Skip to main content

Abstract

Extraordinary advancements in neonatal care have markedly reduced mortality of infants hospitalized in Neonatal Intensive Care Unit (NICU). Over the last decade, studies show that neonatal acute kidney injury (AKI) is common and those with AKI have higher mortality and prolonged length of stay. The most common accepted definition of the neonatal AKI is based on a rise in serum creatinine and/or decrease in urine output. Premature infants are born with low nephron numbers which predisposes them to AKI and chronic kidney disease (CKD). Despite recent insights that substantiate the impact of poor kidney health on outcomes in sick neonates, significant critical gaps in our understanding of the antenatal and postnatal factors exist. The global burden of AKI and CKD in NICU graduates need to be better understood. Fortunately, progress is being made as investigators are performing large observational studies, and randomized clinical trials that evaluate risk factors, outcomes, and interventions. Peritoneal dialysis is a method of choice for kidney function replacement in newborns. In addition, novel machines, with smaller extracorporeal volume, designed to provide renal support for neonates have been designed and are currently in use in a few centers around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Investig. 1991;64(6):777–84.

    PubMed  CAS  Google Scholar 

  2. Saint-Faust M, Boubred F, Simeoni U. Renal development and neonatal adaptation. Am J Perinatol. 2014;31(9):773–80.

    Article  CAS  PubMed  Google Scholar 

  3. Selewski DT, Charlton JR, Jetton JG, Guillet R, Mhanna MJ, Askenazi DJ, et al. Neonatal acute kidney injury. Pediatrics. 2015;136(2):e463–73.

    Article  PubMed  Google Scholar 

  4. Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, et al. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr. 2014;41(3):487–502.

    Google Scholar 

  5. Schwartz GJ, Gauthier B. A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr. 1985;106(3):522–6.

    Article  CAS  PubMed  Google Scholar 

  6. Sulemanji M, Khashayar V. Neonatal renal physiology. Semin Pediatr Surg. 2013;22:195–8.

    Article  PubMed  Google Scholar 

  7. Gubhaju L, Sutherland MR, Horne RSC, Medhurst A, Kent AL, Ramsden A, et al. Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol. 2014;307:F149–58.

    Article  CAS  PubMed  Google Scholar 

  8. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.

    Article  CAS  PubMed  Google Scholar 

  9. Ottonello G, Dessi A, Neroni P, Trudu ME, Fanos V. Acute kidney injury in neonatal age. J Pediatr Neonat Individual Med. 2014;3(2):e030246.

    Google Scholar 

  10. Askenazi DJ, Ambalavanan N, Goldstein LS. Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol. 2009;24(2):265–74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69(4):354–8.

    Article  PubMed  Google Scholar 

  12. Bezerra CT, Van Cunha LC, Liborio AB. Defining reduced urine output in neonatal ICU: importance for mortality and acute kidney injury classification. Nephrol Dial Transplant. 2013;28(4):901–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ricci Z, Ronco C. Neonatal RIFLE. Nephrol Dial Transplant. 2013;28(9):2211–4.

    Article  PubMed  Google Scholar 

  14. Stojanović V, Barišić N, Radovanović T, Bjelica M, Milanović B, Doronjski A. Acute kidney injury in premature newborns-definition, etiology, and outcome. Pediatr Nephrol. 2017;32(10):1963–70.

    Article  PubMed  Google Scholar 

  15. Askenazi DJ, Montesanti A, Hunley H, Koralkar R, Pawar P, Shuaib F, et al. Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J Pediatr. 2011;159:907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wong JH, Selewski DT, Yu S, Leopold KE, Roberts KH, Donohue JE, et al. Severe acute kidney injury following stage 1 Norwood palliation: effect on outcomes and risk of severe acute kidney injury at subsequent surgical stages. Pediatr Crit Care Med. 2016;17(7):615–23.

    Article  PubMed  Google Scholar 

  17. Mathur NB, Agarwal HS, Maria A. Acute renal failure in neonatal sepsis. Indian J Pediatr. 2006;73(6):499–502.

    Article  CAS  PubMed  Google Scholar 

  18. Sarkar S, Askenazi DJ, Jordan BK, Bhagat I, Bapuraj JR, Dechert RE, et al. Relationship between acute kidney injury and brain MRI findings in asphyxiated newborns after therapeutic hypothermia. Pediatr Res. 2014;75(3):431–5.

    Article  PubMed  Google Scholar 

  19. Selewski DT, Jordan BK, Askenazi DJ, Dechert RE, Sarkar S. Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J Pediatr. 2013;162(4):725–9.e1.

    Article  PubMed  Google Scholar 

  20. Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Patil N, Ambalavanan N. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr Nephrol. 2013;28(4):661–6.

    Article  PubMed  Google Scholar 

  21. Askenazi DJ, Ambalavanan N, Hamilton K, Cutter G, Laney D, Kaslow R, et al. Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2011;12(1):e1–6.

    Article  PubMed  Google Scholar 

  22. Askenazi DJ, Griffin R, McGwin G, Carlo W, Ambalavanan N. Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case-control analysis. Pediatr Nephrol. 2009;24(5):991–7.

