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Abstract. To decide whether a set of states is reachable in a hybrid sys-
tem, over-approximative symbolic successor computations can be used,
where the symbolic representation of state sets as well as the successor
computations have several parameters which determine the efficiency
and the precision of the computations. Naturally, faster computations
come with less precision and more spurious counterexamples. To remove
a spurious counterexample, the only possibility offered by current tools
is to reduce the error by re-starting the complete search with different
parameters. In this paper we propose a CEGAR approach that takes as
input a user-defined ordered list of search configurations, which are used
to dynamically refine the search tree along potentially spurious coun-
terexamples. Dedicated datastructures allow to extract as much useful
information as possible from previous computations in order to reduce
the refinement overhead.

1 Introduction

As the correct behavior of hybrid systems with mixed discrete-continuous behav-
ior is often safety critical, a lot of effort was put into the development and
implementation of techniques for their analysis. In this paper we focus on tech-
niques for proving unreachability of a given set of unsafe states. Besides methods
based on theorem proving [11,21,25], logical encoding [13,15,22,26] and vali-
dated simulation [12,28], flowpipe-construction-based methods [2,7,9,17-20,27]
show increasing performance and usability. These methods over-approximate the
set of states that are reachable in a hybrid system from a given set of initial states
by executing an iterative forward reachability analysis algorithm. The result is a
sequence of state sets whose union contains all system paths starting in any ini-
tial state (usually for bounded time duration and a bounded number of discrete
steps, unless a fixedpoint could be detected).

If the resulting over-approximation does not intersect with the unsafe state
set then the verification task is successfully completed. However, if the intersec-
tion is not empty, due to the over-approximation the results are not conclusive.
In this case the only possibility for achieving a conclusive answer is to change
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some analysis parameters to reduce the approximation error. As a smaller error
typically comes with a higher computational effort, the choice of suitable param-
eters by the user can be a tedious task.

Most tools do not support the dynamic change of those parameters, thus after
the modification of the parameters the user has to re-start the whole computa-
tion. One of the few tools implementing some hard-coded dynamic parameter
adaptations is the STC mode [16] of SpaceEx [17], which dynamically adapts the
time-step size during reachability analysis to detect the enabledness of discrete
events more precisely. Another parameter (the degree of Taylor approximations)
is dynamically adapted in the Flow* tool [9]. The method [5], also implemented in
SpaceEx, uses cheap (but stronger over-approximating) computations to detect
potentially unsafe paths and use this information to guide more precise (and
more time-consuming) computations. In [6] the authors present a method to
automatically derive template directions when using template polyhedra as a
state set representation in a CEGAR refinement fashion during analysis. As
a last example, in [24] the authors use model abstraction to hide model details
and apply model refinement if potential counterexamples are detected; after each
refinement, the approach makes use of previous reachability analysis results and
adapts them for the refined model, instead of a complete restart.

However, none of the available tools supports the dynamic adjustments of
several parameters by a more elaborate strategy, which is either defined by the
user or chosen from a pre-defined set. In this paper we propose such an approach,
provide an implementation based on the HyPro [27] programming library, present
some use cases to demonstrate its applicability and advantages, and discuss ideas
for further extensions and improvements. Our main contributions are:

— the definition of search strategies to specify the dynamic adjustment of param-
eter configurations;

— the formalization of a general reachability analysis algorithm with dynamic
configuration adjustment following a search strategy, where dynamic means
that adjustments are triggered during the analysis process in a fully auto-
mated manner only for parts of the search where they are needed to achieve
conclusive analysis results;

— the identification of information, collected during reachability analysis, which
can be re-used after a parameter adjustment to reduce the computational
effort of forthcoming analysis steps;

— a datatype to store information about previously completed analysis steps,
including information about re-usability, and supporting dynamic parameter
adjustments according to a given strategy;

— the implementation of the reachability analysis algorithm using dynamic
parameter adjustment and supporting information re-usage;

— the evaluation of our method on some case studies.

