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Abstract. Alternating automata have been widely used to model and
verify systems that handle data from finite domains, such as communica-
tion protocols or hardware. The main advantage of the alternating model
of computation is that complementation is possible in linear time, thus
allowing to concisely encode trace inclusion problems that occur often in
verification. In this paper we consider alternating automata over infinite
alphabets, whose transition rules are formulae in a combined theory of
Booleans and some infinite data domain, that relate past and current val-
ues of the data variables. The data theory is not fixed, but rather it is a
parameter of the class. We show that union, intersection and complemen-
tation are possible in linear time in this model and, though the empti-
ness problem is undecidable, we provide two efficient semi-algorithms,
inspired by two state-of-the-art abstraction refinement model checking
methods: lazy predicate abstraction [8] and the IMPACT semi-algorithm
[17]. We have implemented both methods and report the results of an
experimental comparison.

1 Introduction

The language inclusion problem is recognized as being central to verification of
hardware, communication protocols and software systems. A property is a spec-
ification of the correct executions of a system, given as a set  of executions,
and the verification problem asks if the set S of executions of the system under
consideration is contained within #. This problem is at the core of widespread
verification techniques, such as automata-theoretic model checking [23], where
systems are specified as finite-state automata and properties defined using Linear
Temporal Logic [21]. However the bottleneck of this and other related verifica-
tion techniques is the intractability of language inclusion (PSPACE-complete for
finite-state automata over finite alphabets).

Alternation [3] was introduced as a generalization of nondeterminism, intro-
ducing universal, in addition to existential transitions. For automata over finite
alphabets, the language inclusion problem can be encoded as the emptiness
problem of an alternating automaton of linear size. Moreover, efficient explo-
ration techniques based on antichains are shown to perform well for alternating
automata over finite alphabets [5].
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Using finite alphabets for the specification of properties and models is how-
ever very restrictive, when dealing with real-life computer systems, mostly
because of the following reasons. On one hand, programs handle data from very
large domains, that can be assumed to be infinite (64-bit integers, floating point
numbers, strings of characters, etc.) and their correctness must be specified in
terms of the data values. On the other hand, systems must respond to strict
deadlines, which requires temporal specifications as timed languages [1].

Although being convenient specification tools, automata over infinite alpha-
bets lack the decidability properties ensured by finite alphabets. In general,
when considering infinite data as part of the input alphabet, language inclusion
is undecidable and, even complementation becomes impossible, for instance, for
timed automata [1] or finite-memory register automata [13]. One can recover
theoretical decidability, by restricting the number of variables (clocks) in timed
automata to one [20], or forbidding relations between current and past/future
values, as with symbolic automata [24]. In such cases, also the emptiness problem
for the alternating versions becomes decidable [4,14].

In this paper, we present a new model of alternating automata over infinite
alphabets consisting of pairs (a, ) where a is an input event from a finite set and
v is a valuation of a finite set x of variables that range over an infinite domain.
We assume that, at all times, the successive values taken by the variables in
x are an observable part of the language, in other words, there are no hidden
variables in our model. The transition rules are specified by a set of formulae,
in a combined first-order theory of Boolean control states and data, that relate
past with present values of the variables. We do not fix the data theory a priori,
but rather consider it to be a parameter of the class.

A run over an input word (ai,v1)...(an,v,) is a sequence ¢o(xo) =
$1(x0,X1) = ... = ¢On(Xo,...,X,) of rewritings of the initial formula by
substituting Boolean states with time-stamped transition rules. The word is
accepted if the final formula ¢, (xo,...,X,) holds, when all time-stamped vari-
ables x1,..., X, are substituted by their values in v, ..., v,, all non-final states
replaced by false and all final states by true.

The Boolean operations of union, intersection and complement can be imple-
mented in linear time in this model, thus matching the complexity of per-
forming these operations in the finite-alphabet case. The price to be paid is
that emptiness becomes undecidable, for which reason we provide two efficient
semi-algorithms for emptiness, based on lazy predicate abstraction [8] and the
IMPACT method [17]. These algorithms are proven to terminate and return a
word from the language of the automaton, if one exists, but termination is not
guaranteed when the language is empty.

We have implemented the Boolean operations and emptiness checking semi-
algorithms and carried out experiments with examples taken from array log-
ics [2], timed automata [9], communication protocols [25] and hardware verifica-
tion [22].

Related Work. Data languages and automata have been defined previously,
in a classical nondeterministic setting. For instance, Kaminski and Francez [13]
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consider languages, over an infinite alphabet of data, recognized by automata
with a finite number of registers, that store the input data and compare it
using equality. Just as the timed languages recognized by timed automata [1],
these languages, called quasi-regular, are not closed under complement, but their
emptiness is decidable. The impossibility of complementation here is caused
by the use of hidden variables, which we do not allow. Emptiness is however
undecidable in our case, mainly because counting (incrementing and comparing
to a constant) data values is allowed, in many data theories.

Another related model is that of predicate automata [6], which recognize
languages over integer data by labeling the words with conjunctions of uninter-
preted predicates. We intend to explore further the connection with our model
of alternating data automata, in order to apply our method to the verification
of parallel programs.