    Article  PubMed  Google Scholar 

  23. Carmody JB, Swanson JR, Rhone ET, Charlton JR. Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol. 2014;9(12):2036–43.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stojanovic V, Barisic N, Milanovic B, Doronjski A. Acute kidney injury in preterm infants admitted to a neonatal intensive care unit. Pediatr Nephrol. 2014;29(11):2213–20.

    Article  PubMed  Google Scholar 

  25. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet. 2017;1(3):184–94.

    Google Scholar 

  26. Weintraub AS, Connors J, Blanco V, Green RS. The spectrum of onset of acute kidney injury in premature infants less than 30 weeks gestation. J Perinatol. 2016;36:474–80.

    Article  CAS  PubMed  Google Scholar 

  27. Bakr AF. Peophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia – a study in a developing country. Pediatr Nephrol. 2005;20:1249–52.

    Article  PubMed  Google Scholar 

  28. Friedrich JO, Adhikari N, Herridge MS, Beyene J. Metaanalysis: low-dose dopamine increase urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142:510–24.

    Article  CAS  PubMed  Google Scholar 

  29. Ricci Z, Luciano R, Favia I, Gariso G, Muraca M, Morelli S, et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2015;15(3):R160.

    Article  Google Scholar 

  30. Pandey V, Dummula K, Go M, Parimi P. Bumetanide use in the management of oliguric preterm infants with acute kidney injury–a single center experience. J Clin Pediatr Nephrol. 2015. https://doi.org/10.15401/jcpn/2014/v2i2/66346.

  31. Ho KM, Sheridan D. Meta-analysis of furosemide to prevent or treat acute renal failure. BMJ. 2006;333:420–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hobbs DJ, Steinke JM, Chung JY, Barletta GM, Bunchman TE. Rasburicase improves hyperuricemia in infants with acute kidney injury. Pediatr Nephrol. 2010;25(2):305–9.

    Article  PubMed  Google Scholar 

  33. Pandey V, Kumar D, Vijayaraghavan P, Chaturvedi T, Raina R. Non-dialytic management of acute kidney injury in newborns. J Renal Inj Prev. 2017;6(1):1–11.

    Article  PubMed  Google Scholar 

  34. Gouyon JB, Guignard JP. Management of acute renal failure in newborns. Pediatr Nephrol. 2000;14:1037–44.

    Article  CAS  PubMed  Google Scholar 

  35. Alparslan C, Yavascan O, Bal A, Kanik A, Kose E, Kasap Demir B, et al. The performance of acute peritoneal dialysis treatment in neonatal period. Ren Fail. 2012;34(8):1015–20.

    Article  PubMed  Google Scholar 

  36. Sasser WC, Dabal RJ, Askenazi DJ, Borasino S, Moellinger AB, Kirklin JK, et al. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis. 2014;9(2):106–15.

    Article  PubMed  Google Scholar 

  37. Kwiatkowski DM, Menon S, Krawszeski CD, Goldstein SL, Morales LSD, Philips A, et al. Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2015;149:230–6.

    Article  PubMed  Google Scholar 

  38. Stojanović V, Bukarica S, Antić J, Doronjski A. Peritoneal dialysis in very low birth weight neonates. Perit Dial Int. 2017;37(4):389–96.

    Article  PubMed  Google Scholar 

  39. Stojanović V, Bukarica S, Doronjski A, Marinković S. Peritoneal dialysis in neonates with extremely low body weight at birth: new modality of using IV cannula for peritoneal access. Iran J Pediatr. 2013;23(6):718–20.

    PubMed  PubMed Central  Google Scholar 

  40. Unal S, Bilgin L, Gunduz M, Uncu N, Azili MN, Tiryaki T. The implementation of neonatal peritoneal dialysis in a clinical setting. J Matern Fetal Neonatal Med. 2012;25:2111–4.

    Article  PubMed  Google Scholar 

  41. Askenazi DJ, Goldstein SL, Koralkar R, Fortenberry J, Baum M, Hackbarth R, et al. Continuous renal replacement therapy for children </=10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr. 2013;162(3):587–92.e3.

    Article  PubMed  Google Scholar 

  42. Ronco C, Garzotto F, Brendolan A, Zanella M, Bellettato M, Vedovato S, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383(9931):1807–13.

    Article  PubMed  Google Scholar 

  43. Coulthard MG, Crosier J, Griffiths C, Smith J, Drinnan M, Whitaker M, et al. Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol. 2014;29(10):1873–81.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Askenazi D, Ingram D, White S, Cramer M, Borasino S, Coghill C, et al. Smaller circuits for smaller patients: improving renal support therapy with Aquadex™. Pediatr Nephrol. 2016;31(5):853–60.

    Article  PubMed  Google Scholar 

  45. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE. Human nephron number: implications for health and disease. Pediatr Nephrol. 2011;26(9):1529–33.

    Article  PubMed  Google Scholar 

  46. Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB, et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet. 2017;390(10105):1888–917.

    Article  PubMed  Google Scholar 

  47. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis. 2009;54(2):248–61.

    Article  PubMed  Google Scholar 

  48. Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69(1):184–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Askenazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Askenazi, D., Stojanović, V. (2018). Neonatal Critical Care Nephrology. In: Deep, A., Goldstein, S. (eds) Critical Care Nephrology and Renal Replacement Therapy in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-90281-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90281-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90280-7

  • Online ISBN: 978-3-319-90281-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics