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Abstract. We introduce in this paper AMT 2.0, a tool for qualita-
tive and quantitative analysis of hybrid continuous and Boolean signals
that combine numerical values and discrete events. The evaluation of
the signals is based on rich temporal specifications expressed in extended
Signal Temporal Logic (xSTL), which integrates Timed Regular Expres-
sions (TRE) within Signal Temporal Logic (STL). The tool features
qualitative monitoring (property satisfaction checking), trace diagnostics
for explaining and justifying property violations and specification-driven
measurement of quantitative features of the signal.

1 Introduction

Cyber-physical systems, such as automotive embedded controllers, medical
devices or autonomous vehicles, are often modeled and analyzed by simulation.
Simulators generate traces admitting real values often interpreted as continuous-
time signals. To evaluate the system under design, these traces are inspected for
satisfying some correctness requirements and are often subject to quantitative
analysis based on recording some values in certain segments of the signal and
performing some computation (summation, minimum) on them.

Over the past decade an extensive framework has been developed whose goal
was to bring automated support for this tedious and error-prone task, centered
around Signal Temporal Logic (STL) [18,19]. STL extends the classical LTL in
two directions: it uses predicates over real-valued variables in addition to atomic
propositions, and it is defined over dense continuous time accessed symbolically
with timed modalities as in Metric Temporal Logic (MTL) [17]. This framework,
which was initially accompanied by a rudimentary prototype tool [20], had a lot
of reported applications in domains such as automotive, robotics, analog circuits,
systems biology. It can be viewed as an extension of runtime verification toward
cyber-physical hybrid systems. Interested readers may consult the survey in [7].
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In this article we present AMT 2.0, a new version of the tool. The new
version is much more mature in terms of software engineering aspects such as
rigorous typing of signals and properties, introducing programming language
features that include declarations and aliases, improvement of the graphical
editors, systematic software testing, etc. Furthermore, its functionality has been
extended significantly by incorporating several new research results obtained
over the last years:

1. We combine STL with a fragment of Timed Regular Expressions (TRE) [4,5],
as a complementary formalism to express temporal patterns. The monitoring
algorithm for our specification language xSTL thus obtained integrates the
recent TRE pattern matching algorithm reported in [22].

2. We use the TRE formalism to define segments of the signal to which quan-
titative measurements should be applied. Thus we obtain a declarative mea-
surement language that does for the quantitative domain what formal spec-
ification languages do for correctness checking. The results, first reported in
[14], are fully incorporated into the tool.

3. We implement the error diagnostics algorithm of [13] which accompanies the
report on a property violation with a justification: a small sub-signal (tem-
poral implicant) which is sufficient to imply the property violation and to
convince the user of this fact.

With all these features we progress in easing the task of designers who seek
to analyze a complex system based on simulations, providing them with an
alternative to manual inspection or explicit programming of observers.

The rest of the paper is organized as follows. In Sect. 2 we present the xSTL
specification language. Section 3 gives an overview of the tool and its main fea-
tures. We illustrate the usage of AMT 2.0 in Sect. 4 with two examples. We
present the related work in Sect. 5 and give concluding remarks in Sect. 6.

2 Extended Signal Temporal Logic

Extended Signal Temporal Logix (xSTL) essentially combines STL with a vari-
ant of TRE. In this section, we provide the mathematical definitions of the
specification language.

We denote by P and X finite sets of propositional and data variables, such
that |P | = m and |X| = n. Data variables are defined over an arbitrary domain
D, typically the reals or the integers. We use the notation w : T → D

n ×B
m to

represent a multi-dimensional signal with T = [0, d) ⊆ R and B = {true, false}.
We denote by wp the projection of w on its component p. We denote by θ : D

n →
B a predicate that maps valuations of variables in X into {true, false}.