The model presented in this paper stems from the language inclusion problem
considered in [11]. There we provide a semi-algorithm for inclusion of data lan-
guages, based on an exponential determinization procedure and an abstraction
refinement loop using lazy predicate abstraction [8]. In this work we consider
the full model of alternation and rely entirely on the ability of SMT solvers to
produce interpolants in the combined theory of Booleans and data. Since deter-
minisation is not needed and complementation is possible in linear time, the
bulk of the work is carried out by the solver.

The emptiness check for alternating data automata adapts similar semi-
algorithms for nondeterministic infinite-state programs to the alternating model
of computation. In particular, we considered the state-of-the-art IMPACT pro-
cedure [17] that is shown to outperform lazy predicate abstraction [8] in the
nondeterministic case, and generalized it to cope with alternation. More recent
approaches for interpolant-based abstraction refinement target Horn systems
[10,18], used to encode recursive and concurrent programs [7]. However, the
emptiness of alternating word automata cannot be directly encoded using Horn
clauses, because all the branches of the computation synchronize on the same
input, which cannot be encoded by a finite number of local (equality) constraints.
We believe that the lazy annotation techniques for Horn clauses are suited for
branching computations, which we intend to consider in a future tree automata
setting.

2 Preliminaries

A signature S = (S°,S') consists of a set S° of sort symbols and a set Sf of
sorted function symbols. To simplify the presentation, we assume w.l.o.g. that
S* = {Data, Bool}! and each function symbol f € Sf has #(f) > 0 arguments
of sort Data and return value o(f) € S°. If #(f) = 0 then f is a constant. We
consider constants T and L of sort Bool.

! The generalization to more than two sorts is without difficulty, but would unneces-
sarily clutter the technical presentation.
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Let Var be an infinite countable set of wvariables, where each x € Var has
an associated sort o(x). A term t of sort o(t) = S is a variable x € Var where
o(x) = 8, or f(t1,...,typ) where t1,...,tucs) are terms of sort Data and
o(f) = 5. An atom is a term of sort Bool or an equality ¢ ~ s between two terms
of sort Data. A formula is an existentially quantified combination of atoms using
disjunction V, conjunction A and negation — and we write ¢ — ¥ for ¢ V 1.

We denote by FV7(¢) the set of free variables of sort o in ¢ and write FV (¢)
for U, css FV7(¢). For a variable x € FV(¢) and a term ¢ such that o(t) = o(z),
let @[t/x] be the result of replacing each occurrence of = by t. For indexed sets
t={t1,...,tn} and x = {21, ..., 2, }, we write ¢[t/x] for the formula obtained
by simultaneously replacing x; with ¢; in ¢, for all ¢ € [1,n]. The size |¢| is the
number of symbols occuring in ¢.

An interpretation T maps (1) the sort Data into a non-empty set Data’, (2)
the sort Bool into the set B = {true,false}, where TZ = true, |7 = false,
and (3) each function symbol f into a total function f7 : (Data’)#() — o(f),
or an element of o(f)! when #(f) = 0. Given an interpretation I, a valuation
v maps each variable x € Var into an element v(z) € o(z)?. For a term t,
we denote by t£ the value obtained by replacing each function symbol f by its
interpretation fZ and each variable x by its valuation v(x). For a formula ¢, we
write 7, v |= ¢ if the formula obtained by replacing each term ¢ in ¢ by the value
t1 is logically equivalent to true.

A formula ¢ is satisfiable in the interpretation 7 if there exists a valuation v
such that 7, v | ¢, and valid if IT,v |= ¢ for all valuations v. The theory T(S, I)
is the set of valid formulae written in the signature S, with the interpretation 1.
A decision procedure for T(S,I) is an algorithm that takes a formula ¢ in the
signature S and returns yes iff ¢ € T(S, 7).

Given formulae ¢ and 1, we say that ¢ entails ¢, denoted ¢ =7 ¥ iff I,v |= ¢
implies I, v |= v, for each valuation v, and ¢ <7 ¢ iff ¢ =7 ¢ and ¥ = ¢. We
omit mentioning the interpretation 7 when it is clear from the context.

3 Alternating Data Automata

In the rest of this section we fix an interpretation 7 and a finite alphabet X of
input events. Given a finite set x C Var of variables of sort Data, let x — Data’

be the set of valuations of the variables x and X[x] = X x (x — Data’) be
the set of data symbols. A data word (word in the sequel) is a finite sequence
(a1,v1)(az2,v2) ... (an, vy ) of data symbols, where a1, ...,a, € Y and v1,...,v, :

x — Data’ are valuations. We denote by € the empty sequence, by X* the set
of finite sequences of input events and by X[x]* the set of data words over x.
This definition generalizes the classical notion of words from a finite alphabet
to the possibly infinite alphabet 2[x]. Clearly, when Data’ is sufficiently large
or infinite, we can map the elements of X' into designated elements of Data’ and
use a special variable to encode the input events. However, keeping ' explicit
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in the following simplifies several technical points below, without cluttering the
presentation.

Given sets of variables b,x C Var of sort Bool and Data, respectively, we
denote by Form(b,x) the set of formulae ¢ such that FVE(¢) C b and
FVP22(¢) C x. By Form™(b,x) we denote the set of formulae from Form(b, x)
in which each Boolean variable occurs under an even number of negations.

An alternating data automaton (ADA or automaton in the sequel) is a tuple
A= (x,Q,, F, A), where:

— x C Var is a finite set of variables of sort Data,

— @ C Var is a finite set of variables of sort Bool (states),

— 1 € Form™(Q, 0) is the initial configuration,

— F C Q@ is a set of final states, and

~A:Qx X — Form™(Q,XUx) is a transition function, where X denotes
{Z |z € x}.

