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Abstract. We introduce a natural notion of limit-deterministic par-
ity automata and present a method that uses such automata to con-
struct satisfiability games for the weakly aconjunctive fragment of
the p-calculus. To this end we devise a method that determinizes
limit-deterministic parity automata of size n with k priorities through
limit-deterministic Biichi automata to deterministic parity automata
of size O((nk)!) and with O(nk) priorities. The construction relies on
limit-determinism to avoid the full complexity of the Safra/Piterman-
construction by using partial permutations of states in place of Safra-
Trees. By showing that limit-deterministic parity automata can be
used to recognize unsuccessful branches in pre-tableaux for the weakly
aconjunctive p-calculus, we obtain satisfiability games of size O((nk)!)
with O(nk) priorities for weakly aconjunctive input formulas of size n
and alternation-depth k. A prototypical implementation that employs a
tableau-based global caching algorithm to solve these games on-the-fly
shows promising initial results.

1 Introduction

The modal u-calculus [15] is an expressive logic for reasoning about concur-
rent systems. Its satisfiability problem is EXPTIME-complete [5]. Due to nesting
of fixpoints, the semantic structure of the p-calculus is quite involved, which
is reflected in the high degree of sophistication of reasoning algorithms for
the p-calculus. One convenient modular approach is the definition of suitable
satisfiability games (e.g. [10]); solving such games (i.e. computing their win-
ning regions) then amounts to deciding the satisfiability of the input formulas.
A standard method for obtaining satisfiability games is to first construct a track-
ing automaton that accepts the bad branches in a pre-tableau for the input for-
mula, i.e. those that infinitely defer satisfaction of a least fixpoint; this automaton
then is determinized and complemented, and the satisfiability game is built over
the carrier set of the resulting automaton. The moves in the game are those
transitions from the automaton that correspond to applications of tableau-rules;
the existence of a winning strategy in this game ensures the existence of a model,
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i.e. a locally coherent structure that does not contain bad branches. As they typ-
ically incur exponential blowup, good determinization procedures for automata
on infinite words play a crucial role in standard decision procedures for the
satisfiability problem of the p-calculus and its fragments; in particular, better
determinization procedures lead to smaller satisfiability games which are easier
to solve.

The weakly aconjunctive p-calculus [15,24] restricts occurrences of recursion
variables in conjunctions but is still quite expressive, e.g. can define winning
regions in parity games with bounded number of priorities [4]. The key observa-
tion for the present paper is that in the weakly aconjunctive case, pre-tableau
branches are made ‘bad’ by a single formula; this implies that the tracking
automaton for such formulas is limit-deterministic, i.e. that it is sufficient to
deterministically track a single formula from some point on. This motivates a
notion of limit-deterministic parity automata in which all accepting runs are
deterministic from some point on. Because the nondeterminism is restricted to
finite prefixes of accepting runs in such automata, they can be determinized in
a simpler way than unrestricted parity automata. We present a reformulation
of a recent determinization method for limit-deterministic Biichi automata [6].
The method is inspired by, but significantly less involved than the more general
Safra/Piterman construction [19,20], essentially due to the fact that the tree
structure of Safra trees collapses, leaving only the permutation structure. The
resulting parity automaton can thus be described as a permutation automaton.
The method yields deterministic parity automata with O(n!) states, compared to
O((n!)?) in the Safra/Piterman construction. Crucially, we show that we obtain
a similarly simplified determinization for limit-deterministic parity automata by
translating into Biichi automata.

As indicated above, limit-deterministic parity automata are able to recog-
nize bad branches in pre-tableaux for weakly aconjunctive p-calculus formulas.
Employing them in the standard construction of satisfiability games, we obtain
permutation games in which nodes from the pre-tableau are annotated with a
partial permutation (i.e. a non-repetitive list) of (levelled) formulas. A parity
condition is used to detect indices in the permutation that are active infinitely
often without ever being removed from the permutation. The resulting parity
games are of size O((nk)!) and have O(nk) priorities; as a side result, we thus
obtain a new bound O((nk)!) on model size for weakly aconjunctive formulas.

The resulting decision procedure generalizes to the weakly aconjunctive
coalgebraic p-calculus, thus covering also, e.g., probabilistic and alternating-
time versions of the p-calculus. The generic algorithm has been implemented
as an extension of the Coalgebraic Ontology Logic Reasoner (COOL) [11,13].
Our implementation constructs and solves the presented permutation games on-
the-fly, possibly finishing satisfiability proofs early, and shows promising initial
results. The content of the paper is structured as follows: We describe the deter-
minization of limit-deterministic automata in Sect.2 and the construction of
permutation games in Sect. 3, and discuss implementation and evaluation in
Sect. 4.
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Related Work. Liu and Wang [17] give a tighter estimate O((n!)?) for the num-
ber of states in Piterman’s determinization [19]. Schewe [21] simplifies Piterman’s
construction (establishing the same bound as Liu and Wang). Tian and Duan [23]
further improve Schewe’s construction. Fisman and Lustig [7] present a modular-
ization of Biichi determinization that is aimed mainly at easing understanding
of the construction. Parity automata can be determinized by first converting
them to Biichi automata and then applying Biichi determinization. Schewe and
Varghese [22] address the direct determinization of parity automata (via Rabin
automata), and prove optimality within a small constant factor, and even abso-
lute optimality for the Biichi subcase. All these constructions and estimates
concern unrestricted Biichi or parity automata. Recently, Safra-less determiniza-
tion of limit-deterministic Biichi automata has been described in the context of
controller synthesis for LTL [6]; the determinization method that we present
in Sect.2.2. has been devised independently from [6] but employs a very simi-
lar construction (yielding essentially the same results on the complexity of the
construction).

