the total spectral power resides

Table 6. Wavelet features

Features Description

MIN WAV VALUE Minimum value

MAX WAV VALUE Maximum value

MEAN WAV VALUE Mean value

MEDIAN WAV VALUE Median value

STD WAV VALUE Standard deviation

SKEWNESS WAV VALUE Skewness

KURTOSIS WAV VALUE Kurtosis

WAV BAND Relative energy

ENTROPY SPECTRAL WAV The spectral entropy

1st DIFF WAV MEAN Mean value of the 1st derivative

1st DIFF WAV MAX Maximum value of the 1st derivative

2nd DIFF WAV MEAN Mean value of the 2nd derivative

2nd DIFF WAV MAX Maximum value of the 2nd derivative

ENERGY PERCENT WAV Percentage of the total energy of a detail/approximation

WAV ZERO CROSSING Zero crossing

WAV COEFF OF VARIATION Coefficient of variation

WAV TOTAL ENERGY Total energy

4.4 Feature Normalization and Optimization

The extracted features are normalized to bring them within a common range.
This helps in feature optimization and reduces the inter-subject variability. Here,
we have mean-normalized the extracted features using Eq. 3.
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xnew =
x − μ

σ
(3)

where, μ and σ denote mean and standard deviation, respectively.
Feature optimization also helps in minimizing the curse of dimensionality

and enhanced generalization by reducing over-fitting. In feature optimization/
selection, we identify data that are relevant to the selected parameters and assign
them maximum relevance. We select those features which are strongly correlated
to the classification and call this task as maximum-relevance selection. Besides,
features which are mutually separated but have high degree of correlation to the
classification are also selected and this task is referred to as minimum-redundant
selection. These parameters are sometimes redundant and can be easily sup-
pressed using maximum Relevance Minimum Redundancy (mRMR) algorithm
[15]. Therefore, we have applied the mRMR algorithm to the extracted feature
set to obtain the most optimized set of features. The features obtained after
applying the optimization algorithm are tabulated in Table 7.

Table 7. Optimized features

Feature Description

FD Fractal dimension

AR Auto regression

1st DIFF MEAN Mean value of the first derivative of the signal

1st DIFF MAX Maximum value of the first derivative of the signal

2nd DIFF MEAN Mean value of the second derivative of the signal

2nd DIFF MAX Maximum value of the second derivative of the signal

HJORTH1 Ability

HJORTH2 Mobility (
σ′

x
σx

)

HJORTH3 Complexity (

σ′′
x

σ′
x

σ′
x

σx

)

FFT DT RATIO DELTA
THETA

FFT DA RATIO DELTA
ALPHA

FFT TA RATIO THETA
ALPHA

FFT DTA RATIO DELTA+THETA
ALPHA

WAV COEFF OF VARIATION Coefficient of variation

WAV TOTAL ENERGY Total energy

5 Results and Discussion

In this section, we present the spectrogram plots for the five levels of workload
data. Next, we show the classification accuracy results for pre and post chan-
nel selection and feature extraction, respectively. At last, we present confusion
matrix for pre and post channel selection and feature extraction, respectively.
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For easy identification, we have labelled our cognitive workload level as Ci, where
i = {1,2,3,4,5}, wherein C1 denotes idle task, C2 denotes 1-back task, C3 denotes
2-back task, C4 denotes dual 1-back task and C5 denotes dual 2-back task.

Various combinations of two-class, three-class, four-class and five-class clas-
sification for the above-mentioned categories have been summarized in the form
of table and bar-chart. The obtained results are described next.

5.1 Spectrogram Plot

We have plotted spectrograms for all (five) levels of cognitive tasks for subject
M05. From these plots (see Figs. 4, 5, 6, 7 and 8) we find/visualize the dominant
EEG bands in a cognitive task. It can be clearly seen that theta and alpha
wave activities are the most dominant in these spectrograms and possess most
of the band power. Moreover, from the spectrograms for dual 2-back task one
can notice that there is an increase in the beta band activity due to an increase
in cognitive workload.