In each formula A(g,a) describing a transition rule, the variables X track
the previous and x the current values of the variables of A. Observe that
the initial values of the variables are left unconstrained, as the initial con-
figuration does not contain free data variables. The size of A is defined as

|‘ﬂ| - ‘L| + Z(q,a)EQXZ] |A(q7a)‘

A(qo,a) = g1 ANga Ax=0Ay=0
A(gr,a) =g A Ax=y+1Ay=x+1
A(q1,b) = g3 Ax 2y

A(q2,0) = @2 AX>XAy>Yy

A(q2.b) = g4 ANX>Yy

(a) (b)

Fig. 1. Alternating data automaton example

Ezxzample. Figure 1(a) depicts an ADA with input alphabet X = {a, b}, variables
x = {z,y}, states @ = {qo,q1,42, 93,94}, initial configuration ¢o, final states
F = {g3,q4} and transitions given in Fig. 1(b), where missing rules, such as
A(qo, b), are assumed to be L. Rules A(qp, a) and A(gy, a) are universal and there
are no existential nondeterministic rules. Rules A(g1,a) and A(qq,a) compare
past (Z,y) with present (z, y) values, A(qo, a) constrains the present and A(qy,b),
A(ga,b) the past values, respectively. a

Formally, let x; = {xy | € x}, for any k£ > 0, be a set of time-stamped
variables. For an input event a € X and a formula ¢, we write A(¢,a) (respec-
tively A*(¢,a)) for the formula obtained from ¢ by simultaneously replacing each
state ¢ € FVE(¢) by the formula A(q,a) (respectively A(q, a)[x /X, Xpt1/X],
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for k > 0). Given a word w = (a1, v1)(a2,v2) ... (an, Vy), the run of A over w is
the sequence of formulae:

D0(Q) = $1(Q,xoUx1) = ... = dn(Q,xoU...Uxp)

where ¢¢ = ¢ and, for all k € [1,n], we have ¢5, = A*(¢y_1, ar). Next, we slightly
abuse notation and write A(¢,aq, ..., a,) for the formula ¢, (xo,...,%,) above.
We say that A accepts w iff T,v | A(r,aq,...,a,), for some valuation v that
maps:(1) each = € x, to v (x), for all k € [1,n], (2) each ¢ € FVE°(4,) N F to
T and (3) each ¢ € FVB(¢,) \ F to L. The language of A is the set L(A) of
words from X[x|* accepted by A.

Exzample. The following sequence is a non-accepting run of the ADA from Fig. 1
on the word (a, (0,0)), (a, (1,1)), (b, (2,1)), where Data’ = Z and the function
symbols have standard arithmetic interpretation:

(a,(0.0)) (a(1,1)) (b(2,1)
g0 = QAQRAx1=0AYyI =20 = giA@AR =y +IAR =X+ A @AXR>X AR > AXx=20Ay 20 =
9 L2}
GAXIZ VI AGIAX2 > AR Y +IA YR+ LAGQa A >V AXa > X1 AY2 >y Axp =0Ay =0
—_— — — D
a1 L) a2

In this paper we tackle the following problems:

1. Boolean closure: given automata A; and As, both with the same set of vari-
ables x, do there exist automata Ay, An and A; such that L(A,) = A; UA;,,
L(An) = A N Az and L(Ay) = X[x|* \ L(A;) ?

2. emptiness: given an automaton A, is L(A) =0 ?

It is well known that other problems, such as universality (given automaton
A with variables x, does L(A) = X[x]*?) and inclusion (given automata A; and
Ay with the same set of variables, does L(A;) C L(Az2)?) can be reduced to the
above problems. Observe furthermore that we do not consider cases in which the
sets of variables in the two automata differ. An interesting problem in this case
would be: given automata A; and As, with variables x; and x5, respectively, such
that x; C xg3, does L(Ay) C L(Az)]x,, where L(Asz)]x, is the projection of the set
of words L(Az) onto the variables x;? This problem is considered as future work.

3.1 Boolean Closure

Given a set @ of Boolean variables and a set x of variables of sort Data, for a
formula ¢ € Form+(Q, 3{), with no negated occurrences of the Boolean variables,
we define the formula ¢ € Form™ (Q, x) recursively on the structure of ¢:

PV dy =1 N PL NGy =01V o
—¢ = —¢ if ¢ not atom p=0ifpeq
¢ =0 if ¢ & Q atom

We have |¢| = |¢|, for every formula ¢ € Form™(Q,x).
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In the following let A; = (x,Q;, i, Fi, 4;), for i = 1,2, where w.lo.g. we
assume that Q1 N Q2 = 0. We define:

Ay = (x,Q1 U Q2,01 Vig, F1 UF5, Ay U Ay)
An = (x,Q1 U Q2,11 A g, 1 U F, Ay U Ay)
A= (x,Q1,71,Q1 \ F1,4Ay)

where A;(q,a) = Ai(q,a), for all ¢ € Q; and a € X. The following lemma shows
the correctness of the above definitions:

Lemma 1. Given automata A; = (X, Q;, i, Fi, A;), for i = 1,2, such that Q1 N
Q2 = 0, we have L(Ay) = L(A1) U L(As), L(An) = L(A1) N L(A) and
L(A,) = Z[x]" \ L(A).

It is easy to see that |Ay| = |Aq| = [Ai| + |Az| and |A| = |A|, thus
the automata for the Boolean operations, including complementation, can be
built in linear time. This matches the linear-time bounds for intersection and
complementation of alternating automata over finite alphabets [3].

4 Antichains and Interpolants for Emptiness

The emptiness problem for ADA is undecidable, even in very simple cases. For
instance, if Data’ is the set of positive integers, an ADA can simulate an Alter-
nating Vector Addition System with States (AVASS) using only atoms = > k
and x = T+k, for k € Z, with the classical interpretation of the function symbols
on integers. Since reachability of a control state is undecidable for AVASS [15],
ADA emptiness is undecidable.

Consequently, we give up on the guarantee for termination and build semi-
algorithms that meet the requirements below:

(i) given an automaton A, if L(A) # 0, the procedure will terminate and return
a word w € L(A), and
(ii) if the procedure terminates without returning such a word, then L(A) = 0.

Let us fix an automaton A = (x,Q,, F, A) whose (finite) input event
alphabet is X, for the rest of this section. Given a formula ¢ € Form™(Q,x)
and an input event a € X, we define the post-image function Postz(¢,a) =
IxX.A(¢[X/x],a) € Form™(Q, x), mapping each formula in Form™(Q, x) to a for-
mula defining the effect of reading the event a. We generalize the post-image
function to finite sequences of input events, as follows:

Posta(p,e) = ¢  Posta(p,ua) = Postg(Posta(¢,u),a)
Acca(u) = Posta(t, u) A A\jeq\r(g — L), for any u € L*

Then the emptiness problem for A becomes: does there exist u € X* such that
the formula Accq(u) is satisfiable? Observe that, since we ask a satisfiability
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query, the final states of A need not be constrained?. A naive semi-algorithm
enumerates all finite sequences and checks the satisfiability of Acca(u) for each
u € X*, using a decision procedure for the theory T(S, I).

Since no Boolean variable from @ occurs under negation in ¢, it is easy
to prove the following monotonicity property: given two formulae ¢,1 €
Form™(Q,x) if ¢ |= ¢ then Posta(p,u) = Posta(v,u), for any u € X*. This
suggest an improvement of the above semi-algorithm, that enumerates and
stores only a set U C X* for which {Posta(¢,u) | u € U} forms an antichain®
w.r.t. the entailment partial order. This is because, for any w,v € X*, if
Posta(t,u) = Posta(t,v) and Acca(uw) is satisfiable for some w € X*, then
Posta (e, uw) | Posta(t, vw), thus Acca(vw) is satisfiable as well, and there is
no need for u, since the non-emptiness of A can be proved using v alone. How-
ever, even with this optimization, the enumeration of sequences from X* diverges
in many real cases, because infinite antichains exist in many interpretations, e.g.
ghz~0, gAxz~1,... for Data’ = N.

A safety invariant for A is a function | : (Q — B) — 9x—Data’ gych that, for
every Boolean valuation (8 : Q — B, every valuation v : x — Data’ of the data
variables and every finite sequence u € X* of input events, the following hold:

1. I,8Uv = Posta(i,u) = v € I(8), and
2. vel(B)=T1,8Uv - Acca(u).

If | satisfies only the first point above, we call it an invariant. Intuitively, a
safety invariant maps every Boolean valuation into a set of data valuations,
that contains the initial configuration ¢ = Posta(¢,¢), whose data variables are
unconstrained, over-approximates the set of reachable valuations (point 1) and
excludes the valuations satisfying the acceptance condition (point 2). A formula
?(Q,x) is said to define | iff for all f: Q — B and v : x — Data’, we have

I,BUv ¢ iff vel(B).

Lemma 2. For any automaton A, we have L(A) = O if and only if A has a
safety invariant.

Turning back to the issue of divergence of language emptiness semi-
algorithms in the case L(A) = ), we can observe that an enumeration of input
sequences U1, Us, . .. € X* can stop at step k as soon as \/f:1 Post (¢, u;) defines
a safety invariant for A. Although this condition can be effectively checked using
a decision procedure for the theory T(S, 7), there is no guarantee that this check
will ever succeed.

The solution we adopt in the sequel is abstraction to ensure the termination
of invariant computations. However, it is worth pointing out from the start that
abstraction alone will only allow us to build invariants that are not necessarily

2 Since each state occurs positively in Acca(u), this formula has a model iff it has a
model with every g € F set to true.

3 Qiven a partial order (D, <) an antichain is a set A C D such that a £ b for any
a,b e A.
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safety invariants. To meet the latter condition, we resort to counterexample
guided abstraction refinement (CEGAR).

Formally, we fix a set of formulae 1 C Form(Q,x), such that L € I and
refer to these formulae as predicates. Given a formula ¢, we denote by ¢f =
N{m €N | ¢ = 7} the abstraction of ¢ w.r.t. the predicates in M. The abstract
versions of the post-image and acceptance condition are defined as follows:

Post&(qﬁ,s) =¢ Post;(qﬁ, ua) = (Postg((Postﬁﬂ(qzﬁ,u),a))ﬁ

Accg(u) = Postf“ﬂ(a,u) A Ngeorr(@ — L), for any u € X~

Lemma 3. For any bijection p : N — X* there exists k > 0 such that
\/f:() Postf'ﬂ(z,, w(i)) defines an invariant I* for A.

