
A Non-linear Arithmetic Procedure
for Control-Command Software

Verification

Pierre Roux1(B), Mohamed Iguernlala2,3, and Sylvain Conchon3,4

1 ONERA, DTIS, 31055 Toulouse, France
pierre.roux@onera.fr

2 OCamlPro SAS, 91190 Gif-sur-Yvette, France
3 LRI, Université Paris-Sud, 91405 Orsay, France

4 INRIA Saclay – Ile-de-France, Toccata,
91893 Orsay, France

Abstract. State-of-the-art (semi-)decision procedures for non-linear
real arithmetic address polynomial inequalities by mean of symbolic
methods, such as quantifier elimination, or numerical approaches such
as interval arithmetic. Although (some of) these methods offer nice com-
pleteness properties, their high complexity remains a limit, despite the
impressive efficiency of modern implementations. This appears to be an
obstacle to the use of SMT solvers when verifying, for instance, func-
tional properties of control-command programs.

Using off-the-shelf convex optimization solvers is known to constitute
an appealing alternative. However, these solvers only deliver approxi-
mate solutions, which means they do not readily provide the sound-
ness expected for applications such as software verification. We thus
investigate a-posteriori validation methods and their integration in the
SMT framework. Although our early prototype, implemented in the Alt-
Ergo SMT solver, often does not prove competitive with state of the art
solvers, it already gives some interesting results, particularly on control-
command programs.

Keywords: SMT · Non-linear real arithmetic
Polynomial inequalities · Convex optimization

1 Introduction

Systems of non-linear polynomial constraints over the reals are known to be solv-
able since Tarski proved that the first-order theory of the real numbers is decid-
able, by providing a quantifier elimination procedure. This procedure has then
been much improved, particularly with the cylindrical algebraic decomposition.
Unfortunately, its doubly exponential complexity remains a serious limit to its

This work has been partially supported by the French ANR projects ANR-12-INSE-
0007 Cafein and ANR-14-CE28-0020 Soprano and the project SEFA IKKY.

c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 132–151, 2018.
https://doi.org/10.1007/978-3-319-89963-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_8&domain=pdf

An SMT Solver for Control-Command Software Verification 133

scalability. It is now integrated into SMT solvers [23]. Although it demonstrates
very good practical results, symbolic quantifier elimination seems to remain an
obstacle to scalability on some problems. In some cases, branch and bound with
interval arithmetic constitutes an interesting alternative [17].

We investigate the use of numerical optimization techniques, called semi-
definite programming, as an alternative. We show in this paper how solvers
based on these techniques can be used to design a sound semi-decision proce-
dure that outperforms symbolic and interval-arithmetic methods on problems of
practical interest. A noticeable characteristic of the algorithms implemented in
these solvers is to only compute approximate solutions.

We explain this by making a comparison with linear programming. There are
two competitive methods to optimize a linear objective under linear constraints:
the interior point and the simplex algorithms. The interior point algorithm starts
from some initial point and performs steps towards an optimal value. These
iterations converge to the optimum but not in finitely many steps and have to be
stopped at some point, yielding an approximate answer. In contrast, the simplex
algorithm exploits the fact that the feasible set is a polyhedra and that the
optimum is achieved on one of its vertices. The number of vertices being finite,
the optimum can be exactly reached after finitely many iterations. Unfortunately,
this nice property does not hold for spectrahedra, the equivalent of polyhedra
for semi-definite programming. Thus, all semi-definite programming solvers are
based on the interior-point algorithm, or a variant thereof.

To illustrate the consequences of these approximate solutions, consider the
proof of e ≤ c with e a complicated ground expression and c a constant. e ≤ c can
be proved by exactly computing e, giving a constant c′, and checking that c′ ≤ c.
However, if e is only approximately computed: e ∈ [c′−ε, c′+ε], this is conclusive
only when c′ + ε ≤ c. In particular, if e is equal to c, an exact computation is
required. This inability to prove inequalities that are not satisfied with some
margin is a well known property of numerical verification methods [42] which
can then be seen as a trade-off between completeness and computation cost.

The main point of this paper is that, despite their incompleteness, numerical
verification methods remain an interesting option when they enable to practically
solve problems for which other methods offer an untractable complexity. Our
contributions are:

(1) a comparison of two sound semi-decision procedures for systems of non-linear
constraints, which rely on off-the-shelf numerical optimization solvers,

(2) an integration of these procedures in the Alt-Ergo SMT solver,
(3) an experimental evaluation of our approach on a set of benchmarks coming

from various application domains.

The rest of this paper is organized as follows: Sect. 2 gives a practical example
of a polynomial problem, coming from control-command program verification,
better handled by numerical methods. Section 3 is dedicated to preliminaries.
It introduces basic concepts of sum of squares polynomials and semi-definite
programming. In Sect. 4, we compare two methods to derive sound solutions to
polynomial problems from approximate answers of semi-definite programming

134 P. Roux et al.

typedef struct { double x0, x1, x2; } state;
/*@ predicate inv(state *s) = 6.04 * s->x0 * s->x0 - 9.65 * s->x0 * s->x1

@ - 2.26 * s->x0 * s->x2 + 11.36 * s->x1 * s->x1
@ + 2.67 * s->x1 * s->x2 + 3.76 * s->x2 * s->x2 <= 1; */

/*@ requires \valid(s) && inv(s) && -1 <= in0 <= 1;
@ ensures inv(s); */

void step(state *s, double in0) {
double pre_x0 = s->x0 , pre_x1 = s->x1, pre_x2 = s->x2;
s->x0 = 0.9379 * pre_x0 - 0.0381 * pre_x1 - 0.0414 * pre_x2 + 0.0237 * in0;
s->x1 = -0.0404 * pre_x0 + 0.968 * pre_x1 - 0.0179 * pre_x2 + 0.0143 * in0;
s->x2 = 0.0142 * pre_x0 - 0.0197 * pre_x1 + 0.9823 * pre_x2 + 0.0077 * in0;

}

Fig. 1. Example of a typical control-command code in C.

solvers. Section 5 provides some implementation details and discuss experimental
results. Finally, Sect. 6 concludes with some related and future works.