The use of games in p-calculus satisfiability checking goes back to Niwinski
and Walukiewicz [18] and has since been extended to the unguarded u-
calculus [10] and the coalgebraic p-calculus [2]. Game-based procedures for
the relational p-calculus have been implemented in MLSolver [9], and for the
alternation-free coalgebraic p-calculus in COOL [13].

2 Determinizing Limit-Deterministic Automata

2.1 Limit-Deterministic Automata

We recall the basics of parity automata: A parity automaton is a tuple A =
(V, X, 6, up, ) where V' is a set of states, X' is an alphabet, § C V x X xV is a tran-
sition relation, ug € V is an initial state, and « : § — N is a priority function that
assigns natural numbers to transitions (assigning priorities to transitions rather
than states yields a slightly more succinct notion of automata while retaining the
computational properties of standard parity automata [22]). For (v,a) € V x X,
we write 0(v,a) = {u | (v,a,u) € d}. The indexr idx(A) = max{a(t) | t € 0}
of a parity automaton A is its maximal priority. A run p = vv1... of A on
an infinite word w = apa; ... € X starting at v € V is a (possibly infinite)
sequence of states v; such that vo = v and for all i > 0, v;11 € §(v;,a;). We see
runs p or words w as functions from natural numbers to states p(i) = v; € V or
letters w(i) = a; € X. For arun p on a word w, we define the according sequence
trans(p) of transitions by trans(p) (i) = (p(¢), w(i), p(i +1)). We denote the set of
all runs of A on a word w starting at v by run(A, v, w), or just by run(A,w) if
v = ug. A run p of A on a word w is accepting if the highest priority that occurs
infinitely often in it (notation: max(Inf(a o trans(p))); we generally write Inf(s)
for the set of elements occurring infinitely often in a sequence s) is even. A parity
automaton A accepts an infinite word w if run(A, w) contains an accepting run,
and we denote by L(A) C X% the set of all words that are accepted by .A.
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Given a state v € V and a letter a € X, we define 4|y, = {(v,a,u) |
u € d(v,a)}. Given a set v C ¢ of transitions, a state v € V, a set of states
U CV and a letter a € X, we put v(U,a) = J{y(v,a) | v € U}; given a finite
word w = ag...a,, we then recursively define (v, w) = v(v(v,ap),a1...as),
obtaining the set of all states reachable from v when reading w while only using
transitions from . For U C V, v C § and w € X*, we put v(U, w) = J{v(u,w) |
u € U}. Furthermore, we define the set of states that are reachable from a node
v € V using transitions from v as reach,(v) = J{y(v,w) | w € X*}; we extend
this notation to sets of nodes, putting reach,(U) = |J{reach,(u) | v € U} for
U C V. If v =46, then we omit the subscripts. A state v € V is said to be
deterministic (in v C ¢) if it has at most one (-)successor for each letter a € X.
A set U C V is deterministic (in v C §) if every state v € U is deterministic
(in 7). The automaton A is said to be deterministic if V' is deterministic; the
transition relation in deterministic automata hence is a partial function (since
such automata can be transformed to equivalent automata with total transition
function, this definition suffices for purposes of determinization). We put «(i) =
{ted|al)=1i}and a<(i) ={t €0 | aft) <i}.

A Biichi automaton is a parity automaton with only the priorities 1 and 2;
the set of accepting transitions then is F' = «(2) and a run is accepting if it
passes infinitely many accepting transitions. For Biichi automata, we assume
w.l.o.g. that every transition ¢ € F' is part of a cycle. We use the abbreviations
(N/D)PA, (N/D)BA to denote the different types of automata.

Our notion of limit-determinism of automata is defined as a semantic prop-
erty:

Definition 1 (Limit-deterministic parity automata). A PA A =
(V, X, 6, up, ) is limit-deterministic if there is, for each word w and each accept-
ing run p € run(A,w), a number ¢ such that for all j > 4, ],(;)w@) Na<(l) =
{trans(p)(j)}, where | = max(Inf(« o trans(p))).

If Ais a BA, then we have max(Inf(a o trans(p))) = 2 for every accepting run
p; as a<(2) = 4, the above definition instantiates to requiring the existence of a
number ¢ such that for all j > i, §(p(j),w(4)) = {p(G +1)}.

Definition 2 (Compartments). Given a PA A = (V, X, 6, ugp, @) with k pri-
orities, and an even number [ < k, the [-compartment Ci(t) of a transition
t € a(l) is the set reach, _(;)(m3(t)) where 73 projects transitions ¢ = (v, a,u) to
their target nodes wu. If [ is irrelevant, then we refer to [-compartments just as
compartments. The size of a compartment C is just |C|. A compartment C is
internally deterministic if for each v € C and all a € X, |§(v,a) N C| < 1.

Note that the union of all I-compartments is reach,,_(ms[c(l)]). Compartments
allow for a syntactic characterization of limit-determinism:

Lemma 3. A PA is limit-deterministic if and only if all its compartments are
internally deterministic.
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Corollary 4. It is decidable in polynomial time whether a given automaton is
limit-deterministic.

Lemma 3 specializes to BA as follows: we have a(0) = 0, a<(2) = ¢ and
a(2) = F, so that the union of all 0-compartments is empty and that of all
2-compartments is reach(m3[F]); thus a BA is limit-deterministic if and only
if reach(m3[F]) is deterministic. Such Biichi automata are also called semi-
deterministic [3].

