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Abstract. This paper presents the Yogar-CBMC tool for verification
of multi-threaded C programs. It employs a scheduling constraint based
abstraction refinement method for bounded model checking of concur-
rent programs. To obtain effective refinement constraints, we have pro-
posed the notion of Event Order Graph (EOG), and have devised two
graph-based algorithms over EOG for counterexample validation and
refinement generation. The experiments in SV-COMP 2017 show the
promising results of our tool.

1 Verification Approach and Software Architecture

Bounded model checking (BMC) is among the most efficient techniques for con-
current program verification [1]. However, due to non-deterministic interleavings,
a huge encoding is required for an exact description of the thread interaction.

Yogar-CBMC is a verification tool for multi-threaded C programs based
on shared variables under sequential consistency (SC). For these programs, we
have observed that the scheduling constraint, which defines that “for any pair
〈w, r〉 s.t. r reads the value of a variable v written by w, there should be no
other write of v between them”, significantly contributes to the complexity of
the behavior encoding. In the existing work of BMC, the scheduling constraint
is encoded into a complicated logic formula, the size of which is cubic in the
number of shared memory accesses [2].

To avoid the huge encoding of scheduling constraint, Yogar-CBMC per-
forms abstraction refinement by weakening and strengthening the scheduling
constraint [3]. Figure 1 demonstrates the high-level overview of its architec-
ture. We initially ignore the scheduling constraint and then obtain an over-
approximation abstraction ϕ0 of the original program (w.r.t. the given loop
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unwinding depth). If the property is safe on the abstraction, then it also holds
on the original bounded program. Otherwise, an abstraction counterexample is
obtained and the abstraction will be refined if the counterexample is infeasible.

Fig. 1. High-level overview of Yogar-CBMC architecture.

The performance of this method significantly depends on the generated
refinement constraints. Ideally, a refinement constraint should have a small size
yet a large amount of space should be reduced during each iteration. To achieve
this goal, we have proposed the notion of Event Order Graph (EOG), and have
devised two graph-based algorithms over EOG for counterexample validation
and refinement generation. Given an abstraction counterexample π, the corre-
sponding EOG Gπ captures all the event order requirements of π defined in
the scheduling constraint. The counterexample π is feasible iff the EOG Gπ is
feasible. To validate the feasibility of Gπ, we have proposed several deduction
rules to deduce those implicit order requirements of Gπ. If any cycle exists in
Gπ, then both π and Gπ are infeasible. A graph-based refinement algorithm
is then employed to analyze all the possible “kernel reasons” of all cycles. By
eliminating those “redundant” kernel reasons, we can usually obtain a small
set of “core kernel reasons”, which can usually be encoded into a small refine-
ment constraint. The experimental results show that: (1) Our graph-based EOG
validation method is powerful enough in practice. Given an infeasible EOG, it
can usually identify the infeasibility with rare exceptions. (2) Our graph-based
refinement method is effective. If some cycle exists in Gπ, it can usually obtain
a small refinement constraint which reduces a large amount of search space.

If no cycle exists in Gπ, we are not sure whether the EOG is feasible or not.
We employ a constraint-based EOG validation process to further validate its
feasibility by constraint solving. If an infeasibility is determined, a constraint-
based refinement generation process is performed to refine the abstraction,
which obtains only one kernel reason of the infeasibility. Enhanced by these
two constraint-based processes, we have proved that our method is sound and
complete w.r.t the given loop unwinding depth.
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Consider the example shown in Fig. 2. We attempt to verify that it is impos-
sible for both m and n to be 1 after the exit of threads thr1 and thr2, which
has a modular proof in this program. In this example, we have observed that:

Fig. 2. An illustration example.

(1) Excluding the 3049 CNF clauses
encoding the pthread create and
pthread join functions, the encodings
of this program with and without the
scheduling constraint have 10214 and
1018 CNF clauses, respectively. It indi-
cates that the scheduling constraint sig-
nificantly contributes the complexity of
the program encoding.

(2) During the verification, all the abstrac-
tion counterexamples are infeasible. All
of them have been identified to be infea-
sible by our graph-based EOG vali-
dation method. It indicates that our
graph-based EOG validation method is
powerful enough in practice.

(3) The property is verified through only
three refinements, and only 7 simple
CNF clauses are added during the
refinement processes. It indicates that
the refinement constraints usually have
small sizes yet reduce large amount of the search space, and our graph-based
refinement method is effective.

2 Strengths and Weaknesses

The strengths of our tool include: (1) Our approach is a general purpose tech-
nique for multi-threaded C program verification, not assuming any special char-
acteristics of the programs. Our tool supports nearly all features of C and
PThreads. (2) Our approach is efficient in practice. Without the scheduling con-
straint, the size of the encoding can be dramatically reduced. Moreover, it can
usually verify the property with a small number of refinements, while the refine-
ment constraints usually have small sizes. (3) Enhanced by the constraint-based
counterexample validation and refinement generation processes, our approach
is sound and complete w.r.t. the given loop unwinding depth. It provides both
proofs and refutations for the property. If the property is found to be false,
a counterexample will be provided. (4) As the abstractions usually have small
sizes, our tool generally consumes less memory than those tools giving an exact
description of the scheduling constraint. In this sense, our tool is more scalable.

We have applied Yogar-CBMC to the benchmarks in the concurrency track
of SV-COMP 2017. Our tool has successfully verified all these examples within
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1550 s and 43 GB of memory. It has won the gold medal in the Concurrency
Safety category of SV-COMP 2017 [4].

However, for those programs where the scheduling constraint is not the major
part of the encoding, our method may still need dozens of refinements. Given
that the abstractions may have similar size with the monolithic encoding, our
tool may run worse than those monolithic encoding tools. Moreover, for those
real-world programs with a large number of read/write accesses and complex
data structures, how to reduce the number of refinements and how to deal with
the shared structure members more efficiently, are still challenging problems.

3 Tool Setup and Configuration

The binary file of Yogar-CBMC for Ubuntu 16.04 (x86 64-linux) is available
at https://gitlab.com/sosy-lab/sv-comp/archives. It is implemented on top of
CBMC-4.91. Its setup and configuration are same as that of CBMC. The tool-
info module and benchmark definition of our tool is “yogar-cbmc.py” and “yogar-
cbmc.xml” respectively.

Our tool needs two parameters of CBMC: --no-unwinding-assertions
and --32. The unwind bound of Yogar-CBMC is dynamically determined
through a syntax analysis. Particularly, the bound is set to 2 for programs with
arrays, and n if some of the program’s for loops are upper bounded by a constant
n, which is the same as for MU-CSeq [5]. To run Yogar-CBMC for a program
〈file〉, just use the following command:

./yogar-cbmc --no-unwinding-assertions --32 〈file〉
Participation/Opt Out. Yogar-CBMC competes only in the concurrency
category.

4 Software Project and Contributors

Yogar-CBMC is developed at HPCL, School of Computers, National Univer-
sity of Defense Technology, and includes contributions by the authors of this
paper. Its source code is available at https://github.com/yinliangze/yogar-cbmc.
For more information, contact Liangze Yin.
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