The syntax of an STL formula ϕ with both future and past temporal opera-
tors and interpreted over X ∪ P is defined by the grammar

ϕ := p | θ(x1, . . . , xn) | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U Iϕ2 | ϕ1 S Iϕ2
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where p ∈ P , x1, . . . , xn ∈ X and I ⊆ R
+ is an interval. We denote by U the

until operator that is decorated with an unbounded interval U (0,∞). We use
the strict semantics [2] for until and since temporal operators that allows us
to define (continuous-time) next ©ϕ ≡ ϕUϕ and (continuous-time) previous
©̄ ϕ ≡ ϕSϕ. The instantaneous rise and fall events can be derived using the
rules ↑ ϕ ≡ ©̄ ¬ϕ ∧ ©ϕ and ↓ ϕ ≡ ©̄ϕ ∧ ©¬ϕ. We derive other standard
operators as follows: true ≡ p ∨ ¬p, false ≡ ¬true, ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2),
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, ◇Iϕ ≡ true U I ϕ, ◇̄Iϕ ≡ true S I ϕ, �Iϕ ≡ ¬♦I¬ϕ,
and �̄Iϕ ≡ ¬ ◇̄I¬ϕ.

The semantics of an STL formula with respect to a signal w is described via
the satisfiability relation (w, t) |= ϕ, indicating that the signal w satisfies ϕ at
time point t, according to the following definition.

(w, t) |= p ↔ wp[t] = true
(w, t) |= θ(x1, . . . , xn) ↔ θ(wx1 [t], . . . , wxn

[t]) = true
(w, t) |= ¬ϕ ↔ (w, t) 
|= ϕ
(w, t) |= ϕ1 ∨ ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 U Iϕ2 ↔ ∃t′ ∈ (t + I) ∩ T : (w, t′) |= ϕ2 and
∀t < t′′ < t′ (w, t′′) |= ϕ1

(w, t) |= ϕ1 S Iϕ2 ↔ ∃t′ ∈ (t − I) ∩ T : (w, t′) |= ϕ2 and
∀t′ < t′′ < t (w, t′′) |= ϕ1

We now define a variant of TRE according to the following grammar:

r := ε | p | θ(x1, . . . , xn) | r1 · r2 | r1 ∪ r2 | r1 ∩ r2 | r∗ | 〈r〉I | r1 ? r2 | r2 ! r2

where I is an interval of R+. The semantics of a timed regular expression r with
respect to a signal w and times t ≤ t′ in [0, d] is given in terms of a match relation
(w, t, t′) |≡ r, which indicates that the segment of w between t and t′ matches
the expression. This relation is defined inductively as follows:

(w, t, t′) |≡ ε ↔ t = t′

(w, t, t′) |≡ p ↔ t < t′ and ∀t′′ ∈ (t, t′), wp[t] = true
(w, t, t′) |≡ θ(x1, . . . , xn) ↔ t < t′ and ∀t′′ ∈ (t, t′), θ(wx1 [t

′′], . . . , wxn [t
′′]) = true

(w, t, t′) |≡ r1 · r2 ↔ ∃t′′ t ≤ t′′ ≤ t′, (w, t, t′′) |≡ r1 and (w, t′′, t′) |≡ r2
(w, t, t′) |≡ r1 ∪ r2 ↔ (w, t, t′) |≡ r1 or (w, t, t′) |≡ r2
(w, t, t′) |≡ r1 ∩ r2 ↔ (w, t, t′) |≡ r1 and (w, t, t′) |≡ r2
(w, t, t′) |≡ r∗ ↔ ∃k ≥ 0, (w, t, t′) |≡ rk

(w, t, t′) |≡ 〈r〉I ↔ (w, t, t′) |≡ r and t′ − t ∈ I
(w, t, t′) |≡ r1 ? r2 ↔ (w, t, t′) |≡ r2 and ∃t′′ ≤ t, (w, t′′, t) |≡ r1
(w, t, t′) |≡ r1 ! r2 ↔ (w, t, t′) |≡ r1 and ∃t′′ ≥ t′, (w, t′, t′′) |≡ r2