2.2 Determinizing Limit-Deterministic Biichi Automata

The Safra/Piterman construction [19,20] determinizes Biichi automata by means
of so-called Safra trees, i.e. trees whose nodes are labelled with sets of states of
the input automaton such that the label of a node is a proper superset of the
union of all its children’s labels. Additionally, the nodes are ordered by their
age and upon each transition between Safra trees, the ages of the oldest nodes
that are active and/or removed during this transition determine the priority of
the new Safra tree. In its original formulation, the Safra/Piterman construction
adds new child nodes to the graph that are labelled with the accepting states in
their parent’s label. We observe that this step can be modified slightly — with-
out affecting the correctness of the construction — by letting every accepting
state from the parent’s label receive its own separate child node; then the labels
of newly created nodes are always singletons. Limit-determinism of the input
automaton then implies that the node labels also remain singletons. Since sin-
gleton nodes do not have children in Safra trees, this leads to the collapse of their
tree structure; the resulting data structure is essentially a partial permutation,
i.e. a non-repetitive list, of states (ordered by their age). The arising modified
Safra/Piterman construction for the limit-deterministic case boils down to the
following method, which (a) has a relatively short presentation and a simpler
correctness proof than the full Safra/Piterman construction, and (b) results in
asymptotically smaller automata; the underlying idea of the construction has
first been described in the context of controller synthesis for LTL [6].

Definition 5 (Partial permutations). Given a set U of states, let pperm(U)
denote the set of partial permutations over U, i.e. the set of non-repetitive lists
l=1[v1,...,v,] with v; # v; for ¢ # j and v; € U, for all 1 <14 < n. We denote
the i-th element in ! by (i) = v;, the empty partial permutation by [] and the
length of a partial permutation I by |I|.

Definition 6 (Determinization of limit-deterministic BA). Fix a limit-
deterministic BA A = (V, X, 6, uq, F), and put Q = reach(m3[F]), Q@ = V \ Q,
q = |Q|. Define the DPA B = (W, X, 8, wy, ) by putting W = P(Q) x pperm(Q),
wo = ({uo},[]) if up € Q, wo = (0, [ug]) if up € Q and for g = (U,1) € W and
a€ X, §(g,a) =h, where h = (§(U,a) N Q,1") and where I’ is constructed from
l=1vy,... 0] as follows:

1. Define a list ¢ of length m over Q U {x} (with * representing undefinedness)
in which ¢(i) = w if §(v;,a) = {w}, and t(i) = * if §(v;,a) = 0.
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2. For j < k and t(j) = t(k), put t(k) = *.

3. Remove undefined entries in ¢, formally: for each 1 < i < |¢|, if (i) = *, then
iteratively put ¢(j) = ¢(j + 1) for each i < j < |¢|, starting at i.

4. For any w € §(U,a) N Q that does not occur in ¢, add w to the end of ¢. If
there are several such w, the order in which they are added to ¢ is irrelevant.

5. Put I’ =t.

Temporarily, ¢ may contain duplicate or undefined entries, but Steps 2. and 3.
ensure that in the end, ¢ is a partial permutation of length at most g. Let r (for
‘removed’) denote the lowest index 4 such that (i) = * after Step 2. Let a (for
‘active’) denote the lowest index i such that (I(¢),a,l'(7)) € F. If r > |I'| and
there is no ¢ with (I(¢),a,!(i)) € F, then put a(g,a,h) = 1. Otherwise, put

2(q — 3 ifr<

2(g—a)+2 ifr>a.
Theorem 7. We have L(A) = L(B), and B has at most 2n + 1 priorities; for
n > 4, we have [W| < nle.

Corollary 8. Limit-deterministic Biichi automata of size n can be determinized
to deterministic parity automata of size O(n!) and with O(n) priorities.

Example 9. Consider the limit-deterministic BA A depicted below and the
determinized DPA B that is constructed from it by applying the method. We
see by Lemma 3 that A is really limit-deterministic: we have F = {(1,b, 3)}, i.e.
the b-transition from state 1 to state 3 (depicted with a boxed transition label)
is the only accepting transition; thus we have @ = reach(m3[F]) = {1,3} (so
Q ={0,2}), and the states 1 and 3 are deterministic. Moreover, L(A) = L(B) =
a(a|b)T(aTb)~.

start b,5

b, 4
{2}, [3]

a,1 b, 4

0.1 ({o.23. 11, 3)) ({21,187

U

a,b, 1 a,3 a,3

Notice that in B, there is a b-transition with priority 1 from the initial state to
the sink state (0,[]) and an a-transition to ({0,2},[1]); as 1 € Q but 1 ¢ F,
this transition has priority 1. A further b-transition leads from 1 to 3 in A; in B,
we have a b-transition from ({0,2},[1]) to ({2},[3]) and since (1,b,3) € F, the
first position in the permutation component is active during this transition so
that the transition has priority 4. Yet another b-transition loops from ({2}, [3])
to ({2}, [3]). Since there is no b-transition starting at state 3, the first element
in the permutation is removed in Step 1. of the construction. Since there is a
b-transition from 2 to 3, it is added to the permutation again in Step 4. of the
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construction. Crucially, however, the priority of the transition is 5, since the
first item of the permutation has been (temporarily) removed. The intuition is
that the trace of 3 ends when the letter b is read; even though a new trace of 3
immediately starts, we do not consider it to be the same trace as the previous
one. Thus the transition obtains priority 5 so that it may be used only finitely
often in an accepting run of B, i.e. accepting runs contain an uninterrupted
trace that visits state 3 infinitely often. Thus two or more consecutive b’s can
only occur finitely often in any accepted word.