Outline. In Sect.2 we recall some preliminaries on flowpipe-construction-based
reachability analysis, before presenting our algorithm for the dynamic adjust-
ment of parameter configurations in Sect. 3. In Sect. 4 we provide some experi-
mental results and conclude the paper in Sect. 5.
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2 Preliminaries

In this work we develop a method to dynamically adjust the parameters of
a verification method for autonomous linear hybrid systems whose continuous
dynamics can be described by ordinary differential equations (ODEs) of the
form @(t) = A-xz(t), but our approach can be naturally extended to methods for
non-autonomous hybrid systems with external input or non-linear dynamics.

Hybrid automata [3] are one of the modeling formalisms for hybrid systems.
Similarly to discrete transition systems, nodes (called locations or control modi)
model the discrete part of the state space (e.g. the states of a discrete con-
troller) and transitions between the nodes (called jumps) labeled with guards and
reset functions model discrete state changes. To model the continuous dynamics
between discrete state changes, flows in the form of ordinary differential equa-
tion (ODE) systems, and invariants in the form of predicates over the model
variables are attached to the locations. The ODEs specify the evolution of the
continuous quantities over time (called the flowpipe), where the control is forced
to leave the current location before its invariant gets violated. Initial predicates
attached to the locations specify the initial states.

A state o = (¢,v) of a hybrid automaton consists of a location [ and a variable
valuation v. A region is a set of states (¢, P) = {{} x P. A path w of a hybrid

. to ey to . ts
automaton is a sequence m = oy — 01 — 02 — ... of time steps o; = 0,41 of
duration ¢; and discrete steps o, =% o+1 following a jump, where o¢ = (4o, 1)
is an initial state. A state is called reachable if there exists a path leading to it.

Flowpipe-construction-based reachability analysis aims at determining the states
that are reachable in (a model of) a hybrid system, in order to show that cer-
tain unsafe states cannot be reached. Since the reachability problem for hybrid
systems is in general undecidable, these methods usually over-approrimate the
set of states that are reachable along paths with a bounded number of jumps
(called the jump depth) J and a bounded time duration T (called the time hori-
zon) between two jumps. We explain the basic ideas needed to understand our
contributions; for further reading we refer to, e.g., [8,23].
Starting from an initial region (¢, Vp), the analysis over-approximates flowpipes
and jump successors iteratively. Due to non-determinism, this generates a tree,
whose nodes n; are either unprocessed leafs storing a tuple (m;; ¢;,V;; L), or
processed inner nodes storing (m;; 4, Vi; Vios--., Vik,)-

The pair (¢;,V;) is the node’s initial region, which is (¢y, Vp) for the root.

By 7, = Lio,€i0,--.,1i4;,€i4;,, With I;; being intervals and e;; being jumps,
t €i,0 €i,d;
we encode a set {og = 0 = 01... = 04,41|00 € (bo, Vo), t1 € I;;} of paths

along which (¢;,V;) is reachable.

To process a node (m;; £;,V;; L), we divide the time horizon [0, 7] into seg-
ments [t;0,ti1], .. [tik;s tikiy, ] With t9 = 0 and ¢;%,,, = T, and for each seg-
ment [t; ;,t; j+1] we compute an over-approximation V; ; of the states reachable
from V; in ¢; within time [t; ;,t; j41]. Le., Ry = U?;OVZ'J contains all valuations
reachable in location ¢; from V; within time 7. The segmentation is usually
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homogeneous, meaning that the time-step size t; j41 —t; ; is constant, but there
are also approaches for dynamic adaptations.

The processing is completed by computing for each flowpipe segment V; ;
and each jump e from ¢; to some ¢} an over-approximation V£, of the valuations
reachable from V; ; by executing e. To store the jump successors, either we add a
child node (m;, [ti j, tij+1], €; €, ViS;; L) to n for each Vi, # (), or we aggregate
successors along a jump e into a single child node (m;, [t; ;. ti /], €; 5, RS; L)
with V& = 0 for all [ ¢ [j,7" — 1] and Ue Ujrej 1) ViS;n © RS, or we cluster
successors along a jump into a fixed number of child nodes (see Fig. 3).