2 Example: Control-Command Program Verification

Control-command programs usually iterate linear assignments periodically over
time. These assignments take into account a measure (via some sensor) of the
state of the physical system to control (called plant by control theorists) to
update an internal state and eventually output orders back to the physical system
(through some actuator). Figure 1 gives an example of such an update, in0
being the input and s the internal state. The comments beginning by @ in the
example are annotations in the ACSL language [12]. They specify that before
the execution of the function (requires) s must be a valid pointer satisfying the
predicate inv and |in0| ≤ 1 must hold. Under these hypotheses, s still satisfies
inv after executing the function (ensures).

To prove that the internal state remains bounded over any execution of the
system, a quadratic polynomial1 can be used as invariant2. Checking the validity
of these invariants then leads to arithmetic verification conditions (VCs) involv-
ing quadratic polynomials. Such VCs can for instance be generated from the
program of Fig. 1 by the Frama-C/Why3 program verification toolchain [12,16].
Unfortunately, proving the validity of these VCs seem out of reach for current
state-of-the-art SMT solvers. For instance, although Z3 [13] can solve smaller
examples with just two internal state variables in a matter of seconds, it ran for
a few days on the three internal state variable example of Fig. 1 without reaching
a conclusion3. In contrast, our prototype can prove it in a fraction of second, as
well as other examples with up to a dozen variables.

1 For instance, the three variables polynomial in inv in Fig. 1.
2 Control theorists call these invariants sublevel sets of a quadratic Lyapunov function.

Such functions exist for linear systems if and only if they do not diverge.
3 This is the case even on a simplified version with just arithmetic constructs, i.e.,

expurgated of all the reasoning about pointers and the C memory model.

An SMT Solver for Control-Command Software Verification 135

Verification of control-command programs is a good candidate for numerical
methods. These systems are designed to be robust to many small errors, which
means that the verified properties are usually satisfied with some margin. Thus,
the incompleteness of numerical methods is not an issue for this kind of problems.

3 Preliminaries

3.1 Emptiness of Semi-algebraic Sets

Our goal is to prove that conjunctions of polynomial inequalities are unsat-
isfiable, that is, given some polynomials with real coefficients p1, . . . , pm ∈
R[x], we want to prove that there does not exist any assignment for the
n variables x1, . . . , xn ∈ R

n such that all inequalities p1(x1, . . . , xn) ≥
0, . . . , pm(x1, . . . , xn) ≥ 0 hold simultaneously. In the rest of this paper, the
notation p ≥ 0 (resp. p > 0) means that for all x ∈ R

n, p(x) ≥ 0 (resp. p(x) > 0).

Theorem 1. If there exist polynomials ri ∈ R[x] such that

−
∑

i

ri pi > 0 and ∀i, ri ≥ 0 (1)

then the conjunction
∧

i pi ≥ 0 is unsatisfiable4.

Proof. Assume there exist x ∈ R
n such that for all i, pi(x) ≥ 0. Then, since

ri ≥ 0, we have ri(x) pi(x) ≥ 0 hence (
∑

i ri pi) (x) ≥ 0 which contradicts
−∑

i ri pi > 0.

In fact, under some hypotheses5 on the pi, the condition (1) is not only
sufficient but also necessary, as stated by the Putinar’s Positivstellensatz [27,
Sect. 2.5.1]. Unfortunately, no practical bound is known on the degrees of the
polynomials ri. In our prototype, we restrict the degrees of each ri to6 d−deg(pi)
where d := maxi(deg(pi)), so that

∑
i ri pi is a polynomial of degree d. This is a

first source of incompleteness, although benchmarks show that it already enables
to solve many interesting problems.

The sum of squares (SOS) technique [26,36] is an efficient way to numerically
solve polynomial problems such as (1). The next sections recall its main ideas.

3.2 Sum of Squares (SOS) Polynomials

A polynomial p ∈ R[x] is said to be SOS if there exist polynomials hi ∈ R[x]
such that for all x,

p(x) =
∑

i

h2
i (x).

Although not all non negative polynomials are SOS, being SOS is a sufficient
condition to be non negative.
4 Or, with different words, the semi-algebraic set {x ∈ R

n | ∀i, pi(x) ≥ 0} is empty.
5 For instance, when one of the sets {x ∈ R

n | pi(x) ≥ 0} is bounded.
6 More precisely to 2

⌈
d−deg(pi)

2

⌉
as deg(ri) is necessarily even since ri ≥ 0.

136 P. Roux et al.

Example 1 (from [36]). Considering p(x1, x2) = 2x4
1 +2x3

1x2 −x2
1x

2
2 +5x4

2, there
exist h1(x1, x2) = 1√

2

(
2x2

1 − 3x2
2 + x1x2

)
and h2(x1, x2) = 1√

2

(
x2
2 + 3x1x2

)

such that p = h2
1 + h2

2. This proves that for all x1, x2 ∈ R, p(x1, x2) ≥ 0.

Any polynomial p of degree 2d (a non negative polynomial is necessarily of
even degree) can be written as a quadratic form in the vector of all monomials
of degree less or equal to d:

p(x) = zT Q z (2)

where z =
[
1, x1, . . . , xn, x1x2, . . . , x

d
n

]T and Q is a constant symmetric matrix.

Example 2. For p(x1, x2) = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2 , we have7

p(x1, x2) =

⎡

⎣
x2
1

x2
2

x1x2

⎤

⎦
T ⎡

⎣
q11 q12 q13
q12 q22 q23
q13 q23 q33

⎤

⎦

⎡

⎣
x2
1

x2
2

x1x2

⎤

⎦

= q11x
4
1 + 2q13x

3
1x2 + (q33 + 2q12)x2

1x
2
2 + 2q23x1x

3
2 + q22x

4
2.

Thus q11 = 2, 2q13 = 2, q33 + 2q12 = −1, 2q23 = 0 and q22 = 5. Two possible
examples for the matrix Q are shown below:

Q =

⎡

⎣
2 1 1
1 5 0
1 0 −3

⎤

⎦ , Q′ =

⎡

⎣
2 −3 1

−3 5 0
1 0 5

⎤

⎦ .