2.3 Determinizing Limit-Deterministic Parity Automata

To determinize limit-deterministic PA, it suffices to transform them to equivalent
limit-deterministic BA and determinize the BA. This transformation from PA to
BA is achieved by a construction which is inspired by Theorems 2 and 3 in [14];
we add the observation that the construction preserves limit-determinism.

Definition 10. Given a limit-deterministic PA C = (V, X, §, up, @) with n = |V|

and k > 2 priorities, we define the limit-deterministic BA D = (W, X, ', uqg, F)
by putting W =V U (V x {0,..., [%]}), and for w € W and a € X,

5 (v,a) = {(w,m) | (v,a,w) € a(2m)}Ud(v,a) ifveV
’ {(w,)) | (V' ,a,w) € a<(2])} ifo=W,0)¢V
Finally, we put F = {((v,1),qa, (w,1)) € ¢' | a(v,a,w) = 2I}. To see that D is
limit-deterministic, it suffices by Lemma 3 to show that reach(ms[F]) is determin-
istic. We observe that for each state (w,l) € reach(ms[F]), (w,1) is deterministic

by definition of ¢’ since w is contained in a (by Lemma 3, internally determin-
istic) 2l-compartment of C.

Lemma 11. We have L(C) = L(D) and |[W| < n([£] +1) < nk.

By Theorem 7, D can be determinized to a DPA £ of size at most (nk)le, with
at most nk + 2 priorities and with L(D) = L(E).

Corollary 12. Limit-deterministic parity automata of size n with k priorities
can be determinized to deterministic parity automata of size O((nk)!) and with
O(nk) priorities.

3 Permutation Games for the Aconjunctive u-Calculus

3.1 The p-Calculus

We briefly recall the definition of the u-calculus. We fix a set P of propositions,
a set A of actions, and a set U of fixpoint variables. The set L, of u-calculus
formulas is the set of all formulas ¢, that can be constructed by the grammar

bpu=L|TIpl-plX|YAg[dVel{a)y|laly|pX.¢|vX. ¢
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where p € P, a € A, and X € U; we write [¢| for the size of a formula .
Throughout the paper, we use n to denote one of the fixpoint operators p or
v. We refer to formulas of the form nX.vy as fixpoint literals, to formulas of
the form (a)y or [a]tp as modal literals, and to p, —p as propositional literals.
The operators p and v bind their variables, inducing a standard notion of free
variables in formulas. We denote the set of free variables of a formula i by
FV(¢). A formula v is closed if FV(¢¥) = 0, and open otherwise. We write
Y < ¢ (¢ < ¢) to indicate that ¢ is a (proper) subformula of ¢. We say that
¢ occurs free in 1 if ¢ occurs in ¢ as a subformula that is not in the scope of
any fixpoint operator. Throughout, we restrict to formulas that are guarded, i.e.
have at least one modal operator between any occurrence of a variable X and
an enclosing binder nX. (This is standard although possibly not without loss of
generality [10].) Moreover we assume w.l.o.g. that input formulas are clean, i.e. all
fixpoint variables are mutually distinct and distinct from all free variables, and
irredundant, i.e. X € FV(¢) for all subformulas nX. 1. We refer to a variable X
that is bound by a least (greatest) fixpoint operator uX.x (¥X.x) in a formula ¢
as a p-variable (v-variable) of ¢, and to the process of substituting such an X
with its binding fixpoint literal (uX.x or vX.x, respectively) as unfolding. An
occurrence of a subformula ¢ of a formula ¢ contains an active p-variable [15]
if ¢ can be converted into a formula containing a free occurrence of a u-variable
of ¢ by repeatedly unfolding v-variables of ¢.

Formulas are evaluated over Kripke structures KK = (W, (Rq)aca, T), consist-
ing of a set W of states, a family (R, )qca of relations R, C W x W, and a valua-
tion 7 : P — P(W) of the propositions. Given an interpretation i : B — P(W) of
the fixpoint variables, define [¢], € W by the obvious clauses for Boolean oper-
ators and propositions, [X]; = i(X), [(a)¢]; = {v € W | Fw € R, (v).w € [¢];},
[laly]i = {v € W | Vw € Ro(v)w € [¢];}, [pX.¢]i = p[¢]’ and [vX.9]; =
v[Y]¥, where Ry(v) = {w € W | (v,w) € Ra}, [V]F¥(G) = [¥]ijx—q), and g,
v take least and greatest fixpoints of monotone functions, respectively. If ¢ is
closed, then [¢]; does not depend on i, so we just write [¢)]. We denote the
Fischer-Ladner closure [16] of a formula ¢ by F(¢), or just by F, if no confusion
arises; intuitively, F is the set of formulas that can arise as subformulas when
unfolding each fixpoint operator in ¢ at most once. We note F < |¢| [16].

The aconjunctive fragment [15] of the u-calculus is obtained by requiring that
for all conjunctions that occur as a subformula, at most one of the conjuncts
contains an active p-variable. In the weakly aconjunctive fragment [24], this
requirement is loosened to the constraint that all conjunctions that occur as a
subformula and contain an active p-variable are of the shape ¥ A Q1 A ... A
O ANO(P1 V.. .Vby,), where ¢ does not contain active u-variables. For instance,
for all n, the formula nX, ... uX;.vX0.V<;<,, (@ A 0X;) is aconjunctive (and
equivalent to the weakly aconjunctive formula obtained by replacing ¢ X; with
OX; ANOT AO(X; vV T)). The permutation satisfiability games that we introduce
work for the more expressive weakly aconjunctive fragment.
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We will make use of the standard tableau rules [10] (each consisting of one
premise and a possibly empty set of conclusions):

I, L I - I
(L) : 4 ~ Lp () F’%‘b
Lyve L, [altn, ..., [a]Yn, (a)d LnX.¢
Mt 1 (@ T ") T = nx 0

(for a € A, p € P); we refer to the tableau rules by R and usually write rule
applications with premise I' and conclusion X' =T',..., ', sequentially: (I'/X).