The last two operations associate a pre-condition (resp. post-condition) to
the expression. We note that with the pre- and post-condition, we can also
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syntactically define rise and fall operators by using the rules ↑ p ≡ ¬p ? ε ! p and
↓ p ≡ p ? ε ! ¬p. Extended STL specifications require regular expressions to be
embedded into STL formulas. We define two operators, begin match (@(r)) and
end match ((r)@) that intuitively project any signal segment (t, t′) that matches
the expression r to its beginning t and its end t′, respectively. Thus, xSTL simply
extends STL with these two operators:

ϕ := p | θ(x1, . . . , xn) | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U Iϕ2 | ϕ1 S Iϕ2 | @(r) | (r)@

and with the following semantics

(w, t) |= @(r) ↔ ∃t′ ≥ t (w, t, t′) |≡ r
(w, t) |= (r)@ ↔ ∃t′ ≤ t (w, t′, t) |≡ r

3 Tool Presentation

The AMT 2.0 tool provides for qualitative and quantitative analysis of simula-
tion/measurement traces. Its input consists of two major ingredients. The first
is typically a formula or a collection of formulas in xSTL specifying the desired
properties (and later measurements) of a continuous signal. The second is a finite
representation of the continuous signal. Input signals obtained from simulators or
measurement devices are given as finite sequences of time-stamped values of the
form (ti, w[ti]). The tool supports two commonly-used formats: Value Change
Dump (vcd) and Comma Separated Values (csv) files. To obtain continuous-time
signals, values between sampling points are interpolated inside the tool to yield
either piecewise-constant or piecewise-linear signals.

The tool can work either interactively via its graphical user interface (GUI)
or, alternatively, in batch mode when we want to monitor against many sig-
nals or incorporate monitoring in a more sophisticated analysis procedure that
may iterate over behavior-generating models and/or properties in an outer loop.
Figure 1 shows the main evaluation window of the GUI which provides two main
functionalities: (1) editing xSTL specifications; and (2) launching the monitor-
ing procedure by selecting properties and signals and presenting the outcome
graphically. The AMT 2.0 tool is entirely implemented in Java to facilitate its
usage across different platforms and operating systems.

The tool supports three main functionalities: (1) qualitative offline monitor-
ing of extended STL specifications; (2) localization and explanation of property
violations; and (3) measurements of quantitative features of signals driven by
temporal pattern expressed using TRE. In the remainder of the section we
present these functionalities in more detail.
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Fig. 1. AMT 2.0 - an overview of the graphical user interface.

3.1 Specifications in AMT 2.0

The tool facilitates specification of xSTL properties in several ways. The GUI
provides an xSTL editor, depicted in Fig. 2, with syntax highlighting and line
numbering. In addition, the xSTL parser implements a number of features bor-
rowed from programming languages. This includes (1) declaration of variables
and constants, (2) parameterized property templates, (3) support for Boolean,
real and integer variables and (4) type checking with extensive error reporting.

3.2 Qualitative Monitoring of xSTL

In this section, we sketch the algorithm for the major functionality of the tool,
qualitative monitoring of xSTL specifications. The procedure is based on two
main methods that we describe in the sequel: the offline marking procedure for
STL [19] and the pattern matching procedure for TRE [22].
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Fig. 2. AMT 2.0 - xSTL editor.

The qualitative monitoring procedure for STL is an offline method that works
directly on the input signals. The procedure is recursive on the structure of
the specification – it propagates the truth values from input signals via sub-
formulas up to the main formula. The algorithm uses the notion of a satisfaction
signal – we assign to each sub-formula ψ of ϕ a Boolean signal wψ such that
wψ[t] = true iff (w, t) |= ψ. For each STL operator, we define a method that
computes its satisfaction signal from the satisfaction signals of its arguments.
For some operators, this computation is trivial. For example, satisfaction signal
w¬ϕ is obtained by flipping the truth values of the satisfaction signal wϕ. The
computation of satisfaction signals for temporal operators is more involved. We
give an intuition on the computation of wψ where ψ =◇Iϕ and refer the reader
to [19] for the technical description of the complete procedure. The computation
is based on the following observation: whenever ϕ holds throughout an interval
J , ψ holds throughout (J � I) ∩ T, where J � I = {t − t′ | t ∈ J and t′ ∈ I}
is the Minkowski difference. Hence, the essence of the procedure is to back-
shift (Minkowski difference restricted to T) all the positive intervals in wϕ and
thus obtain the set of time points where◇Iϕ holds. This method is illustrated
in Fig. 3.