The polynomial p is then SOS if and only if there exists a positive semi-
definite matrix Q satisfying (2). A matrix Q is called positive semi-definite, noted
Q � 0, if, for all vector x, xT Q x ≥ 0. Just as a scalar q ∈ R is non negative
if and only if q = r2 for some r ∈ R (typically r =

√
q), Q � 0 if and only if

Q = RT R for some matrix R (then, for all x, xT Qx = (Rx)T (Rx) = ‖Rx‖22 ≥ 0).
The vector Rz is then a vector of polynomials hi such that p =

∑
i h2

i .

Example 3. In the previous example, the matrix Q is not positive semi-definite
(for x = [0, 0, 1]T , xT Q x = −3). In contrast, Q′ � 0 as Q′ = RT R with

R =
1√
2

[
2 −3 1
0 1 3

]

giving the decomposition of Example 1.

3.3 Semi-Definite Programming (SDP)

Given symmetric matrices C,A1, . . . , Am ∈ R
s×s and scalars a1, . . . , am ∈ R,

the following optimization problem is called semi-definite programming

minimize tr(CQ)
subject to tr(A1Q) = a1

...
tr(AmQ) = am

Q � 0

(3)

7 All monomials of p are of degree 4, so z does not need to contain 1, x1 and x2.

An SMT Solver for Control-Command Software Verification 137

where the symmetric matrix Q ∈ R
s×s is the variable, tr(M) =

∑
i Mi,i denotes

the trace of the matrix M and Q � 0 means Q positive semi-definite.

Remark 1. Since the matrices are symmetric, tr(AQ) = tr(AT Q) =∑
i,j Ai,jQi,j . The constraints tr(AQ) = a are then affine constraints between

the entries of Q.

As we have just seen in Sect. 3.2, existence of a SOS decomposition amounts
to existence of a positive semi-definite matrix satisfying a set of affine constraints,
that is a solution of a semi-definite program. Semi-definite programming is a
convex optimization problem for which there exist efficient numerical solvers [7,
44], thus enabling to solve problems involving polynomial inequalities over the
reals.

3.4 Parametric Problems

Up to now, we have only seen how to check whether a given polynomial p with
fixed coefficients is SOS (which implies its non negativeness). However, according
to Sect. 3.1, we need to solve problems in which polynomials p have coefficients
that are not fixed but parameters. One of the great strengths of SOS program-
ming is its ability to solve such problems.

An unknown polynomial p ∈ R[x] of degree d with n variables can be written

p =
∑

α1+···+αn≤d

pαxα1
1 . . . xαn

n

where the pα are scalar parameters. A constraint such as ri ≥ 0 in (1) can then
be replaced by ri is SOS, that is: ∃Q � 0, ri = zT Q z, which is a set of affine
equalities between the coefficients of Q and the coefficients ri,α of ri. This can
be cast as a semi-definite programming problem8.

Thus, problems with unknown polynomials p, as the one presented in
Sect. 3.1, can be numerically solved through SOS programming.

Remark 2 (Complexity). The number s of monomials in n variables of degree less
than or equal to d, i.e., the size of the vector z in the decomposition p(x) = zT Q z,
is s :=

(
n+d

d

)
. This is polynomial in n for a fixed d (and vice versa). In practice,

current SDP solvers can solve problems where s is about a few hundreds. This
makes the SOS relaxation tractable for small values of n and d (n ∼ 10 and
d ∼ 3, for instance). Our benchmarks indicate this is already enough to solve
some practical problems that remain out of reach for other methods.

8 By encoding the ri,α ∈ R as r+i,α − r−
i,α with r+i,α, r−

i,α ≥ 0 and putting the new

variables in a block diagonal matrix variable Q′ := diag(Q, . . . , r+i,α, r−
i,α, . . .).

138 P. Roux et al.

4 Numerical Verification of SOS

According to Sect. 3.1, a conjunction of polynomial constraints can be proved
unsatisfiable by exhibiting other polynomials satisfying some constraints.
Section 3.4 shows that such polynomials can be efficiently found by some numer-
ical optimization solvers. Unfortunately, due to the algorithms they implement,
we cannot directly trust the results of these solvers. This section details this
issue and reviews two a-posteriori validation methods, with their respective
weaknesses.

4.1 Approximate Solutions from SDP Solvers

In practice, the matrix Q returned by SDP solvers upon solving an SDP prob-
lem (3) does not precisely satisfy the equality constraints, due both to the algo-
rithms used and their implementation with floating-point arithmetic. Therefore,
although the SDP solver returns a positive answer for a SOS program, this does
not constitute a valid proof that a given polynomial is SOS.

Most SDP solvers start from some Q � 0 not satisfying the equality con-
straints (for instance the identity matrix) and iteratively modify it in order
to reduce the distance between tr(AiQ) and ai while keeping Q positive semi-
definite. This process is stopped when the distance is deemed small enough. This
final distance ε is called the primal infeasibility, and is one of the result quality
measures displayed by SDP solvers9. Therefore, we do not obtain a Q satisfying
tr(AiQ) = ai but rather tr(AiQ) = ai + εi for some small εi such that |εi| ≤ ε.

4.2 Proving Existence of a Nearby Solution

This primal infeasibility has a simple translation in terms of our original SOS
problem. The polynomial equality p = zT Q z is encoded as one scalar constraint
tr(AiQ) = ai for each coefficient ai of the polynomial p (c.f., Examples 2).
coefficients of the polynomials p and zT Q z differ by some εi and, since |εi| ≤ ε,
there exists a matrix E ∈ R

s×s such that, for all i, j, |Ei,j | ≤ ε and

p = zT (Q + E) z. (4)

Proving that Q + E � 0 is now enough to prove that the polynomial p is SOS,
hence non negative. A sufficient condition is to check10 Q − sεI � 0.