To track fixpoint formulas through pre-tableaux, we will use deferrals, that
is, the decomposed form of formulas that are obtained by unfolding fixpoint
literals.

Definition 13 (Deferrals). Given fixpoint literals x; = nX;. 1, i = 1,...,n,
we say that a substitution o = [X1 — x1];...; [Xn — x«] sequentially unfolds x,
if xi <y xig1 for all 1 < ¢ < n, where we write ¢ <y nX.¢ if ¥ < ¢ and ¥
is open and occurs free in ¢ (i.e. o unfolds a nested sequence of fixpoints in x,,
innermost-first). We say that a formula x is #rreducible if for every substitution

[X1 — xi];-.-;[Xn — xn] that sequentially unfolds x,, we have that y =
X1([X2 — x2];.. .5 [Xn — xn]) implies n = 1 (i.e. x = x1). A formula ¢ belongs
to an irreducible closed fixpoint literal 6,,, or is a 0, -deferral, if 1) = ao for some
substitution ¢ = [X; — 61];...;[X, — 6,] that sequentially unfolds 6,, and

some o <y 61. We denote the set of 8,,-deferrals by dfr(6,,).

E.g. the substitution o = [Y — pY. (OX A OOY)]; [X +— 6] sequentially unfolds
the irreducible closed formula 8 = v X. pY. (OXAQQY), and (OY)o = OpY. (OOA
OQY) is a O-deferral. A fixpoint literal is irreducible if it is not an unfolding
Y[X — nX. ] of a fixpoint literal nX.; in particular, every clean irredundant
fixpoint literal is irreducible.

As a technical tool, we define a measure for the depth of alternation at which
a deferral resides inside the fixpoint to which it belongs:

Definition 14 (Alternation level and alternation depth). The alternation
level al(¢o) := al(o) of a deferral ¢o is defined inductively over |o|, where al(e) =
al(e), = al(e), = 0, for the empty substitution €, al(c; [X — nX.¢]) = al(c),+1
if n = p and al(o; [X — nX.¢]) = al(0), otherwise, and

al

o]

)y ifn=pn

al(o; [X = nX.4)), = { Egi +1 otherwise
(9)
()

[+5)

(o), ifn=v

al(o), +1 otherwise

al(o; [ X — nX.4]), = {

This definition assigns greater numbers to inner fixpoint literals, i.e. to defer-
rals which occur at higher nesting depth, i.e. with more alternation inside
their sequence o. Given a formula v, its alternation depth ad(¢) is defined as
ad(¢) = max{al(d) | 6 € F,30.6 € dfr(0)}.
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3.2 Limit-Deterministic Tracking Automata

As a first step towards deciding the satisfiability of a weakly aconjunctive
p-calculus formula ¢, we now construct a tracking automaton that takes branches
of (that is, infinite paths through) standard pre-tableaux for ¢ as input and accepts
a branch if and only if it contains a least fixpoint formula whose satisfaction is
deferred indefinitely on that branch. To this end, we import the following notions
of threads and tableaux from [10]:

Definition 15. A pre-tableau for a formula ¢ is a graph the nodes of which are
labelled with subsets of the Fischer-Ladner closure F'; the graph structure L of
a pre-tableau is constructed by applying tableau rules from R to the labels of
nodes with the requirement that for each rule application (I'/X) to the label T of
a node v, there is a w with (v,w) € L such that the label of w is contained in X.
Nodes whose labels are saturated (i.e. do not contain propositional or fixpoint
operators) are called states. Formulas are tracked through rule applications by
the connectedness relation ~C (P(F) x F)? that is defined by putting ®, ¢ ~
W, ¢ if and only if ¥ is a conclusion of an application of a rule from R to ®
such that ¢ € ®, v € ¥, and the rule application transforms ¢ to v; if the rule
application does not change ¢, then ¢ = . E.g. we have @, 11 A g ~> U, 1);,
where i € {1,2} and ¥ is obtained from ® by applying the rule (A) to 11 A .
A branch Wy, ¥q... in a pre-tableau is a sequence of labels such that for all
i >0, ¥;41 is an L-successor of ¥;. A thread on an infinite branch ¥y, ¥y, ...
is an infinite sequence t = g, 91 ... of formulas with g, ¢ ~ Uy, ~ ... A
p-thread is a thread ¢ such that min(Inf(alot)) is odd, i.e. the outermost fixpoint
literal that is unfolded infinitely often in ¢ is a least fixpoint literal. A bad branch
is an infinite branch that contains a p-thread. A tableau for ¢ is a pre-tableau
for ¢ that does not contain bad branches.

We import from [10] the well-known fact that the existence of tableaux in the
sense defined above characterizes satisfiability. In [10], the result is shown for
the more general unguarded p-calculus; we note that the restriction to guarded
formulas does not invalidate the theorem.

Theorem 16 ([10]). A p-calculus formula i is satisfiable if and only if there is
a tableau for 1.

Given a formula ¢, we define the alphabet Xy to consist of letters that each
identify a rule R € R, a principal formula from F and one of the conclusions
of R. E.g. the letter ((V),0,pV Oq) identifies the application of the disjunction
rule to a principal formula p V (g and the choice of the left conclusion; thus
this letter identifies the transition from p V ¢q to p by use of rule (V). We note
| X4 € O(|¢]). Further, we denote the set of all words that encode some branch
and some bad branch in some pre-tableau for ¢ by Branch(¢) and BadBranch(¢),
respectively.