Fig. 3. Example of satisfaction signal computation for◇[1,2]p using back-shifting.
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The integration of TRE into the monitoring procedure of xSTL is done in
two steps. First, we define the match-set M(r, w) of a TRE over a signal w as the
set of all segments of w that match r, i.e. M(r, w) = {(t, t′) | (w, t, t′) |≡ r}, and
use the algorithm of [22] to compute the match-set. We then use the match begin
(@(r)) and match end ((r)@) operators to project the match-sets to satisfaction
signals that are then directly integrated into the STL monitoring procedure
described above.

The algorithm proposed in [22] computes the set of segments of a signal
w that match a TRE ϕ. Since we are dealing with continuous-time signals, the
number of segments is non-countable and so is potentially the number of matches.
The algorithm is based on the observation that all those segments can be can be
embedded in two-dimensional space, inside the triangle 0 ≤ t ≤ t′ ≤ |w|, where a
point (t, t′) represents the segment starting at t and ending in t′. The matching
algorithm uses a symbolic representation of the matches as a finite union of two-
dimensional zones. Zones are special class of convex polytopes which are defined
as the conjunction of inequalities of the form xi ≺ bi and xi − xj ≺ ci,j , where
≺ ∈ {<,≤}. For instance, the match set M(ε, w) for the empty word ε is the
diagonal zone {(t, t′) ∈ T× T | t = t′}, while the match for a literal p or ¬p is a
disjoint union of triangles touching the diagonal whose number depends on the
number of switching points in wp. The match set of the time restriction operator
is obtained by intersecting the match set with the corresponding diagonal band,
hence M(〈ϕ〉I , w) = M(ϕ)∩{(t, t′) | t′ −t ∈ I}. The match sets for p and 〈p〉[1,2]

Fig. 4. Example of a match set - (a) p; and (b) 〈p〉[1,2].
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are depicted in Fig. 4. We point the reader to [22] for a complete description of
the procedure. The satisfaction signals w@(r) and w(r)@ for the match-begin and
match-end operators are computed from the match set of r by projecting every
(t, t′) ∈ M(r) on t and t′, respectively.

3.3 Trace Diagnostics for STL

The trace diagnostics procedure implements the algorithm presented in [13].
Given an STL formula ϕ and a trace w that violates ϕ, the procedure gives an
explanation of the fault in the form of a temporal implicant, which is a small sub-
signal w′ of w which is sufficient to imply violation. In other words, any possible
completion of w′ into a full signal will violate the property. The diagnostics
procedure uses the satisfaction signals computed by the monitoring algorithm
from Sect. 3.2 to explain the faults. The method uses the satisfaction explanation
operator E (and its dual violation explanation operator F ) that for a given
formula ϕ returns an implicant of ϕ (respectively of ¬ϕ) which is satisfied by w.
The explanation operators are defined inductively on the structure of the formula
ϕ and on the times t at which explanation of its sub-formulas are required.

We illustrate the idea behind the procedure with the following example.
Consider the STL specification ϕ = ◇[0,1]p, a signal w in which p does not
hold during [0, 3) and then holds during [3, 5). It is clear, for instance, that
(w, 0) 
|= ϕ and (w, 3) |= ϕ. The violation of ϕ by w at time 0 can be explained
by the fact that w is continuously false throughout the interval [0, 1]. In other
words, we have that F (ϕ,w, 0) =

∧
t∈[0,1](wp[t] = false). In contrast, the value of

w at any time t ∈ [3, 4] is sufficient to explain the satisfaction of ϕ by w at time
3. Thus E(ϕ,w, 3) could be any (wp[t] = true) such that t ∈ [3, 4]. We use the
notion of a selection function to choose one explanation when there are many
possible ones. The full algorithm is described in [13].