For illustration purposes, above we stored all flowpipe segments V; ; in the
nodes. In practice they are too numerous and if they contain no unsafe states
then they are deleted. In the following, we assume that each node stores a tuple
(m;; £i, Vi; p), where the flag p is 1 for processed nodes and 0 otherwise. (For
a simple reachability analysis, we need to store neither the path nor the pro-
cessed flag, but we will make use of the information stored in them later on.
Furthermore, we could even delete the initial regions of processed nodes, how-
ever, besides counterexample and further output generation, they might be also
useful for fixedpoint detection.)

State set representations are one of the core components
in the above analysis procedure. Additionally to the stor-
age of state sets, these datatypes need to provide certain
(over-approximative) operations (union, intersection, linear
transformation, Minkowski sum etc.) on states sets. Besides
geometric representations (e.g., boxes/hyperrectangles, ori-
ented rectangular hulls, convex polyhedra, template polyhe-
dra, orthogonal polyhedra, zonotopes, ellipsoids) also sym- Fig.1. Polytope
bolic representations (e.g., support functions or Taylor mod- (green) and box
els) can be used for this purpose. The variety of representa- (hatched) approx.
tions is rooted in the general problem of deciding between of state set Vo.
computational effort and precision. Generally, faster com- (C(?lor figure
: .. . online)

putations often come at the cost of precision loss and vice

versa, more precise computations need higher computational effort. The rep-
resentations might differ in their size, i.e., the required memory consumption,
which has a further influence on the computational costs for operations on these
representations.

3 CEGAR-Based Reachability Analysis

If potential reachability of an unsafe state is detected by over-approximative
computations, in order to achieve a conclusive verification result, we need to
reduce the over-approximation error to an extent that allows to determine that
the counterexample is spurious.
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(a) Over-approximating the Minkowksi (b) Smaller time steps typically lead to
sum of a polytope P and a box by a less more precise computations (dark blue)
complex polytope. P’. than larger time steps (light blue).

Fig. 2. Reduction and time-step size influence the flowpipe over-approximation error.
(Color figure online)

Search parameters, parameter configurations and search strategies. The size of
the over-approximation error depends on various search parameters, which influ-
ence besides the precision also the computational effort of the performed analysis:

1. State set representation: The choice of the state set representation has a very
strong influence on both the error and the running time of the computations.
For example, boxes are very efficient but introduce large over-approximations,
whereas convex polyhedra are in general more precise but computationally
much more expensive (see Fig.1).

2. Reductions: Some of the state set representations can grow in the representa-
tion size during the computations. For example, during the analysis we need
to compute the Minkowski sum A® B ={a+b | a € AANb € B} of two state
sets A and B. Figure2(a) shows a 2-dimensional example to illustrate how
the representation size of a polytope P in the vertex representation (stor-
ing the vertices of the polytope) increases from 4 to 6 when building the
Minkowski sum with a box. Another source of growing representation sizes
are large enumerators and/or denominators when using rationals to describe
for instance coeflicients of vectors. When the size of a representation gets too
large we can try to reduce it on the cost of additional over-approximation.
Thus the precision/cost is dependent also on the fact whether such reductions
take place.

3. Time-step size: The time-step size for the flowpipe construction can be con-
stant or dynamically adapted. In the constant case it directly determines
the number of flowpipe segments that need to be over-approximated and for
which jump successors need to be computed. In the case of dynamic adapta-
tion, the adaptation heuristics determines the number of segments and thus
the computational effort. In both cases, smaller time-step sizes often lead to
more precise computations on the cost of higher computational effort as more
segments are computed (see Fig. 2(b)).

4. Aggregation and clustering: The precision is higher if no aggregation takes
place or if the number of clusters increases (see Fig. 3). However, completely
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e

Fig. 3. Six sets (gray), a guard (light green), the aggregation of their intersections (left,
thick line), and the clustering of their intersections into two sets (right, thick lines);
both aggregation and clustering introduces additional error (dark green and dark blue).
(Color figure online)

switching off both aggregation and clustering often leads to practically
intractable computational costs. Increasing the precision by allowing a larger
number of clusters can improve the precision by managable increase in the
running times, but the number of clusters should be carefully chosen consid-
ering also the size of the time steps (as they determine the number of flowpipe
segments and thus the number of state sets to be clustered).