As a crucial result, we now show that limit-deterministic automata are
expressive enough to exactly recognize the bad branches in pre-tableaux for
weakly aconjunctive formulas.
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Lemma 17. Let ¢ be a weakly aconjunctive formula. Then there is a limit-
deterministic PA A = (V, X4, 0, ¢, a) with |V| < |¢| and idx(A) < ad(¢)+1 such
that L(A) N Branch(¢) = BadBranch(¢).

Proof (Sketch). The automaton nondeterministically guesses formulas to be
tracked, one at a time; the set of states of the automaton is the Fischer-Ladner
closure of ¢. The priorities of the transitions in the automaton are derived from
the alternation level of the target formula of the respective transition; then every
word w € L(A) that encodes some branch encodes a bad branch. Once a defer-
ral is tracked, weak aconjunctivity implies that all compartments to which the
tracked formula belongs are internally deterministic; this is the case since for
conjunctions ¥ = g A Q1 A ... A O, AO(1 V...V 1h,) — the only case that
can introduce nondeterminism — each next modal step determines just one of
the formulas 1); that has to be tracked; the conjunct 1y does not contain active
p-variables, so tracking it causes the automaton to leave all compartments to
which 1 belongs. Thus the automaton is limit-deterministic. a

Example 18. We consider the aconjunctive formula
¢ =uX.(pAVY. (O(Y Ap) VvV OX))

which expresses the existence of a finite or infinite path on which p holds
everywhere. We have the ¢-deferrals ¢e, ¥ := (p AvY. (O(Y Ap)V OX))oy,
0= (Y. (O(Y ADIVOX )1, X 1= (O(Y Ap)VOX ), (O(Y Ap)Jo, 7 i= (Y Ap)or,
Yoo, 0Xoo and Xoo, where o1 = [X — ¢] and o3 = [Y +— )]; 01. We consider
a pre-tableau Py for ¢ and like in the proof of Lemma 17, we construct the
limit-deterministic tracking automaton Ay, depicted below:

P¢Z
) 2fj
" 5
) Y e
5 o 8: O
(©0) —g-— (©) 9’_’1¢

The priorities in A4 are derived as follows: As ad(¢) = 2 is even, we put k =
ad(¢) +1 = 3; since al(g) = al(w) = 1, a(, (1), ¥) = (09, (0), 9) = k—al() =
2 and since al(p) = 0, a(y, (A),p) = als, (A),p) = k — al(¢) = 3. All other
formulas have alternation level 2 and transitions to them obtain priority 1. The
tracking automaton accepts exactly those branches in P, that start at node 1
and take the loop through node 9 infinitely often; in these branches, ¢ can be
tracked forever and evolves to ¢ infinitely often, i.e. their dominating formula
is the least fixpoint formula ¢. All other branches loop through node 7 without
passing node 9 from some point on; their dominating fixpoint formula is 6, a
greatest fixpoint formula. We observe that due to the aconjunctivity of ¢, Ay is
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limit-deterministic since the only two nondeterministic states 1) and ¢ each have
only one outgoing (A)-transition with priority less than k = 3.

Given a weakly aconjunctive formula ¢, we use Lemma 17 to construct a limit-
deterministic tracking automaton A, with L(Ag) N Branch(¢) = BadBranch(¢).
Then we put Lemma, 11 to use to obtain an equivalent BA in which all states from
Q = reach(m3[F]) are levelled deferrals, i.e. pairs (1, q) consisting of a deferral v
and a number ¢ < (%L the level of the pair (¢, q); the level ¢ encodes the odd
alternation level 2¢ — 1. A levelled deferral (v, q) is active if al(¢)) = 2¢ — 1 and
the automaton accepts branches which contain a levelled deferral that is active
infinitely often without being finished. The set @ is just a subset of F. Next we
use Theorem 7 to transform this BA to a DPA B, with L(Ag) = L(B,). We
complement By to a DPA Cy = (W, Xy, 6, ¢, ) by decreasing the priority of each
state in By by one; we have L(Cy) = L(By), that is, Cy accepts exactly those
words that encode only ‘good’ branches, if they encode some branch in some
pre-tableau for ¢. By construction, |W| € O((nk)!) and Cy has at most nk + 1
priorities, and (recalling Definitions 6 and 10) the states in the carrier W of Cy
are of the shape (U,1), where U is a subset of F and [ is a partial permutation
of levelled deferrals. For a transition ¢t = ((U,1),r, (V,1")) with (U, 1), (V,l') € W,
r € Xy, if a(t) = 2(n—a)+1, then a is the lowest number such that al(¢) = 2¢—1,
where I’(a) = (¢, ¢) and the a-th element of [ is not removed by the transition ¢
(i.e. a(t) references the oldest levelled deferral in I’ that is active but not removed
by the transition ¢) and if a(t) = 2(n —r)+2, then a(t) is the index of the oldest
levelled deferral (¢,2g — 1) that is finished (i.e. removed from [) in the transition
t of the automaton Cy, which means that the according r-transition in .44 makes
¢ leave its 2¢ — 1-compartment. For a state v = (U, 1), we define the label T'(v)
of vasT'(v) =U.