3.4 Specification-Driven Measurements

In this section, we present a simple declarative measurement specification lan-
guage [14] built on top of TRE. The idea is to require the signal segments over
which measurements should be taken to be those that match some pattern speci-
fied by an expression. An example of a measurement is the time elapsed between
the beginning and end of some activity, or the total fuel consumption in a seg-
ment where the acceleration pedal is continuously on until the velocity crosses
some threshold.

We first recall that the match set of a TRE defines all the trace segments
that match the expression, and the number of those can be uncountably infinite.
However if we restrict ourselves to patterns that are delimited by instantaneous
discrete events, we will have only finitely many matches. Formally, we use the fol-
lowing sub-class of expressions. An event-bounded TRE (e-tre) is an expression
of the form

r̂ := ↑ p | ↓ p | r̂1 · r · r̂2 | r̂1 ∪ r̂2 | r̂1 ∩ r

with p a proposition, and r̂1, r̂2 event-bounded TREs.
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The measure patterns defining the segments to be measured are of the form
α ? ψ ! β, where ψ is the main pattern, and α and β are, respectively pre- and
post-conditions. The main pattern ψ specifies the portion of the signal over which
the measure is taken. To guarantee a finite number of matching segments, ψ is
restricted to be an e-tre while α and β, which can be used to define additional
constraints, are TREs.

Given a measure pattern ϕ and a signal w, we first compute all the segments
of w that match ϕ. We then apply a measuring operator that collects specific
signal values over the matched segments. A measure is written with the syntax
op(ϕ) with op ∈ {time, valuex, duration, infx, supx, integralx, averagex}. We finally
aggregate the specific measures and provide to the user the minimum, maxi-
mum and average measured value, as well as a histogram that summarizes the
measurements.

We illustrate specification-driven measurement with an example from the
DSI3 automotive communication protocol [16]. The micro-controller and the
sensors that use the protocol, communicate by sending analog pulses during the
protocol initialization phase. The standard describes the acceptable shapes and
duration of such pulses. Figure 5 depicts the specification of a discovery response
pulse from the DSI3 standard. In particular, the standard defines the relevant
thresholds (2IResp and IResp) which are used to describe the shape, as well as
the acceptable duration of the pulse’s ramp (t1) and its total duration (t2).

To define the pulse pattern we first define the following predicates:

ih ≡ i ≥ 2IResp ib ≡ IResp ≤ i < 2IResp il ≡ i < IResp

and then let
ϕ = il ? ↑(ib) · ib · ih · ib · ↓(ib) ! il.

We finally apply the measure operation duration(ϕ) to extract the duration of
the segments that match the pulse pattern.

Fig. 5. Discovery response pulse from DSI3.
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4 Examples

In this section, we introduce two running examples that we use to illustrate the
features and the functionalities of AMT 2.0. The first example is concerned
with a mixed-signal bounded stabilization property and is used to illustrate the
qualitative monitoring and trace diagnostics functionalities. The second example
demonstrates the measurement functionality as applied to jitter in a digital clock.

4.1 Mixed-Signal Bounded Stabilization

Informal Requirements. This requirement states that after every rising edge
of the Boolean trigger, the usually-stable analog signal var is allowed to oscillate
under the following conditions:

1. var must always remain below 5 V; and
2. var must within 600 s go below 0.2 V, and continuously remain under that

threshold for at least 600 s.