Fig. 4. Spectrogram plot for idle task

Fig. 5. Spectrogram plot for 1-back task
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Fig. 6. Spectrogram plot for 2-back task

Fig. 7. Spectrogram plot for dual 1-back task

Fig. 8. Spectrogram plot for dual 2-back task
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5.2 Classification Accuracy Using the Classifiers

Classification of the mental workload data into different levels has been done
with the aid of seven supervised machine learning algorithms already named in
Sect. 1. Each classifier model has been trained by dividing the complete dataset
into a training set comprising of 80% data values and a test set comprising of
remaining 20% data values. We have used scikit-learn open library for executing
our machine learning algorithms. Further, for visualizing the effect of channel
selection and feature optimization, we have carried out our classification in two
different categories which are described next. In addition, we have also sum-
marized various combinations of two-class, three-class, four-class and five-class
classifications and summarized them in the form of Tables 8 and 9.

Table 8. Classification accuracy in (%) without channel selection and feature opti-
mization

Class Classifier

Two-class k-NN Random forest SVM (RBF) SVM (Linear) MLP D-Tree LDA

C1-C2 86.55 97.47 89.00 94.00 94.95 87.39 92.01

C1-C3 90.80 97.99 94.00 89.00 96.39 90.80 90.40

C1-C4 92.40 96.39 94.00 92.00 94.39 90.00 91.20

C1-C5 89.55 95.58 91.00 86.00 93.57 91.16 85.14

C2-C3 81.09 89.91 83.00 86.00 89.70 77.31 81.51

C2-C4 92.85 95.37 88.00 89.00 93.69 86.55 92.43

C2-C5 84.81 92.40 84.00 91.00 92.82 81.85 88.60

C3-C4 77.60 84.39 74.00 72.00 82.39 73.99 78.40

C3-C5 81.92 86.74 75.00 75.00 82.32 73.49 79.91

C4-C5 83.13 86.34 80.00 84.00 88.35 77.91 83.93

Average 86.07 92.258 85.2 85.8 90.857 83.045 86.353

Three-class k-NN Random forest SVM (RBF) SVM (Linear) MLP D-Tree LDA

C1-C2-C3 77.41 91.46 73.00 82.00 84.29 79.06 82.09

C1-C3-C5 76.47 87.96 73.00 75.00 82.08 68.71 71.92

C2-C3-C4 66.94 79.33 62.00 70.00 75.75 67.49 70.79

C3-C4-C5 66.84 82.62 65.00 66.00 71.65 66.04 67.11

Average 71.915 85.3425 68.25 73.25 78.4425 70.325 72.9775

Four-class k-NN Random forest SVM (RBF) SVM (Linear) MLP D-Tree LDA

C1-C2-C3-C4 65.98 81.55 64.00 68.00 76.02 67.82 71.31

C2-C3-C4-C5 67.14 79.87 60.00 63.00 72.07 60.36 62.42

C1-C2-C4-C5 71.66 86.44 70.00 75.00 82.54 68.58 76.79

Average 68.26 82.62 64.6667 68.6667 76.87667 65.58667 70.1733

Five-class k-NN Random forest SVM (RBF) SVM (Linear) MLP D-Tree LDA

C1-C2-C3-C4-C5 61.43 80.22 57.00 62.00 68.13 58.33 63.39
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Table 9. Classification accuracy in (%) with channel selection and feature optimization