3.3 Permutation Games

The deterministic parity automaton Cy can now be combined with applications
of tableau rules from R to form a satisfiability game for ¢. We proceed to recall
the definition of parity games and some ensuing basic notions. A parity game is
a graph G = (V, E, ) that consists of a set of nodes V, a set of edges E C V xV
and a priority function « : F — N, assigning priorities to edges. We assume
V = V3 U V&, that is, every node in V either belongs to player Eloise (V3) or
to player Abelard (V4). A play p of G is a (possibly infinite) sequence vovy . ..
such that for all ¢ > 0, v; € V and (v;,vi+1) € E. A play p of G is won by
Eloise if and only if p is finite and ends in a node that belongs to Abelard or
p is infinite and max(Inf(« o trans(p))) is even (where trans(p) is defined by
trans(p) (i) = (p(i), p(i + 1))); Abelard wins a play p if and only if Eloise does
not win p. A (memoryless) strategy s : V -+ V assigns moves to states. A play
p conforms to a strategy s if for all p(i) € dom(s), p(i + 1) = s(p()). Eloise
has a winning strategy for a node v if there is a strategy s : V3 — V such that
every play of G that starts at v and conforms to s is won by Eloise; we have a
dual notion of winning strategies for Abelard. The winning regions win3(G) and
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winy(G) are the sets of those nodes for which Eloise and Abelard have winning
strategies, respectively. Solving a parity game G (locally) for a particular node
v € V amounts to computing the winner of v.

Now we are ready to define permutation games for weakly aconjunctive for-
mulas ¢, using the DPA C, = (W, Xy, 0, ¢, ) from the previous section.

Definition 19 (Permutation games). Let ¢ be a weakly aconjunctive for-
mula. We define the permutation game G(¢) = (W, E, 3) to be a parity game
that has the carrier of C, as set of nodes. For every node v € W for which I'(v) is
not a state, we fix a single rule that is to be applied to I'(v) and a single principal
formula 1, € T'(v) to which the rule is to be applied. If (V) is to be applied to
I'(v), then we put v € Wa; otherwise, v € Wy. In particular, all state nodes
are contained in Wy. For v € W, we put E(v) = |J{0(v,a) | a € X,}, where
2y € X4 consists of all letters a that encode the application of some rule to
I'(v) with the condition that the principal formula of the rule application must
be 1, if v is not a state node. Finally, we put (v, w) = a(v, a,w) for (v,w) € E,
where a € X, encodes the rule application that leads from v to w.

Theorem 20. Let ¢ be a closed, irreducible and weakly aconjunctive formula.

Then we have ({¢},[]) € win3(G(¢)) if and only if ¢ is satisfiable.

Proof. By construction, Eloise wins ({¢},[]) if and only if there is a tableau for
¢ (labelled by the labelling function I'); we are done by Theorem 16. O

Due to the relatively simple structure and the asymptotically smaller size of
the determinized automata Cyp, the resulting permutation games are somewhat
easier to construct and can be solved asymptotically faster than the struc-
tures created by standard satisfiability decision procedures for the full pu-calculus
(e.g. [5,10]) which employ the full Safra/Piterman-construction; note however,
that our method is restricted to the weakly aconjunctive fragment.

Corollary 21. The satisfiability of weakly aconjunctive p-calculus formulas can
be decided by solving parity games of size O((nk)!) and O(nk) priorities.

The winning strategies for Eloise or Abelard in these games define models for or
refutations of the respective formulas, so that we have

Corollary 22. Satisfiable weakly aconjunctive p-calculus formulas have models
of size O((nk)!).

4 Implementation and Benchmarking

We have implemented the permutation satisfiability games as an extension of the
Coalgebraic Ontology Logic Reasoner (COOL) [11], a generic reasoner for coal-
gebraic modal logics'. COOL achieves its genericity by instantiating an abstract
reasoner that works for all coalgebraic logics to concrete instances of logics.

! Available at https://www8.cs.fau.de/research:software:cool.
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To incorporate support for the aconjunctive coalgebraic p-calculus, we have
extended the global caching algorithm that forms the core of COOL to gen-
erate and solve the corresponding permutation games, with optional on-the-fly
solving; games are solved using either our own implementation of the fixpoint
iteration algorithm for parity games (as in [1]) or PGSolver [8], which supports
a range of game solving algorithms. Instance logics implemented in COOL cur-
rently include linear-time, relational, monotone, and alternating-time logics, as
well as any logics that arise as combinations thereof. In particular, this makes
COOL, to our knowledge, the only implemented reasoner for the aconjunctive
fragments of the alternating-time p-calculus and Parikh’s game logic.

Although our tool supports the aconjunctive coalgebraic p-calculus, we con-
centrate on the standard relational aconjunctive p-calculus for experiments, as
this allows us to compare our implementation with the reasoner MLSolver [9],
which constructs satisfiability games using the Safra/Piterman-construction and
hence supports the full relational p-calculus; MLSolver uses PGSolver for game
solving.

To test the implementations, we devise two series of hard aconjunctive for-
mulas with deep alternating nesting of fixpoints. The following formulas encode
that each reachable state in a Kripke structure has one of n priorities (encoded
by atoms ¢; for 1 <14 <n) and belongs to either Eloise (g.) or Abelard (g,):

Pau(n) = AG( \/ (@i N /\ 7G;))  Pgame(n) = Paut(n) A AG((ge A =Ga) V (7Ge A Ga))

1<i<n G

Here we use AG ¢ to abbreviate vX. (¥ AOX). Then the non-emptiness regions
in parity automata and Eloise’s winning region in parity games can be specified
by the following aconjunctive formulas (where © € {0,0}):

tne(n) =nXp. . ... vXo.uX1.00 Yo = Vicicn(@ A OX;)
¢win(n) =nXp..... VX2-MX1~¢strat(w®) ¢strat(w®) = (qe A ¢0) \ (Qa A wlj)
Furthermore, we define (for © € {¢,0})