As seen in Sect. 3.2, checking that a matrix M is positive semi-definite
amounts to exhibiting a matrix R such that M = RT R. The Cholesky decom-
position algorithm [45, Sect. 1.4] computes such a matrix R. Given a matrix
M ∈ R

s×s, it attempts to compute R such that M = RT R and when M is not
positive semi-definite, it fails by attempting to take the square root of a negative
value or perform a division by zero.
9 Typically, ε ∼ 10−8.

10 In order to get good likelihood for this to hold, we ask the SDP solver for Q−2sεI � 0
rather than Q � 0, as solvers often return matrices Q slightly not positive definite.

An SMT Solver for Control-Command Software Verification 139

Due to rounding errors, a simple floating-point Cholesky decomposition
would produce a matrix R not exactly satisfying the equality M = RT R, hence
not proving M � 0. However, these rounding errors can be bounded by a matrix
B so that, when the floating-point Cholesky decomposition of M − B succeeds,
then M � 0 is guaranteed to hold. Moreover, B can be easily computed from
the matrix M and the characteristics of the floating-point format used [41].

To sum up, the following verification procedure can prove that a given poly-
nomial p is SOS11.

Let Q ∈ R
s×s be the approximate solution returned by an SDP

solver for the problem p = zT Q z ∧ Q � 0. Then,

1. Compute a bound ε on the coefficients of p − zT Q z.
2. Check that Q − sεI � 0.

Complexity. Note that step 1 can be achieved using floating-point interval
arithmetic in Θ(s2) operations while the Cholesky decomposition in step 2
requires Θ(s3) floating-point operations. Thus, the whole verification method
takes Θ(s3) floating-point operations which, in practice, constitutes a very small
overhead compared to the time required by the SDP solver to compute Q.

Soundness. It is interesting to notice that the soundness of the method does
not rely on the SDP solver. Thanks to this pessimistic method, the trusted code-
base remains small, and efficient off-the-shelf solvers can be used as untrusted
oracles. The method was even verified [31,38] within the Coq proof assistant.

Incompleteness. Numerical verification methods can only prove inequalities
satisfied with some margin. Here, if the polynomial p to prove SOS (hence p ≥ 0)
reaches the value 0, this usually means that the feasible set of the SDP problem{
Q

∣∣ p = zT Qz,Q � 0
}

has an empty relative interior (i.e., there is no point Q
in this set such that a small ball centered on Q is included in {M | M � 0})
and the method does not work, as illustrated on Fig. 2. This is a second source
of incompleteness of our approach, that adds to the limitation of degrees of
polynomials searched for, as presented in Sect. 3.1.

Remark 3. The floating-point Cholesky decomposition is theoretically a third
source of incompleteness. However, it is negligible as the entries of the bound
matrix B are, in practice, orders of magnitude smallers than the accuracy ε of
the SDP solvers [40].

11 It is worth noting that the value reported by the solver for ε, being just computed
with floating-point arithmetic, cannot be formally trusted. It must then be recom-
puted.

140 P. Roux et al.

{M | M � 0}

{Q+ E }Q

{
M

∣
∣ p = zTM z

}

Fig. 2. When the feasible set has an empty interior, the subspace
{
M

∣∣ p = zT M z
}

is tangent to {M | M � 0}. Thus the ball { Q + E } intersecting the subspace almost
never lies in {M | M � 0}, making the proof fail.

4.3 Rounding to an Exact Rational Solution

The most common solution to verify results of SOS programming is to round
the output of the SDP solver to an exact rational solution [19,24,33].

To sum up, the matrix Q returned by the SDP solver is first projected to
the subspace

{
M

∣∣ p = zT M z
}

then all its entries are rounded to rationals with
small denominators (first integers, then multiples of 1

2 , 1
3 , . . .)12. For each round-

ing, positive semi-definiteness of the resulting matrix Q is tested using a complete
check, based on a LDLT decomposition13 [19]. The rationale behind this choice
is that problems involving only simple rational coefficients can reasonably be
expected to admit simple rational solutions14.

Using exact solutions potentially enables to verify SDP problems with empty
relative interiors. This means the ability to prove inequalities without margin, to
distinguish strict and non-strict inequalities and even to handle (dis)equalities.
All of this nevertheless requires a different relaxation scheme than (1).

Example 4. To prove x1 ≥ 0 ∧ x2 ≥ 0 ∧ q1 = 0 ∧ q2 = 0 ∧ p > 0 unsatisfiable,
with q1 := x2

1 + x2
2 − x2

3 − x2
4 − 2, q2 := x1x3 + x2x4 and p := x3x4 − x1x2,

one can look for polynomials l1, l2 and SOS polynomials s1, . . . , s8 such that
l1q1 + l2q2 + s1 + s2p + s3x1 + s4x1p + s5x2 + s6x2p + s7x1x2 + s8x1x2p + p = 0.

Rounding the result of an SDP solver yields l1 = − 1
2 (x1x2 − x3x4), l2 =

− 1
2 (x2x3 + x1x4), s2 = 1

2

(
x2
3 + x2

4

)
, s7 = 1

2

(
x2
1 + x2

2 + x2
3 + x2

4

)
and s1 = s3 =

s4 = s5 = s6 = s8 = 0. This problem has no margin, since when replacing p > 0
by p ≥ 0, (x1, x2, x3, x4) = (0,

√
2, 0, 0) becomes a solution.

Under some hypotheses, this relaxation scheme is complete, as stated by
a theorem from Stengle [27, Theorem 2.11]. However, similarly to Sect. 3.1, no
practical bound is known on the degrees of the relaxation polynomials.

12 In practice, to ensure that the rounded matrix Q still satisfy the equality p = zT Q z,
a dual SDP encoding is used, that differs from the encoding introduced in Sect. 3.
This dual encoding is also called image representation [36, Sect. 6.1].

13 The LDLT decomposition expresses a positive semi-definite matrix M as M = LDLT

with L a lower triangular matrix and D a diagonal matrix.
14 However, there exist rational SDP problems that do not admit any rational solution.

An SMT Solver for Control-Command Software Verification 141

Complexity. The relaxation scheme involves products of all polynomials
appearing in the original problem constraints. The number of such products,
being exponential in the number of constraints, limits the scalability of the app-
roach.