We are left with fulfilling point (2) from the definition of a safety invariant. To
this end, suppose that, for a given set I of predicates, the invariant 14, defined
by the previous lemma, meets point (1) but not point (2), where Postgz and
Acc4 replace Postgzl and Accg‘7 respectively. In other words, there exists a finite
sequence u € X* such that v € I*(8) and 7,8 Uv |= Accgz((u), for some Boolean
B :Q — B and data v : x — Data’ valuations. Such a v € X* is called a
counterexample.

Once a counterexample u is discovered, there are two possibilities. Either
(i) Acca(u) is satisfiable, in which case u is feasible and L(A) # 0, or (ii) Acca(u)
is unsatisfiable, in which case u is spurious. In the first case, our semi-algorithm
stops and returns a witness for non-emptiness, obtained from the satisfying val-
uation of Acca(u) and in the second case, we must strenghten the invariant by
excluding from I* all pairs (3,v) such that 7,3Uv = Accﬁq[(u). This strengthen-
ing is carried out by adding to I several predicates that are sufficient to exclude
the spurious counterexample.

Given an unsatisfiable conjunction of formulae ¥; A ... A, an interpolant
is a tuple of formulae (I,...,I,_1,I,) such that I, = L, I; A; =7 ;41 and
I; contains only variables and function symbols that are common to ; and
¥it1, for all i € [n — 1]. Moreover, by Lyndon’s Interpolation Theorem [16],
we can assume without loss of generality that every Boolean variable with at
least one positive (negative) occurrence in I; has at least one positive (negative)
occurrence in both 1; and ;1. In the following, we shall assume the existence
of an interpolating decision procedure for T(S, I) that meets the requirements
of Lyndon’s Interpolation Theorem.

A classical method for abstraction refinement is to add the elements of the
interpolant obtained from a proof of spuriousness to the set of predicates. This
guarantees progress, meaning that the particular spurious counterexample, from
which the interpolant was generated, will never be revisited in the future. Though
not always, in many practical test cases this progress property eventually yields
a safety invariant.
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Given a non-empty spurious counterexample v = ay ...a,, where n > 0, we
consider the following interpolation problem:

@(’u)Ego(Qo)Ael(QoUQl,Xouxl)/\... (1)
A an(anl U Qn»xnfl U Xn) A 9n+1(Qn)

where Qr = {qr | ¢ € Q}, k € [0,n] are time-stamped sets of Boolean variables
corresponding to the set @ of states of A. The first conjunct 65(Qo) = t[Qo/Q)]
is the initial configuration of A, with every ¢q € FVBOOl(L) replaced by gg. The
definition of 0, for all k € [1,n], uses replacement sets Ry C Qq, ¢ € [0, n], which
are defined inductively below:

— Ry = FVB(gy),

0 = N,_en_, (@1 — A(g,a0)[Qe/Q,x¢e-1/%,%¢/x]) and R, =
FVE(6,) N Q, for each £ € [1,n].

- 0n+1(Qn) = /\qu\F(QH - J—)'

The intuition is that Ry, ..., R, are the sets of states replaced, 6y, ..., 0, are the
sets of transition rules fired on the run of A over v and 6,41 is the acceptance
condition, which forces the last remaining non-final states to be false. We recall
that a run of A over u is a sequence:

¢O(Q) = ¢1(Q,X0 UX1) =>...=> ¢n(Q,X0U...UXn)

where ¢q is the initial configuration ¢ and for each k > 0, ¢y, is obtained from ¢ _1
by replacing each state ¢ € FVE®(¢;,_;) by the formula A(q, ax)[xx_1 /%X, X5 /x],
given by the transition function of A. Observe that, because the states are
replaced with transition formulae when moving one step in a run, these formulae
lose track of the control history and are not suitable for producing interpolants
that relate states and data.

The main idea behind the above definition of the interpolation problem is
that we would like to obtain an interpolant (T, 1y(Q), I1(Q,x), ..., I,(Q,x), L)
whose formulae combine states with the data constraints that must hold locally,
whenever the control reaches a certain Boolean configuration. This association of
states with data valuations is tantamount to defining efficient semi-algorithms,
based on lazy abstraction [8]. Furthermore, the abstraction defined by the inter-
polants generated in this way can also over-approzimate the control structure of
an automaton, in addition to the sets of data values encountered throughout its
runs.

The correctness of this interpolation-based abstraction refinement setup is
captured by the progress property below, which guarantees that adding the
formulae of an interpolant for ©(u) to the set M of predicates suffices to exclude
the spurious counterexample u from future searches.

Lemma 4. For any sequence u = ay...a, € X*, if Acca(u) is unsatisfiable,
the following hold:

1. O(u) is unsatisfiable, and
2. 4f (T, Io,...,In, L) is an interpolant for ©(u) such that {I; | i € [0,n]} C N
then Accﬁq(u) is unsatisfiable.
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5 Lazy Predicate Abstraction for ADA Emptiness

We have now all the ingredients to describe the first emptiness checking semi-
algorithm for alternating data automata. Algorithm* 1 builds an abstract reach-
ability tree (ART) whose nodes are labeled with formulae over-approximating
the concrete sets of configurations, and a covering relation between nodes in
order to ensure that the set of formulae labeling the nodes in the ART forms
an antichain. Any spurious counterexample is eliminated by computing an inter-
polant and adding its formulae to the set of predicates (cf. Lemma 4). Formally,
an ART is tuple 7 = (N, E,r, A, R, T, <), where:

— N is a set of nodes,

— FEC N x X x N is a set of edges,

— r € N is the root of the directed tree (N, E),

- A: N — Form(Q,x) is a labeling of the nodes with formulae, such that
Axr) =4,

— R: N — 29 is a labeling of nodes with replacement sets, such that R(r) =
FVBOOl(L),

-~ T : E — Ui, Form™(Qs, %, Qi+1,Xi+1) is a labeling of edges with time-
stamped formulae, and

— 9 C N x N is a set of covering edges.