5. Splitting initial sets: Large initial state sets might be challenging for the
reachability analysis. If the algorithm cannot find a conclusive answer, we
can split the initial set into several subsets and apply reachability analysis to
each of the subsets. Besides the enabling/disabling of initial state set splitting,
also the splitting heuristics is relevant for the precision. In general, a fewer
number of initial state sets is less precise but more cheap to compute with.
Furthermore, it might be also relevant where the splitting takes place.

Most flowpipe-construction-based tools allow the user to define a search
parameter configuration, fixing values for the above-listed search parameters.
Aside from a few exceptions mentioned in the introduction, this configuration
remains constant during the whole analysis. Whenever an unsafe state is detected
to be potentially reachable, the user can re-start the analysis with a different
parameter configuration to reduce the over-approximation error.

As the executions with different parameter configurations are completely
independent, potentially useful information from previous search processes gets
lost. To enable the exploitation of such information, we propose an approach to
build a connection between executions with different parameter configurations.

Instead of a single configuration, we propose to define an ordered sequence
co, ... ,Cn of search parameter configurations, which we call a search strategy,
whereas the position of a parameter configuration within a search strategy is
called its refinement level. Configurations at higher refinement levels should typ-
ically lead to more precise computations, but this is not a soundness requirement.

Dynamic configuration adaptation. We start the analysis with the first config-
uration in the search strategy, i.e. the one at refinement level 0. If the analysis
with this configuration can prove safety then the process is completed.
Otherwise, if the reachability computation detects a (potentially spurious)
counterexample then the search with the current configuration is paused; note
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that at this point there might be unprocessed nodes whose successors were not
yet computed. Now, our goal is to exclude the detected counterexample by doing
as few computations as possible using configurations at higher refinement levels
and, if we succeed, process those yet unprocessed nodes further at refinement
level 0. For the first counterexample this means intuitively re-computing reach-
ability only along the counterexample path with the configuration at refinement
level 1; we say that we refine the path. Note that the result of a path refinement
can be a tree, e.g. if the refinement switched off aggregation. If the counterex-
ample could be excluded by the path refinement, then we switch back to the
previous refinement level to process the remaining, yet unprocessed nodes. Oth-
erwise, if the counterexample could not be excluded then we get another, refined
counterexample; in this case we recursively try to exclude this counterexample
by switching to the configuration at the second refinement level etc.

Let us first clarify what we mean by refining a counterezample path. We define
a counterexample to be a path in the search tree. If the configuration, which
created the counterexample, used aggregation then it means determining the
flowpipes and the jump successors for the given sequence of locations (as stored in
the nodes on the path) and jumps (as stored on the edges) with the configuration
at the next-higher refinement level. However, if the previous configuration did
not aggregate then we need to determine only a subset of the jump successors,
namely those whose time point is covered by the counterexample.

Now let us discuss what it means to refine a path by doing as few computa-
tions as possible. If we find a counterexample at a refinement level ¢ then we need
a refinement for the whole path at level ¢ + 1. However, another counterexample
detected previously at level ¢ might share a prefix with the current one; if the
previous counterexample has already been refined then we need to refine only
the not-yet-refined postfix of the current counterexample.

The analysis at refinement level 0 and each path refinement computation
generates a search tree. To reduce the computational effort as much as possible,
we have to exchange information between these search trees. For example, for
a given counterexample found at refinement level i we need to know whether a
prefix of it was already refined at level i+ 1. To allow such information exchange,
we could store each search tree separately and extract information from the trees
when needed by traversing them. This option requires the least management
overhead during reachability computations but it has major drawbacks from the
point of computational costs for tree traversal. Alternatively, we could store each
search tree separately but store in addition refinement relations between their
nodes, allowing to relate paths and retrieve information more easily. However,
we would have high costs for setting up and storing all node relations. Instead,
we decided to collect all information in a single refinement tree. Tree updates
require a careful management of the refinement nodes and their successors, but
the advantage is that information about previous searches is easier accessible.

Next we first discuss how nodes of the refinement tree are processed, how
paths in the refinement tree are refined, and finally we explain our dynamical
parameter refinement algorithm.
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The algorithm. Each refinement tree node n, is a kind of “meta-node” that
contains an ordered sequence (nY,...,n{") with 0 < u; < n, where n + 1 is
the size of the search strategy, and each entry nz has the form (7w; ¢,V; p) as
explained in Sect. 2.