Simulation Traces. We evaluate this requirement on 5 different simulation
traces. Figure 6 depicts the Boolean trigger signal, as well as the 5 traces named
var0 to var4. We can already reason informally about the satisfaction of the
bounded stabilization property by these traces:

Fig. 6. Bounded stabilization - input signals.
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1. Trace var0 violates the specification because the signal never stabilizes, i.e.
it continues oscillating until the end of simulation;

2. Trace var1 satisfies the specification - the signal always remains smaller then
5 V, and it goes below 0.2 V within 600 s, continuously remaining below that
threshold until the end of the simulation;

3. Trace var2 violates the specification because the signal exceeds 5 V;
4. Trace var3 violates the specification because the signal does not stabilize

below 0.2 V within the specified period; and
5. Trace var4 violates the specification because of the 3 glitches that occur

towards the end of the simulation.

Formal Specification in xSTL. To define the property we first declare the
Boolean variable trigger, as well as the real variables var0 to var4. We also declare
two constants vh and vl, representing the 5 V and 0.2 V thresholds, respectively.
We note that we are evaluating the same formula over different signals. Hence,
we define a generic property template stab for the bounded stabilization formula,
which is the conjunction of conditions (1) and (2) of the informal requirements.
The first conjunct says that the real-valued signal must be smaller than 5V .
The second conjunct is a conditional formula that uses logical implication. It
says that whenever the trigger signal is on its rising edge, the x signal must go
below 0.2 V within 600 s and continuously remain below that threshold for at
least 300 s. Then each assertion is an instantiation of the template with one of
the signals var0 to var4.

1 bool trigger;

2 real vara;

3 ...

4 real vare;

5 const real vh = 5;

6 const real vl = 0.2;

7

8 template bool stabilization (bool tg , real x, real vhigh ,

real vlow) {

9 bool result = ((x <= vhigh) and (rise(tg) -> (eventually

[0:600] always [0:300] x <= vlow)));

10 return result;

11 }

12

13 assertion one:

14 always(stabilization(trigger , vara , vh, vl));

15 ...

16 assertion five:

17 always(stabilization(trigger , vare , vh, vl));

Qualitative Monitoring of the Specification. We illustrate the qualitative
monitoring of the property applied to the traces as done using the GUI of the
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tool. In the evaluation configuration window, we first specify the xSTL speci-
fication, the simulation traces and an optional alias file. In addition to setting
up the inputs, we also select the Float representation of the real numbers, the
Linear interpolation and the Single Explanation feature of the diagnostics
module.

After evaluating the specification on the traces, we can visually depict the
results, as shown in Fig. 1. The nodes in the xSTL parse tree view are expandable
via a double click. By expanding the assertions node of the specification, we
can see that assertion two is satisfied, while assertions one, three, four and five
are violated. We note that we can visualize the satisfaction signals for any sub-
property of the specification.

Fault Explanation. The fault explanation is given in the form of temporal
implicants which are (small) sub-segments of the input signals which are suffi-
cient to imply the property violation. Figure 7 illustrates the visual output of the
diagnostics procedure in AMT 2.0 for the bounded stabilization specification.
The first two figures show the trace diagnostics report for the third assertion. We
can see that the trigger signal does not contribute to the fault, but var3 does at
a single point in time within the interval [100, 150]. At that time, var3 is greater
than the invariant threshold 5 V which explains the property violation. The last
two figures show that same report, but for the fifth assertion. In this case, the
fault is explained by the fact that signal trigger gets high at time 100 and by
the values of signal var4 at times 350, 600 and 750. We can see that the last two
times coincide with the glitches, thus witnessing that var4 never continuously
holds below 0.2 V for at least 300 time units.

We note that the tool computes the fault explanations in a hierarchical man-
ner, following the parse tree of the formula. This additional and complementary
information can be quite useful in understanding the fault. We finally note that
the trace diagnostics can be made hierarchic.

4.2 Digital Clock Jitter

Informal Requirements. Given a continuous-time Boolean-valued signal
clock, a clock period is defined as a segment that starts with the rising edge
of the clock and ends with its consecutive rising edge. The measurement speci-
fication is to measure the duration of all the clock periods matched within the
clock signal in order to assess the clock jitter.