Moreover, to actually enjoy the benefits of exact solutions, the floating-point
Cholesky decomposition introduced in Sect. 4.2 cannot be used and has to be
replaced by an exact rational decomposition15. Computing decompositions of
large matrices can then become particularly costly as the size of the involved
rationals can blow up exponentially during the computation.

Soundness. The exact solutions make for an easy verification. The method is
thus implemented in the HOL Light [19] and Coq [4] proof assistants.

Incompleteness. Although this verification method can work for some SDP
problems with an empty relative interior, the rounding heuristic is not guar-
anteed to provide a solution. In practice, it tends to fail on large problems or
problems whose coefficients are not rationals with small numerators and denom-
inators.

5 Experimental Results

5.1 The OSDP Library

The SOS to SDP translation described in Sect. 3, as well as the validation meth-
ods described in Sect. 4 have been implemented in our OCaml library OSDP.
This library offers a common interface to the SDP solvers16 Csdp [6], Mosek [2]
and SDPA [46], giving simple access to SOS programming in contexts where
soundness matters, such as SMT solvers or program static analyzers. It is com-
posed of 5 kloc of OCaml and 1 kloc of C (interfaces with SDP solvers) and is
available under LGPL license at https://cavale.enseeiht.fr/osdp/.

5.2 Integration of OSDP in Alt-Ergo

Alt-Ergo [5] is a very effective SMT solver for proving formulas generated by
program verification frameworks. It is used as a back-end of different tools and
in various settings, in particular via the Why3 [16] platform. For instance, the
Frama-C [12] suite relies on it to prove formulas generated from C code, and the
SPARK [21] toolset uses it to check formulas produced from Ada programs. It is
also used by EasyCrypt [3] to prove formulas issued from cryptographic protocols
verification, from the Cubicle [10] model-checker, and from Atelier-B [1].

15 The Cholesky decomposition, involving square roots, cannot be computed in rational
arithmetic, however its LDLT variant can.

16 Csdp is used for the following benchmarks as it provides the best results.

https://cavale.enseeiht.fr/osdp/

142 P. Roux et al.

Alt-Ergo’s native input language is a polymorphic first-order logic à la ML
modulo theories, a very suitable language for expressing formulas generated in
the context of program verification. Its reasoning engine is built on top of a
SAT solver that interacts with a combination of decision procedures to look for
a model for the input formula. Universally quantified formulas, that naturally
arise in program verification, are handled via E-matching techniques. Currently,
Alt-Ergo implements decision procedures for the free theory of equality with
uninterpreted symbols, linear arithmetic over integers and rationals, fragments
of non-linear arithmetic, enumerated and records datatypes, and the theory of
associative and commutative function symbols (hereafter AC).

Figure 3 shows the simplified architecture of arithmetic reasoning framework
in Alt-Ergo, and the OSDP extension. The first component in the figure is a
completion-like algorithm AC(LA) that reasons modulo associativity and com-
mutativity properties of non-linear multiplication, as well as its distributivity
over addition17. AC(LA) is a modular extension of ground AC completion with a
decision procedure for reasoning modulo equalities of linear integer and rational
arithmetic [9]. It builds and maintains a convergent term-rewriting system mod-
ulo arithmetic equalities and the AC properties of the non-linear multiplication
symbol. The rewriting system is used to update a union-find data-structure.

Fig. 3. Alt-Ergo’s arithmetic reasoning framework with OSDP integration.

The second component is an Interval Calculus algorithm that computes
bounds of (non-linear) terms: the initial non-linear problem is first relaxed by
abstracting non-linear parts, and a Fourier-Motzkin extension18 is used to infer
bounds on the abstracted linear problem. In a second step, axioms of non-linear
arithmetic are internally applied by intervals propagation. These two steps allow
to maintain a map associating the terms of the problems (that are normalized
w.r.t. the union-find) to unions of intervals.

Finally, the last part is the SAT solver that dispatches equalities and inequal-
ities to the right component and performs case-split analysis over finite domains.
Of course, this presentation is very simplified and the exact architecture of Alt-
Ergo is much more complicated.
17 Addition and multiplication by a constant is directly handled by the LA module.
18 We can also use a simplex-based algorithm [8] for bounds inference.

An SMT Solver for Control-Command Software Verification 143

Fig. 4. Semi-decision procedure to prove

k∧
i=1

pi ∈ [ai, bi] unsat. #|z| is the size of the

vector z and � 0 is tested with a floating-point Cholesky decomposition [41].

The integration of OSDP in Alt-Ergo is achieved via the extension of the
Interval Calculus component of the solver, as shown in Fig. 3: terms that are
polynomials, and their corresponding interval bounds, form the problem (1)
which is given to OSDP. OSDP attempts to verify its result with the method
of Sect. 4.2. When it succeeds, the original conjunction of constraints is proved
unsat. Otherwise, (dis)equalities are added and OSDP attempts a new proof by
the method of Sect. 4.3. In case of success, unsat is proved, otherwise satisfia-
bility or unsatisfiability cannot be deduced. Outlines of the first algorithm are
given in Fig. 4 whereas the second one follows the original implementation [19].

Our modified version of Alt-Ergo is available under CeCILL-C license at
https://cavale.enseeiht.fr/osdp/aesdp/.

Incrementality. In the SMT context, our theory solver is often succesively
called with the same problem with a few additional constraints each time. It
would then be interesting to avoid doing the whole computation again when
a constraint is added, as is usually done with the simplex algorithm for linear
arithmetic.

Some SDP solvers do offer to provide an initial point. Our experiments how-
ever indicated that this significantly speeds up the computation only when the
provided point is extremely close to the solution. A bad initial point could even
slow down the computation or, worse, make it fail. This is due to the very differ-
ent nature of the interior point algorithms, compared to the simplex, and their
convergence properties [7, Part III]. Thus, speed ups could only be obtained
when the previous set of constraints was already unsatisfiable, ı.e. a useless case.

https://cavale.enseeiht.fr/osdp/aesdp/

144 P. Roux et al.

Small Conflict Sets. When a set of constraints is unsatisfiable, some of them
may not play any role in this unsatisfiability. Returning a small subset of unsat-
isfiable constraints can help the underlying SAT solver. Such useless constraints
can easily be identified in (1) when the relaxation polynomial ri is 0. A common
heuristic to maximize their number is to ask the SDP solver to minimize (the
sum of) the traces of the matrices Qi.