Assume for simplicity that the model has a single initial region (£, Xy), and
let Vj; represent Xy according to the state set representation of refinement level
i. The refinement tree is initialized with a root node n, = (nJ,...,n%) with
ny = (& Lo, Vo,i; 0).

We additionally introduce a task list which is initialized to contain (ng;0;€)
only. Elements (n;;j;7) in the task list store the fact that we need to compute
successors for the jth element of the refinement node n, at level j. If 7 = € then
we are not refining and we need to consider all the successors for further com-
putations, otherwise we are at a refinement level j > 0 and only the successors
along the counterexample-path 7w need to be considered.

We remove and process elements from the task list one by one. Assume we
consider the task list element (n;; j; ') with n] = (7; £,V; p).

If p = 0 then we over-approximate the flowpipe starting from V in £ for the
time horizon T', using the configuration at level j in the search strategy.

If the computed flowpipe segments contain no bad states and the jump depth
J is not yet reached then we compute also the jump successors. Depending on
the clustering/aggregation settings at level j, this yields a set of jump successor
regions Ry, ..., Ry, with Ry = (¢, Vi) over time intervals I, ..., I, along jumps
€1,...,em. If the number of children m’ of n, is less than m then we add m —m/
new children; if m’ > 0 then we add to the newly created children as many
dummy entries (containing empty sets) as the other children have, in order to
bring all children to the same refinement level. After that, we select for each
k=1,...,m a different child 7 of n; and append (m, Iy, ex; £k, Vi; 0) to the
child’s entry sequence (see Fig.4). If m’ > m then we add to all not selected
children (to which no new entry was added) a dummy entry. Finally, we set p
to 1.

If the node could be processed without discovering any bad states (or if p
was already 1 and thus processing was not needed) then we update the task list
as follows:

— If #’ = € then we have to process all successor nodes at the level j' determined
by the number of entries E in each of the nodes 7. We add (7ig; E; €) to the
task list for all k =1,...,m.

— Otherwise, if ' = I,e,n” then we add (fg;j;7") for all k = 1,...,m for
which I N1 # () and e = e.

Note that if 7 = € but 5 > 0 then we just succeeded to refine a spurious
counterexample from level j — 1 to a safe path at level j and can continue
further successor computations using a lower level configuration. This switch to
a lower level happens because the children 7y of n; have less then j entries in
their queues. Now the processing is completed and the next element from the
task list can be approached.
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Fig. 5. Partial tree refinement to remove a spurious counterexample.

If during processing (n;; j; 7') with nz = (m; £,V; p) the computed flowpipe
had a non-empty intersection with the set of unsafe states then we have found
a counterexample at level j. If 7 = n then the highest refinement level has
been reached and the algorithmus terminates without any conclusive answer.
Otherwise, if j < n, we repeat the computations along the counterexample path
with a higher-level configuration (see Fig. 5). This is implemented by adding
(ng;j + 1;m,7’) to the task list.

The main structure of the algorithm is shown in Algorithm 1.1.

3.1 Incrementality

The efficiency of the presented approach can be further improved by implement-
ing incrementality: already available book-keeping and additional information
gained throughout the computation can be exploited to speed up later refine-
ments.

For example, the presented approach already keeps track of time intervals
where jumps were enabled, i.e. the time intervals during which the intersection of
a state set and the guard condition was non-empty. Assume we process (n;i; ')
at level ¢ with n; = (m;£,V;p) being the ith entry in n. Let I be the union
of all the time intervals for all flowpipe segments for which a non-empty jump
successor was computed along a jump e. Later, when processing (7i; j; ') at level
Jj > ¢ with n; = (ﬁ;ﬁ,v;ﬁ) being the jth entry in 7, if the path set encoded
by 7 is included in the path set encoded by 7 then we need to compute jump
successors along e only for flowpipe segments over time intervals that have a
non-empty intersection with I.
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1 analyze (){

2 while (true) do

3 if (task list is empty) then

4 return safe

5 fi;

6 take an element (m;;j;7m’) with nz:(Tr; £,V; p) from task list;
7 if (p=0) then

8 R := computeFlowpipeSegments (£,V,j)

9 fi;

10 if (p=0 and R contains unsafe states) then

11 if (j=n) then return unknown;

12 addToTaskList ((ng;j + 1; 7, 7))

13 else

14 if (jump depth not yet reached) then

15 computeJumpSuccessorsAndUpdateTaskList (n;,j, 7', R)
16 fi

17 fi

18 od

19 }

Algorithm 1.1. Reachability analysis algorithm with backtracking and refinement.