Each node n € N corresponds to a unique path from the root to n, labeled
by a sequence A(n) € X* of input events. The least infeasible suffiz of \(n) is
the smallest sequence v = ay ... ag, such that A\(n) = wv, for some w € X* and
the following formula is unsatisfiable:

VU(v) = A(p)[Qo/Q] N 01 (Qo U Q1,xo Ux1) Ao AbOri1(Qr) (2)

where 61,...,0;11 are defined as in (1) and 6y = A(p)[Qo/Q]. The
pivot of n is the node p corresponding to the start of the least infeasi-
ble suffix. We assume the existence of two functions FINDPIVOT(w,7) and
LEASTINFEASIBLESUFFIX (u,7") that return the pivot and least infeasible suf-
fix of a sequence u € X* in an ART 7, without detailing their implementation.

With these considerations, Algorithm 1 uses a worklist iteration to build an
ART. We keep newly expanded nodes of 7 in a queue WorkList, thus imple-
menting a breadth-first exploration strategy, which guarantees that the shortest
counterexamples are explored first. When the search encounters a counterexam-
ple candidate u, it is checked for spuriousness. If the counterexample is feasible,
the procedure returns a data word w € L(A), which interleaves the input events
of u with the data valuations from the model of Acca(u) (since u is feasible,
clearly Acca(u) is satisfiable). Otherwise, u is spurious and we compute its pivot
p (line 12), add the interpolants for the least unfeasible suffix of u to 1, remove
and recompute the subtree of 7~ rooted at p.

Termination of Algorithm 1 depends on the ability of a given interpolating
decision procedure for the combined Boolean and data theory T(S, I) to provide

4 Though termination is not guaranteed, we call it algorithm for conciseness.
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Algorithm 1. Lazy Predicate Abstraction for ADA Emptiness

input: an ADA A = (x,Q, ¢, F, A) over the alphabet X of input events
output: true if L(A) = 0 and a data word w € L(A) otherwise

1: let 7 = (N, E,r, A, <) be an ART

2: initially N=E=<=0, A= {(r,¢)}, N = {L}, WorkList = (r),

3: while WorkList # () do

4 dequeue n from WorkList

5 N — NU{n}

6 let A(n) = a1 ...ax be the label of the path from r to n

7 if Postfq()\(n)) is satisfiable then > counterexample candidate
8 if Acca(u) is satisfiable then > feasible counterexample
9: get model (B,v1,...,vE) of Acca(A(n))

10: return w = (a1, v1) ... (ak, k) > w € L(A) by construction
11: else > spurious counterexample
12: p «— FINDPIvOT(A(n), T)

13: v « LEASTINFEASIBLESUFFIX(A(n), 7))

14: Nn—nu{l,...,I¢}, where (T,Io,...,Ip, L) is an interpolant for ¥ (v)

15: let S = <N’, E' p, A, <1’> be the subtree of 7~ rooted at p

16: for (m,q) € < such that ¢ € N’ do

17: remove m from N and enqueue m into WorkList

18: remove S from 7~

19: enqueue p into WorkList > recompute the subtree rooted at p
20: else

21: for a € ¥ do > expand n
22: ¢ « Post’(A(n), a)

23: if exist m € N such that ¢ = A(m) then

24 qQ— U {(n,m)} > m covers n
25: else

26: let s be a fresh node

27: E — EU{(n,a,s)}

28: A— AU{(s,9)}

29: R — {m € WorkList | A(m) = ¢} > worklist nodes covered by s
30: for » € R do

31: for m € N such that (m,b,r) € E, b € ¥ do

32: Q—<qU{(m,s)} > redirect covered children from R into s
33: for (m,r) € < do

34: <q—<dU{(m,s)} > redirect covered nodes from R into s
35: remove R from 7~

36: enqueue s into WorkList

37: return true

interpolants that yield a safety invariant, whenever L(A) = 0. In this case, we
use the covering relation < to ensure that, when a newly generated node is
covered by a node already in N, it is not added to the worklist, thus cutting the
current branch of the search.

Formally, for any two nodes n,m € N, we have n < m iff Postﬁ(ﬂ(/l(n), a) =
A(m) for some a € X, in other words, if n has a successor whose label entails
the label of m.