Simulation Trace. We apply the specifications to a Boolean clock signal, see
Fig. 8.

Formal Specification in xSTL. We now formalize the measurement specifi-
cation for the digital clock jitter analysis in xSTL. We first declare the Boolean
variable clock, as well as its negation nclock. We then specify the pattern
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Fig. 7. Bounded stabilization - fault explanation.

Fig. 8. Digital clock jitter - a segment of the input signal.

clock period that consists of concatenations that starts with the rising edge of
clock (startclock), followed by an interval of positive duration where clock holds,
followed by another interval of positive duration where nclock holds, and ending
with the next rising edge of clock. Finally, we declare the actual measurement
to be taken as duration(clock period) which extracts the durations of all signal
segments that match the clock pattern pattern.
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1 bool clock;

2 bool nclock = not clock;

3

4

5 measurement jitter_clock_period {

6 pattern clock_period = start(clock):clock:nclock:start(

clock);

7 measure duration(clock_period);

8 }

9

10 measurement jitter_clock_period_c {

11 pattern clock_period_c = start(clock):{clock:nclock

}[19000:21000]: start(clock);

12 measure duration(clock_period_c);

13 }

Pattern-Driven Measurements. The visualization of the measurement spec-
ification consists of a histogram depicting the distribution of the measures taken
over signal segments that match the pattern, the total number of matched seg-
ments, as well as the minimum, maximum and average value of the measures.
The visual summary of the clock jitter measurement is shown in Fig. 9.

Fig. 9. Digital clock jitter - measurements.

5 Related Work

Breach [11] is a MATLAB/Simulink toolbox that enables various types of STL
specification analysis. In particular, Breach supports falsification-based testing,
parameter synthesis and requirement mining of STL properties. S-TaLiRo [3] is
another Simulink/MATLAB toolbox for different robustness analysis of MTL
specifications. It provides support for falsification-based testing, parameter min-
ing, runtime verification, conformance testing, computing the worst expected
robustness for stochastic systems and debugging of formal requirements. The
ViSpec [15] tool, associated with S-TaLiRo, allows visual specification of MTL
requirements. BIOCHAM [10] is a tool for inferring unknown (biological) model
parameters from temporal logic constraints. The authors in [9] extend STL with
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freeze quantifiers that allow them to express oscillatory properties. Similar oscil-
latory properties of the heart behavior are studied using quantitative regular
expressions (QRE) in [1].

Montre [21] is a prototype tool for TRE pattern matching. It provides sup-
port for both offline and online matching. AMT 2.0 implements the offline
matching algorithms used by Montre and adds a specification measurement lan-
guage on top of it. Montre does not provide support for STL, monitoring and
trace diagnostics.

The combination of STL and TRE was inspired by the Property Specifi-
cation Language (PSL) [12] and SystemVerilog Assertions (SVA) [23] standards
used in the digital hardware verification. Both PSL and SVA use the suffix impli-
cation operator to combine temporal logic with regular expressions. In contrast,
we define match begin and end operators that give us more freedom to decide
whether the begin or the end of an expression match is relevant for the property.
The only other work that combines temporal logic and the regular expressions
in the context of continuous-time applications is presented in [8], where the
authors propose the metric dynamic logic as the specification language for rea-
soning about time-event sequences.

6 Conclusion

We introduced in this paper the AMT 2.0 tool for qualitative and quantitative
analysis of traces coming from cyber-physical systems applications. The tool
uses an expressive specification language based on a combination of STL and
TRE and admits qualitative monitoring, trace diagnostics and property-driven
measurements as its main functionalities. The development of the tool is a con-
tinuous work in progress and there is a number of features which are planned
to be developed in the near future, in particular solving the inverse problem
of finding parameters in a formula template the lead to satisfaction by a given
signal or a set of signals [6].
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3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

4. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Logic
in Computer Science (LICS), pp. 160–171 (1997)

5. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)
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