Table 1. Strategies s; with different refinement levels (Ivl.). Strategies vary time step
size () and state set representation (box, sf = support function). Strategy ss changes
aggregation and clustering (n = no aggregation, c:max. number of successor nodes).

Strategies

S0 S1 2 S3 54 S5

vl. [0 |1 2 0 |1 2 |3 0 |1 2 |3 0 |1 0 |1 0 |1 2
6 .01 |.001|.0001/.01 |.001|.01/.001/.01 |.001|.01|.0001|.1 |.001|.1 |.001|.1 |.001|.001
rep. |box|box |sf box | box |sf |sf |box|box |sf |sf box|sf |box|poly| box | box |sf

agg.ly |y |y |y |y vy |y v |yly v |y |y |y |n a3 |c3

Similarly, if (¢, V) contains no unsafe states but (£, V) does then we know
that the latter counterexample is spurious if the path set encoded by 7 is included
in the path set encoded by .

A similar observation holds for flowpipe segments: if a segment in the flowpipe
of (¢, V) is empty, what happens if the invariant is violated, then we know that
the same segment of the flowpipe from (¢, V) will also be empty.

4 Experimental Results

In order to show the general applicability of our approach we have conducted
several experiments on an implementation of the method presented in Sect. 3. We
have used our implementation to verify safety of several well-known benchmarks
using different strategies (see Table1). All experiments were carried on an Intel
Core i7 (4 x 4 GHz) CPU with 16 GB RAM. Results for the used strategies can
be found in Table 2.
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Benchmarks. Different benchmarks from the area of hybrid systems verification
are selected: The well-known bouncing ball benchmark models the height and
velocity of a falling ball bouncing off the ground. The added set of bad states
constrains the height of the ball after the first of 4 bounces. This benchmark
already exhibits most properties more challenging benchmarks cover while being
simple enough to be a sanity check for our method.

The 5-D switching system [10] is an artificially created model with 5 locations
and 5 variables which shows more complex dynamic and is well-suited to show
the differences in over-approximation error between the used state set represen-
tations. We added a set of bad states in the last location where the system’s
trajectories converge to a certain point.

The navigation benchmark [14] models the velocity and position of a point
mass moving through cells on a two-dimensional plane (we used variations of
instances 9 and 11). Each cell (location) exhibits different dynamic influencing
the acceleration of the mass. The goal is to show that a set of good states
can potentially be reached while a set of bad states will always be avoided
(see Fig.6(b)). The initial position of the mass is chosen from a set, such that
this benchmark demonstrates non-determinism for the discrete transitions which
results in a more complex search tree.

The platoon benchmark [1,4] models a vehicle platoon of three cars where
two controlled cars follow the first one while keeping the distance e; between each
other within a certain threshold (see Fig.6(a)). This benchmark was chosen, as
it unifies a higher dimension of the state space with a more complex dynamic.

Strategies. During the development of our approach we tested several strate-
gies with varying parameters (a) the state set representation, (b) the time step
size and (c) aggregation settings. In general, other parameters (e.g. initial set
splitting) could be also considered but our prototype currently does not yet
support these. For this evaluation we selected six strategies sg,...,ss which
mostly vary (a) and (b) (see Table 1). Changing aggregation settings has shown
to be challenging for the tree update mechanism but the exponential blow-up
of the number of tree nodes did not render this method effective in practice.
Furthermore for disabled aggregation settings, the largest precision gain can be
observed for boxes while for all other tested state set representations the effect
can be neglected. Note that our prototype implements the general case where
time step sizes are not necessarily monotonically decreasing and multiples of
each other which implies refinement starting from the root node.