Exzample. Consider the automaton given in Fig. 1. First, Algorithm 1 fires the
sequence a, and since there are no other formulae than L in [, the successor
of L = qp is T, in Fig.2(a). The spuriousness check for a yields the root of the
ART as pivot and the interpolant (qo,¢1), which is added to the set M. Then
the T node is removed and the next time a is fired, it creates a node labeled
q1- The second sequence aa creates a successor node ¢, which is covered by the
first, depicted with a dashed arrow, in Fig. 2(b). The third sequence is ab, which
results in a new uncovered node T and triggers a spuriousness check. The new
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predicate obtained from this check is * < 0 A g2 Ay > 0 and the pivot is again

the root. Then the entire ART is rebuilt with the new predicates and the fourth

sequence aab yields an uncovered node T, in Fig.2(c). The new pivot is the

endpoint of a and the newly added predicates are ¢1 A g2 and y > x — 1 A ga.

Finally, the ART is rebuilt from the pivot node and finally all nodes are covered,

thus proving the emptiness of the automaton, in Fig. 2(d). O
The correctness of Algorithm 1 is proved below:

N={Lq04:} LeT TN
N
a v a N
Y —> @ —> q
J»
a
@ —> F *
add predicates add predicates
{g09:} {x<0Aq,Ay=0}
(a) (b)
M={1,q0,9;, x<0Aq,\y=0}
RN 11={1,q0.q; ¥S0Aq, Ay 20,0,Aqy>x-1Aq,}
\

Ge , v,

a
qp —> q;/Ax=0AqAy=20 —> q —> q;

a b
Q@ —> @AX<O0AQAY=0 —> 1

IR .|

a
L A L €—— qAGAY>X1 —> qAgAY>X-1
add predicates AL A
{:1A\qpy>x-1Aq,} Teeeeee- -

(c) (d)

Fig. 2. Proving emptiness of the automaton from Fig. 1 by Algorithm 1

Theorem 1. Given an automaton A, such that L(A) # 0, Algorithm 1 termi-
nates and returns a word w € L(A). If Algorithm 1 terminates reporting true,
then L(A) = 0.

6 Checking ADA Emptiness with ImMpACT

As pointed out by a number of authors, the bottleneck of predicate abstraction is
the high cost of reconstructing parts of the ART, subsequent to the refinement
of the set of predicates. The main idea of the IMPACT procedure [17] is that
this can be avoided and the refinement (strengthening of the node labels of the
ART) can be performed in-place. This refinement step requires an update of the
covering relation, because a node that used to cover another node might not
cover it after the strengthening of its label.

We consider a total alphabetical order < on X' and lift it to the total lexi-
cographical order <* on X*. A node n € N is covered if (n,p) € < or it has an
ancestor m such that (m,p) € <, for some p € N. A node n is closed if it is cov-
ered, or A(n) & A(m) for all m € N such that A(m) <* A(n). Observe that we
use the coverage relation <1 here with a different meaning than in Algorithm 1.

The execution of Algorithm 2 consists of three phases®: close, refine and
expand. Let n be a node removed from the worklist at line 4. If Acca(A(n))

5 Corresponding to the CLOSE, REFINE and EXPAND in [17].
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Algorithm 2. IMPACT for ADA Emptiness
input: an ADA A = (x,Q, ¢, F, A) over the alphabet X of input events
output: true if L(A) = 0 and a data word w € L(A) otherwise
1: let 7 = (N, E,r, A, R, T, <) be an ART
2: initially N=E =T = 4= 0, A = {(r,1)}, R = FV®(,[Q0/Q]), WorkList = {r}
3: while WorkList # () do

4 dequeue n from WorkList

5 N «— NuU{n}

6: let (r,a1,n1),(n1,a2,n2),...,(nk—1,ar,n) be the path from r to n

7 if Acca(ay ... ay) is satisfiable then > counterexample is feasible
8: get model (B,v1,...,v) of Acca(A(n))

9 return w = (a1, v1) ... (ak,vk) > w € L(A) by construction
10: else > spurious counterexample
11: let (T,Io,...,Ir, L) be an interpolant for @(ay ...ax)

12: b « false

13: for i =0,...,k do

14: if A(n;) = I; then

15: <= <A\ {(m,n;) € 9| m e N}

16: A(n;) — A(ni) N I; > strenghten the label of n;
17: if —b then

18: b « CLOSE(n;)

19: if n is not covered then

20: for a € ¥ do > expand n
21: let s be a fresh node and e = (n, a, s) be a new edge

22: E — EU{e}

23: A—AU{(s, T)}

24: T —TU{(e,01)}

25: R — RU{(s,quR(n)FVB°°'(A(q,a)))}

26: enqueue s into WorkList

27: return true

1: function CLOSE(z) returns Bool

for y € N such that A(y) <* A\(z) do

3 if A(z) = A(y) then

4: < — (<\{(p,q) € Q| qis z or a successor of z}) U {(x,y)}
5

6

return true
return false

is satisfiable, the counterexample A(n) is feasible, in which case a model of
Acca(A(n)) is obtained and a word w € L(A) is returned. Otherwise, A(n) is a
spurious counterexample and the procedure enters the refinement phase (lines
11-18). The interpolant for ©(A(n)) (cf. formula 1) is used to strenghten the
labels of all the ancestors of n, by conjoining the formulae of the interpolant to
the existing labels.

In this process, the nodes on the path between r and n, including n, might
become eligible for coverage, therefore we attempt to close each ancestor of n
that is impacted by the refinement (line 18). Observe that, in this case the call
to CLOSE must uncover each node which is covered by a successor of n (line 4
of the CLOSE function). This is required because, due to the over-approximation
of the sets of reachable configurations, the covering relation is not transitive, as
explained in [17]. If CLOSE adds a covering edge (n;, m) to <, it does not have to
be called for the successors of n; on this path, which is handled via the Boolean
flag b.