Class Classifier

Two-class k-NN Random forest SVM (RBF) SVM (Linear) MLP D-Tree LDA

C1-C2 95.19 99.19 95.00 88.00 95.99 92.00 95.19

C1-C3 93.60 95.19 96.00 95.00 94.39 91.20 96.79

C1-C4 95.19 93.60 97.00 97.00 99.19 88.00 97.59

C1-C5 94.35 95.96 94.00 92.00 96.77 87.90 91.12

C2-C3 83.19 92.80 82.00 94.00 86.39 85.59 91.20

C2-C4 95.19 96.79 90.00 92.00 92.00 91.20 90.40

C2-C5 86.29 94.35 88.00 95.00 93.54 84.67 91.12

C3-C4 81.59 83.99 75.00 76.00 80.00 74.39 80.80

C3-C5 79.03 88.70 78.00 76.00 76.61 75.00 76.61

C4-C5 80.64 87.90 82.00 87.00 83.06 81.45 83.87

Average 88.426 92.928 87.7 89.2 89.794 85.14 89.469

Three-class k-NN Random forest SVM (RBF) SVM (Linear) MLP D-Tree LDA

C1-C2-C3 83.51 91.48 86.00 89.00 88.82 82.97 86.70

C1-C3-C5 81.28 86.63 83.00 83.00 87.16 75.40 86.09

C2-C3-C4 75.00 91.48 71.00 78.00 80.85 82.44 77.65

C3-C4-C5 66.31 79.67 66.00 69.00 76.47 65.77 74.33

Average 76.525 87.315 76.5 79.75 83.325 76.645 81.1925

Four-class k-NN Random forest SVM (RBF) SVM (Linear) MLP D-Tree LDA

C1-C2-C3-C4 71.59 87.60 73.00 77.00 85.19 77.20 79.20

C2-C3-C4-C5 67.87 82.73 64.00 73.00 73.09 69.07 78.71

C1-C2-C4-C5 74.29 90.76 74.00 84.00 89.15 73.89 82.32

Average 71.25 87.03 70.3333 78 82.47667 73.3867 80.07667

Five-class k-NN Random forest SVM (RBF) SVM (Linear) MLP D-Tree LDA

C1-C2-C3-C4-C5 64.42 84.61 63.00 73.00 79.80 69.55 78.20

Classification without Channel Selection and Feature Optimization:
From the obtained results (refer Table 8) it can be observed that the Random
Forest algorithm gives the best classification accuracy for all combinations of
classes. It can be noted that, this classifier presents highest accuracy of 97.22%
for two-class classification followed by percentage accuracy of 91.46, 86.44 and
80.22 for the combination of three, four and five classes, respectively.

Classification with Channel Selection and Feature Optimization: After
channel selection and feature optimization, it has been observed that the average
classification accuracy increases for all the classifiers involved (refer Table 9).
Further, it has been observed that the Random Forest classifier outperforms all
other classifiers. Highest accuracy obtained with Random Forest is 99.19% in
two-class classification followed by percentage accuracy of 91.48%, 90.76% and
84.61% for three, four and five classes, respectively.
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5.3 Confusion Matrix

For efficiently depicting the accuracy of classification, we have shown the
obtained results with the help of confusion matrix. Each column of the matrix
represents the instances in a predicted class while each row represents the
instances in a true class (or vice-versa). The diagonal elements represent the
number of points for which the predicted class is same as the true class, while
off-diagonal elements are those which are misclassified by the classifier. Higher
diagonal values of the confusion matrix indicates better predictions. We present
confusion matrix in two categories which are discussed next.

Confusion Matrix Before Channel Selection and Feature Optimiza-
tion: Confusion matrix before channel selection and feature optimization tech-
niques for two-class, three-class, four-class and five-class classification is shown
in Fig. 9.

Fig. 9. Confusion matrix before channel selection and feature optimization:
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Confusion Matrix After Channel Selection and Feature Optimization:
Confusion matrix after channel selection and feature optimization techniques for
two-class, three-class, four-class and five-class classification is shown in Fig. 10.

Fig. 10. Confusion matrix after channel selection and feature optimization

On comparing the matrices for the two cases, we can observe that there is
a substantial improvement in classification accuracy with the usage of channel
selection and feature optimization for all class labels. For instance, we can note
that, in class-1 to class-1 matching from both cases, the accuracy increases from
98% to 100% in two class classification, 91% to 93% in three class classification,
from 92% to 94% in four class classification and from 90% to 96% in five class
classification.
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6 Conclusion

In this paper, first, we explored the feasibility of wireless data acquisition devices
in mental workload assessment with the help of n-back task. From this it is evi-
dent that these devices have enormous potential which may be exploited in every-
day environment and can be of utmost importance to handle critical situations
such as monitoring pilots of flights, nuclear operations, driving tasks, etc. Second,
we modeled and evaluated MWL induced during human-computer interaction
with the help of features extracted from EEG signals. Third, we investigated the
potential of machine learning to classify MWL in different levels. To accomplish
this, we have used different categories of supervised machine learning algorithms
that can learn from the data (about its pattern) and give predictions. Fourth,
we studied the effect of channel selection and feature optimization on classifi-
cation performance. From the obtained results, it can be easily observed that
the Random Forest algorithm results in best accuracy in comparison to all the
other compared algorithms. Further, we also studied the performance accuracy
obtained due to inter-class classification. We hope that this study would be help-
ful in future to explore and devise new methods for studying and understanding
cognitive workload.
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