When using the exact method of Sect. 4.3, the appropriate ri are exactly 0.
Things are not so clear when using the approximate method of Sect. 4.2 since the
ri are only close to 0. A simple solution is to rank the ri by decreasing trace of
Qi before performing a dichotomy search for the smallest prefix of this sequence
proved unsatisfiable. Thus, for n constraints, log(n) SDPs are solved.

5.3 Experimental Results

We compared our modified version of Alt-Ergo (v. 1.30) to the SMT solvers ran
in both the QF NIA and QF NRA sections of the last SMT-COMP. We ran
the solvers on two sets of benchmarks. The first set comes from the QF NIA
and QF NRA benchmarks for the last SMT-COMP. The second set contains
four subsets. The C problems are generated by Frama-C/Why3 [12,16] from
control-command C programs such as the one from Sect. 2, with up to a dozen
variables [11,39]. To distinguish difficulties coming from the handling of the
memory model of C, for which Alt-Ergo was particularly designed, and from the
actual non-linear arithmetic problem, the quadratic benchmarks contain sim-
plified versions of the C problems with a purely arithmetic goal. To demonstrate
that the interest of our approach is not limited to this initial target application,
the flyspeck benchmarks come from the benchmark sets of dReal19 [18] and
global-opt are global optimization benchmarks [34]. All these benchmarks are
available at https://cavale.enseeiht.fr/osdp/aesdp/. Since our solver only targets
unsat proofs, benchmarks known sat were removed from both sets.

All experiments were conducted on an Intel Xeon 2.30 GHz processor, with
individual runs limited to 2 GB of memory and 900 s. The results are presented
in Tables 1, 2 and 3. For each subset of problems, the first column indicates the
number of problems that each solver managed to prove unsat and the second
presents the cumulative time (in seconds) for these problems. AE is the origi-
nal Alt-Ergo, AESDP our new version, AESDPap the same but using only the
approximate method of Sect. 4.2 and AESDPex using only the exact method of
Sect. 4.3. All solvers were run with default options, except CVC4 which was run
with all its --nl-ext* options.

As seen in Tables 1 and 2, despite an improvement over Alt-Ergo alone, our
development is not competitive with state-of-the-art solvers on the QF NIA and
QF NRA benchmarks. In fact, the set of problems solved by any of our Alt-Ergo
versions is strictly included in the set of problems solved by at least one of the
other solvers. The most commonly observed source of failure for AESDPap here
comes from SDPs with empty relative interior. Although AESDPex can handle
such problems, it is impaired by its much higher complexity.

19 Removing problems containing functions sin and cos, not handled by our tool.

https://cavale.enseeiht.fr/osdp/aesdp/

An SMT Solver for Control-Command Software Verification 145

Table 1. Experimental results on benchmarks from QF NIA.

AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3

AProVE (746) unsat 103 319 359 318 586 185 709 252

time 7387 23968 7664 22701 10821 3879 1982 5156

calypto (97) unsat 92 88 88 89 87 89 97 95

time 357 679 489 816 7 754 409 613

LassoRanker (102) unsat 57 62 64 63 72 20 84 84

time 9 959 274 878 27 12 595 2538

LCTES (2) unsat 0 0 0 0 1 0 0 0

time 0 0 0 0 0 0 0 0

leipzig (5) unsat 0 0 0 0 0 0 1 0

time 0 0 0 0 0 0 0 0

mcm (161) unsat 0 0 0 0 4 0 0 4

time 0 0 0 0 2489 0 0 2527

UltimateAutom (7) unsat 1 7 7 7 6 1 7 7

time 0.35 0.73 0.62 0.69 0.03 7.22 0.04 0.31

UltimateLasso (26) unsat 26 26 26 26 4 26 26 26

time 118 212 126 215 66 177 6 21

total (1146) unsat 279 502 544 503 780 321 924 468

time 7872 25818 8553 24611 13411 4829 2993 10855

However good results are obtained on the more numerical20 second set of
benchmarks. In particular, control-command programs with up to a dozen vari-
ables are verified while other solvers remain limited to two variables. Playing a
key point in this result, the inequalities in these benchmarks are satisfied with
some margin. For control command programs, this comes from the fact that
they are designed to be robust to many small errors. This opens new perspec-
tives for the verification of functional properties of control-command programs,
particularly in the aerospace domain, our main application field at ONERA21.

Although solvers such as dReal, based on branch and bound with interval
arithmetic could be expected to perform well on these numerical benchmarks,
dReal solves less benchmarks than most other solvers. Geometrically speaking,
the C benchmarks require to prove that an ellipsoid is included in a slightly larger
one, i.e., the borders of both ellipsoids are close from one another. This requires
to subdivide the space between the two borders in many small boxes so that none
of them intersects both the interior of the first ellipsoid and the exterior of the
second one. Whereas this can remain tractable for small dimensional ellipsoids,
the number of required boxes grows exponentially with the dimension, which
explains the poor results of dReal. This issue is unfortunately shared, to a large
extent, by any linear relaxation, including more elaborate ones [30].

20 Involving polynomials with a few dozen monomials or more and whose coefficients
are not integers or rationals with small numerators and denominators.

21 French public agency for aerospace research.

146 P. Roux et al.

Table 2. Experimental results on benchmarks from QF NRA.

AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3

Sturm-MBO (300) unsat 155 155 155 155 285 285 2 47

time 12950 13075 13053 12973 1403 620 0 21

Sturm-MGC (7) unsat 0 0 0 0 1 1 0 7

time 0 0 0 0 7 0 0 0

Heizmann (68) unsat 0 0 0 0 1 1 11 3

time 0 0 0 0 16 0 2083 41

hong (20) unsat 1 20 20 20 20 20 8 9

time 0 28 24 27 1 0 240 6

hycomp (2494) unsat 1285 1266 1271 1265 2184 1588 2182 2201

time 15351 15857 16080 14909 208 13784 1241 4498

keymaera (320) unsat 261 291 278 291 249 307 270 318

time 36 356 97 360 4 13 359 2

LassoRanker (627) unsat 0 0 0 0 441 0 236 119

time 0 0 0 0 32786 0 30835 1733

meti-tarski (2615) unsat 1882 2273 2267 2241 1643 2520 2578 2611

time 10 91 65 73 804 3345 2027 337

UltimateAutom (13) unsat 0 0 0 0 5 0 12 13

time 0 0 0 0 0.52 0 57.19 19.23

zankl (85) unsat 14 24 24 24 24 19 32 27

time 1.00 15.46 16.09 15.67 9.40 13.47 7.22 0.43

total (6549) unsat 3571 4029 4015 3996 4853 4740 5331 5355

time 28348 29423 29334 28357 35239 17775 36849 6658

Table 3. Experimental results on benchmarks from [11,18,34,39].

AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3 dReal

C (67) unsat 11 63 63 13 0 0 0 0 0

time 0.05 39.78 40.01 1.18 0 0 0 0 0

quadratic (67) unsat 13 67 67 15 14 18 25 25 13

time 0.06 14.68 15.44 0.08 2.46 1.26 357.20 257.39 23.36

flyspeck (20) unsat 1 19 19 3 6 9 10 9 16

time 0.00 26.35 26.62 0.01 695.59 36.54 0.05 0.05 11.77

global-opt (14) unsat 2 14 14 5 5 12 12 13 9

time 0.01 8.72 8.83 0.20 0.12 41.18 0.16 683.45 0.05

total (168) unsat 27 163 163 36 25 39 47 47 38

time 0.12 89.53 90.90 1.47 698.17 78.98 357.41 940.89 35.18

6 Related Work and Conclusion

Related work. Monniaux and Corbineau [33] improved the rounding heuristic
of Harrison [19]. This has unfortunately no impact on the complexity of the

An SMT Solver for Control-Command Software Verification 147

relaxation scheme. Platzer et al. [37] compared their early versions with the
symbolic methods based on quantifier elimination and Gröbner basis. An inter-
mediate solution is offered by Magron et al. [29] but only handling a restricted
class of parametric problems.

Branch-and-bound and interval arithmetic constitute another numerical app-
roach to non-linear arithmetic, as implemented in the SMT solver dReal by
Gao et al. [17,18]. These methods easily handle non-linear functions such as
the trigonometric functions sin or cos, not yet considered in our prototype22. In
the case of polynomial inequalities Muñoz and Narkawicz [34] offer Bernstein
polynomials as an improvement to simple interval arithmetic.

Finally, VSDP [20,22] is a wrapper to SDP solvers offering a similar
method to the one of Sect. 4.2. Moreover, an implementation is also offered by
Löfberg [28] in the popular Matlab interface Yalmip but remains unsound,
since all computations are performed with floating-point arithmetic, ignoring
rounding errors.

Using convex optimization into an SMT solver was already proposed by
Nuzzo et al. [35,43]. However, they intentionally made their solver unsound
in order to lean toward completeness. While this can make sense in a bounded
model checking context, soundness is required for many applications, such as
program verification. Moreover, this proposal was limited to convex formulas.
Although this enables to provide models for satisfiable formulas, while only unsat
formulas are considered in this paper, and whereas this seems a perfect choice
for bounded model checking applications, non convex formulas are pervasive in
applications such as program verification23.

The use of numerical off-the-shelf solvers in SMT tools has also been studied
in the framework of linear arithmetic [15,32]. Some comparison with state-of-
the-art exact simplex procedures show mitigated results [14] but better results
can be obtained by combining both approaches [25].

Conclusion. We presented a semi-decision procedure for non-linear polynomial
constraints over the reals, based on numerical optimization solvers. Since these
solvers only compute approximate solutions, a-posteriori soundness checks were
investigated. Our first prototype implemented in the Alt-Ergo SMT solver shows
that, although the new numerical method does not strictly outperform state-of-
the-art symbolic methods, it enables to solve practical problems that are out of
reach for other methods. In particular, this is demonstrated on the verification
of functional properties of control-command programs. Such properties are of
significant importance for critical cyber-physical systems.

It could thus be worth studying the combination of symbolic and numerical
methods in the hope to benefit from the best of both worlds.

22 Polynomial approximations such as Taylor expansions should be investigated.
23 Typically, to prove a convex loop invariant I for a loop body f , one need to prove

I ⇒ I(f), that is ¬I ∨ I(f) which is likely non convex (¬I being concave).

148 P. Roux et al.

Data Availability Statement and Acknowledgements. The source code, bench-
marks and instructions to replicate the results of Sect. 5 are available in the figshare
repository: http://doi.org/10.6084/m9.figshare.5900260.v1.

The authors thank Rémi Delmas for insightful discussions and technical help, par-
ticularly with the dReal solver.

References

1. Abrial, J.-R.: The B-Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (2005)

2. MOSEK ApS: The MOSEK C Optimizer API Manual Version 7.1 (Rev. 40) (2015)
3. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:

EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

4. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In:
Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74464-1 4

5. Bobot, F., Conchon, S., Contejean, E., Iguernlala, M., Lescuyer, S., Mebsout, A.:
Alt-Ergo, Version 0.99.1. CNRS, Inria, Université Paris-Sud 11, and OCamlPro,
December 2014. http://alt-ergo.lri.fr/

6. Borchers, B.: CSDP, A C Library for Semidefinite Programming. Optimization
Methods and Software (1999)

7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

8. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout,
A., Melquiond, G.: A simplex-based extension of Fourier-Motzkin for solving linear
integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 67–81. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31365-3 8

9. Conchon, S., Contejean, É., Iguernelala, M.: Canonized rewriting and ground AC
completion modulo Shostak theories: design and implementation. In: Logical Meth-
ods in Computer Science, Selected Papers of TACAS (2012)

10. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 55

11. Cox, A., Sankaranarayanan, S., Chang, B.-Y.E.: A bit too precise? Bounded verifi-
cation of quantized digital filters. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 33–47. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28756-5 4

12. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C - a software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33826-7 16

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

http://doi.org/10.6084/m9.figshare.5900260.v1
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-540-74464-1_4
http://alt-ergo.lri.fr/
https://doi.org/10.1007/978-3-642-31365-3_8
https://doi.org/10.1007/978-3-642-31365-3_8
https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-642-28756-5_4
https://doi.org/10.1007/978-3-642-28756-5_4
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-540-78800-3_24

An SMT Solver for Control-Command Software Verification 149

14. de Oliveira, D.C.B., Monniaux, D.: Experiments on the feasibility of using a
floating-point simplex in an SMT solver. In: PAAR@IJCAR (2012)

15. Faure, G., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: SAT modulo
the theory of linear arithmetic: exact, inexact and commercial solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 77–90. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7 8

16. Filliâtre, J.-C., Paskevich, A.: Why3—Where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

17. Gao, S., Avigad, J., Clarke, E.M.: δ-Complete decision procedures for satisfiabil-
ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3 23

18. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

19. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74591-4 9

20. Härter, V., Jansson, C., Lange, M.: VSDP: verified semidefinite programming.
http://www.ti3.tuhh.de/jansson/vsdp/

21. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and gnatprove
- a competition report from builders of an industrial-strength verifying compiler.
In: STTT (2015)

22. Jansson, C., Chaykin, D., Keil, C.: Rigorous error bounds for the optimal value in
semidefinite programming. SIAM J. Numer. Anal. 46(1), 180–200 (2007)

23. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 27

24. Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial
optimization via sums-of-squares of rational functions with rational coefficients. J.
Symb. Comput. 47(1), 1–15 (2012)

25. King, T., Barrett, C.W., Tinelli, C.: Leveraging linear and mixed integer program-
ming for SMT. In: FMCAD (2014)

26. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

27. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial
College Press Optimization. Imperial College Press, World Scientific, Singapore
(2009)

28. Löfberg, J.: Pre- and post-processing sum-of-squares programs in practice. IEEE
Trans. Autom. Control 5, 1007–1011 (2009)

29. Magron, V., Allamigeon, X., Gaubert, S., Werner, B.: Formal proofs for nonlinear
optimization. J. Formalized Reason. 8(1), 1–24 (2015)

30. Maréchal, A., Fouilhé, A., King, T., Monniaux, D., Périn, M.: Polyhedral approx-
imation of multivariate polynomials using handelman’s theorem. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 166–184. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 8

31. Martin-Dorel, É., Roux, P.: A reflexive tactic for polynomial positivity using
numerical solvers and floating-point computations. In: CPP (2017)

https://doi.org/10.1007/978-3-540-79719-7_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-540-74591-4_9
http://www.ti3.tuhh.de/jansson/vsdp/
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-662-49122-5_8

150 P. Roux et al.

32. Monniaux, D.: On using floating-point computations to help an exact linear arith-
metic decision procedure. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 570–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 42

33. Monniaux, D., Corbineau, P.: On the generation of positivstellensatz witnesses in
degenerate cases. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 249–264. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22863-6 19

34. Muñoz, C., Narkawicz, A.: Formalization of Bernstein polynomials and applications
to global optimization. J. Autom. Reason. 51(2), 151–196 (2013)

35. Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: CalCS: SMT
solving for non-linear convex constraints. In: FMCAD (2010)

36. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Math. Program. 96(2), 293–320 (2003)

37. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02959-2 35

38. Roux, P.: Formal proofs of rounding error bounds - with application to an auto-
matic positive definiteness check. J. Autom. Reasoning 57(2), 135–156 (2016)

39. Roux, P., Jobredeaux, R., Garoche, P.-L., Féron, É: A generic ellipsoid abstract
domain for linear time invariant systems. In: HSCC (2012)

40. Roux, P., Voronin, Y.-L., Sankaranarayanan, S.: Validating numerical semidefinite
programming solvers for polynomial invariants. In: Rival, X. (ed.) SAS 2016. LNCS,
vol. 9837, pp. 424–446. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53413-7 21

41. Rump, S.M.: Verification of positive definiteness. BIT Num. Math. 46(2), 433–452
(2006)

42. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic.
Acta Numerica 19, 287–449 (2010)

43. Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J.,
Tabuada, P.: SMC: satisfiability modulo convex optimization. In: HSCC (2017)

44. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95
(1996)

45. Watkins, D.S.: Fundamentals of matrix computations. Wiley, New York (2004)
46. Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K.,

Goto, K.: A high-performance software package for semidefinite programs: SDPA
7. Technical report B-460, Tokyo Institute of Technology, Tokyo (2010)

https://doi.org/10.1007/978-3-642-02658-4_42
https://doi.org/10.1007/978-3-642-02658-4_42
https://doi.org/10.1007/978-3-642-22863-6_19
https://doi.org/10.1007/978-3-642-22863-6_19
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1007/978-3-662-53413-7_21
https://doi.org/10.1007/978-3-662-53413-7_21

An SMT Solver for Control-Command Software Verification 151

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	A Non-linear Arithmetic Procedure for Control-Command Software Verification
	1 Introduction
	2 Example: Control-Command Program Verification
	3 Preliminaries
	3.1 Emptiness of Semi-algebraic Sets
	3.2 Sum of Squares (SOS) Polynomials
	3.3 Semi-Definite Programming (SDP)
	3.4 Parametric Problems

	4 Numerical Verification of SOS
	4.1 Approximate Solutions from SDP Solvers
	4.2 Proving Existence of a Nearby Solution
	4.3 Rounding to an Exact Rational Solution

	5 Experimental Results
	5.1 The OSDP Library
	5.2 Integration of OSDP in Alt-Ergo
	5.3 Experimental Results

	6 Related Work and Conclusion
	References