Finally, if n is still uncovered (it has not been previously covered during the
refinement phase) we expand n (lines 20-26) by creating a new node for each
successor s via the input event a € X' and inserting it into the worklist.
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Fig. 3. Proving emptiness of the automaton from Fig. 1 by Algorithm 2

Exzample. We show the execution of Algorithm 2 on the automaton from Fig. 1.
Initially, the procedure fires the sequence a, whose endpoint is labeled with
T, in Fig.3(a). Since this node is uncovered, we check the spuriousness of the
counterexample a and refine the label of the node to ¢;. Since the node is still
uncovered, two successors, labeled with T are computed, corresponding to the
sequences aa and ab, in Fig. 3(b). The spuriousness check for aa yields the inter-
polant (go,z < 0 A gy Ay > 0) which strengthens the label of the endpoint of a
from ¢; to g1 Ax < 0Aga Ay > 0. The sequence ab is also found to be spurious,
which changes the label of its endpoint from T to L, and also covers it (depicted
with a dashed edge). Since the endpoint of aa is not covered, it is expanded to
aaa and aabd, in Fig. 3(c). Both sequences aaa and aab are found to be spurious,
and the enpoint of aab, whose label has changed from T to L, is now covered. In
the process, the label of aa has also changed from ¢; to g1 Ay > x — 1 A g2, due
to the sstrengthening with the interpolant from aab. Finally, the only uncov-
ered node aaa is expanded to aaaa and aaab, both found to be spurious, in



108 R. Tosif and X. Xu

Fig.3(d). The refinement of aaab causes the label of aaa to change from ¢; to

q1 Ny > x — 1A go and this node is now covered by aa. Since its successors are

also covered, there are no uncovered nodes and the procedure returns true. 0O
The correctness of Algorithm 2 is coined by the theorem below:

Theorem 2. Given an automaton A, such that L(A) # 0, Algorithm 2 termi-
nates and returns a word w € L(A). If Algorithm 2 terminates reporting true,
then L(A) = 0.

7 Experimental Evaluation

We have implemented both Algorithms 1 and 2 in a prototype tool® that uses the
MathSAT5 SMT solver” via the Java SMT interface® for the satisfiability queries
and interpolant generation, in the theory of linear integer arithmetic with unin-
terpreted Boolean functions (UFLIA). We compared both algorithms with a pre-
vious implementation of a trace inclusion procedure, called INCLUDER?, that uses
on-the-fly determinisation and lazy predicate abstraction with interpolant-based
refinement [11] in the LIA theory. The datasets generated during and/or anal-
ysed during the current study are available in the figshare repository: https://
doi.org/10.6084/m9.figshare.5925472.v1 [12].

Table 1.
Example |A| L(A) =0 7| Algorithm 1 | Algorithm 2 | INCLUDER
(bytes) (sec) (sec) (sec)
simplel 309 | No 0.774 0.064 0.076
simple2 504 | Yes 0.867 0.070 0.070
simple3 214 | Yes 0.899 0.095 0.095
array _shift 874 | Yes 2.889 0.126 0.078
array_simple 3440 | Yes Timeout 9.998 7.154
array _rotationl | 1834 | Yes 7.227 0.331 0.229
array_rotation2 | 15182 | Yes Timeout Timeout 31.632
abp 6909 | No 9.492 0.631 2.288
train 1823 | Yes 19.237 0.763 0.678
hwl 322 | Yes 1.861 0.163 0.172
hw2 674 | Yes 24.111 0.308 0.473

The results of the experiments are given in Table 1. We applied the tool first to
several array logic entailments, which occur as verification conditions for imper-
ative programs with arrays [2] (array_shift, array_simple, array_rotationl+2)

5 The implementation is available at https://github.com/cathiec/JAltImpact.
" http://mathsat.fbk.eu/.

8 https://github.com/sosy-lab/java-smt.

9 http://www.fit.vutbr.cz/research/groups,/verifit /tools/includer/.
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available online [19]. Next, we applied it on proving safety properties of hard-
ware circuits (hwl+2) [22]. Finally, we considered two timed communication
protocols, consisting of systems that are asynchronous compositions of timed
automata, whom correctness specifications are given by timed automata moni-
tors: a timed version of the Alternating Bit Protocol (abp) [25] and a controller of
a railroad crossing (train) [9]. All results were obtained on x86_64 Linux Ubuntu
virtual machine with 8 GB of RAM running on an Intel(R) Xeon(R) CPU E5-
2683 v3 @ 2.00 GHz. The automata sizes are given in bytes needed to store their
ASCII description on file and the execution times are in seconds.

As in the case of non-alternating nondeterministic integer programs [17],
the alternating version of IMPACT (Algorithm 2) outperforms lazy predicate
abstraction for checking emptiness by at least one order of magnitude. Moreover,
IMPACT is comparable, on average, to the previous implementation of INCLUDER,
which uses also MathSAT5 via the C API. We believe the reason for which
INCLUDER outperforms IMPACT on some examples is the hardness of the UFLIA
entailment checks used in Algorithm 2 (lines 14 and 3 in the function CLOSE) as
opposed to the pure LIA entailment checks used in INCLUDER. According to our
statistics, Algorithm 2 spends more than 50% of the time waiting for the SMT
solver to finish answering entailment queries.
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