00 (i) = (@t AQY) V'V, i, (@ AOX)VV <i(0; AOZ)

The following series of valid formulas states that parity automata with n
priorities can be transformed to nondeterministic parity automata with three
priorities without affecting the non-emptiness region:

01(1) = daut(1) = (Bne(n) = V, oyon KX VY 1Z. 0 (3))

Similarly, if Eloise wins a parity game with n priorities, then she can ensure that
in each play, each odd priority 1 < i < n is visited only finitely often, unless a
priority greater than ¢ is visited infinitely often (the converse does not hold in
general [4]):

02(n) == dgame(n) = (Gwin(n) = [\ VXYV Z. datrar(00 (1)) )

i odd
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Additionally, we devise two series of unsatisfiable formulas that exhibit the
advantages of COOL’s global caching and on-the-fly-solving capabilities. These
formulas are inspired by the CTL-formula series early(n, j, k) and earlygc(n, j, k)
from [13] but contain fixpoint-alternation of depth 2* inside the subformula 6:

early-ac(n, j, k) = start, A init(p,n) Ainit(r, k) A AG ((r — c(r, k) A (p — c(p,n)))A
AG ((Ag<i<;Pi — O(startr ANO)) A=(pAr) A(r—DOr))
early-ac, (n, j, k) = early-ac(n, j,k) A b Ainit(g,n) AAG (=(p A q) A=(gAT))A
AG ((g — c(g,n)) NAF b A (b — (O p A O starty AT =b)))
init(z, m) = AG ((starta — (A Nogcicp, ~%:)) A (2 — O 7))
0 =nXaky .- vXo.pX1.V cicon (bin(ri — 1) A OX),

where c(z, m) encodes an m-bit counter using atoms zg, ..., Z,—1 and bin(r, 1)
denotes the binary encoding of the number 4 using atoms rg, ..., r,_1. The for-
mulas early-ac(n, j, k) specify a loop p of length 2" that branches after j steps
to a second loop 7 of length 2% on which the highest value of the counter (which
counts from 0 to 2¥ — 1 and then restarts at 0) is required to be an even number.
For constant k, the contradiction on loop r yields a small refutation which can
be found early, using on-the-fly solving. The formulas early-ac,(n, j, k) extend
this specification by stating that a third loop ¢ of length 2™ is started from
loop p infinitely often. Procedures with sufficient caching capabilities will have
to (partially) explore this loop at most once.

We compare the runtimes of MLSolver and COOL on the formulas described
above; we let COOL and MLSolver solve games using the local strategy improve-
ment algorithm stratimprloc?2 provided by PGSolver. To solve games on-the-fly
with COOL however, we use our own implementation of the fixpoint iteration
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algorithm, which in general is slower than PGSolver but has the advantage that
it enables on-the-fly solving. With this option enabled, COOL constructs and
solves the satisfiability games step by step and finishes as soon as one of the play-
ers has a winning strategy in the partial game. For COOL, we have conducted all
experiments with and without on-the-fly solving. For MLSolver, we also enabled
the optimizations —opt litpro and -opt comp (and refer to the resulting prover
configuration as MLSolverOpt). Tests have been run on a system with Intel Core
i7 3.60 GHz CPU with 16 GB RAM. A more detailed description of the results of
the experiments as well as binaries of a formula generator, the prover COOL and
scripts that benchmark the various configurations of the provers are available in
a figshare repository at [12].

We observe that COOL without on-the-fly solving generally finishes faster than
both MLSolver and MLSolverOpt throughout all tested series of formulas (see
Figs. 1-4); the reason for this appears to be that the permutation games solved
by COOL are of size O((nk)!), where n < k, and hence asymptotically smaller
than the Safra/Piterman games solved by MLSolver which are of size O(((nk)!)?).
The size of the refutations for the formulas 61 (n) and 62(n) is exponential in n
so that on-the-fly solving does in fact increase the runtimes of COOL (see Figs. 1
and 2); basically, these formulas cannot be decided early, and therefore any (neces-
sarily unsuccessful) attempt to do so just consumes additional computation time.
The formulas early-ac(n, 4, 2) and early-acgc(n, 4, 2), on the other hand, have refuta-
tions of size polynomial in n, and COOL appears to benefit from on-the-fly solving
for these formulas as it is able to decide them early (see Figs. 3 and 4). As men-
tioned above, COOL uses our own unoptimized implementation of the fixpoint
iteration algorithm [1] for on-the-fly solving; while this implementation is slower
than PGSolver’s stratimprloc?2 algorithm, the on-the-fly abilities of COOL seem
to compensate this disadvantage for the early-ac(n, 4, 2) and early-acg(n, 4, 2) for-
mulas from n = 11 and n = 8 on, respectively.
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5 Conclusion

We have presented a method to obtain satisfiability games for the weakly
aconjunctive p-calculus. The game construction uses determinization of
limit-deterministic parity automata, avoiding the full complexity of the
Safra/Piterman construction a) in the presentation of the procedure and its
correctness proof and b) in the size of the obtained DPA (which comes from
O((nk)!?) to O((nk)!)). The resulting permutation satisfiability games for the
weakly aconjunctive p-calculus are of size O((nk)!), have O(nk) priorities, and
yield a new bound of O((nk)!) on the model size for this fragment. We have
implemented this decision procedure in coalgebraic generality and with support
for on-the-fly solving as part of the coalgebraic satisfiability solver COOL; initial
experiments show favourable results.

The datasets generated and analyzed during the current study are available
in the figshare repository: https://doi.org/10.6084/m9.figshare.5919451.v1.
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