Comparison. We compare our refinement algorithm (1) with a classic approach
where no refinement is performed. To achieve this, we specify only a single strat-
egy element for our algorithm. We give results for (2) the fasted successful setting
(of the respective strategy), an experienced user would choose and for (3) the
setting with the highest precision level, a conservative user would select. The
three entries per cell in Table 2 show the running times for our dynamical app-
roach (gray), the fastest successful setting and the conservative approach. The
numbers in brackets show the number of nodes in the search tree; for refinement
strategies we give the number of nodes for each refinement level.
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Table 2. Experimental results in seconds for different strategies. Timeout (TO) was
set to 10 min, memout (MO) to 4 GB, (err) marks numerical errors. Three results per
cell: (1) dynamic refinement (gray), (2) fastest successful setting only, (3) most precise
setting. In brackets: Number of nodes in the search tree, refinement runs give the
number of nodes on each level.

Bum. Strategy
So S1 S2 83 S4 S5
BBI |0.15 (5]2]0)| 0.15 (5]2]0]0) | 0.15 (5]2]0]0) | 0.46 (5]2) |1.58 (5]2)| 0.21 (29]4]0)
0.22 (5) 0.18 (5) 0.18 (5) 0.97 (5) 3.45 (5) 1.71 (121)
11.93 (5) 0.97 (5) 9.90 (5) 0.97 (5) 3.45 (5) 9.47 (63)
Na09 TO 5.76 (279]6]4]0)|5.09 (317]17]6]0) 549 err TO
TO 118 (244) 118 (244) TO TO MO
TO TO TO TO TO TO
Nall TO 7.15 (45]8|7]0) | 7.61 (75]|16]7|0) |63.4 (73]11) err 120 (75]4168]0)
TO 6.4 (24) 6.4 (24) 395 (24) TO 130 (4170)
TO 395 (24) TO 395 (24) TO TO
5DS. [2.27 (5|5]5) | 0.49(5|5|5]5) 2.3 (5|5]5]5) 0.39 (5]5) [15.31(5|5)| 0.45(5|64|5)
2.35 (5) 0.38 (5) 2.36 (5) 0.38 (5) TO (5) 0.37 (5)
2.35 (5) 0.38 (5) 2.36 (5) 0.38 (5) TO (5) 0.37 (5)
Plat. | 173 (5]4[4) | 3.67 (5]4]4]0) 3.6 (5]4]4]5) 18.7 (5]4) TO 19.16 (5[4]4)
TO 3.48 (5) 3.48 (5) 18.9 (5) TO 18.8 (5)
TO 18.9 (5) TO 18.9 (5) TO 18.8 (5)

Observations. The results in Table2 show that our method in general is com-
petitive to classical approaches, as the running times are in the same orders of
magnitude as the fastest setting when using dynamic refinement and in some
cases our method is even faster. From the results we can infer manifold:

— Our implementation currently supports re-using information of guard inter-

section timings (see Sect. 3.1) while other information such as time intervals
where a state set is fully contained in the set defined by the invariant of
a location are not used. Keeping track of this reduced information already
noticeably influences the running times as costly intersection operations for
transition guards can be avoided for most computed segments and the running
times can compete with the optimal setting. This shows that the additional
cost of pre-computing parts of the search tree can be compensated in terms
of running time when information is properly re-used.

The length of the counterexample plays a significant role — in the bouncing
ball benchmark the set of bad states is reachable after one discrete transition
and from then on never again while in the 5-D switching system the set of
bad states is reached in the last reachable location which causes a refinement
of the whole tree and a recovery to a lower refinement level is not possible.
In the platoon benchmark, stepping back to a lower refinement level does not
provide any advantages, as an intersection with the set of bad states occurs
before transition timings can be recorded (see Fig.6(a)). To overcome this
problem a future implementation should allow for additional entry points for
refinement in order to reduce the length of the refinement path (see Sect.5).
The shape of the search tree influences the effectiveness of our approach.
As the navigation benchmark is the only benchmark in our set where the
resulting search tree naturally branches due to multiple outgoing transitions
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(a) Platoon benchmark (variables ¢t and  (b) Navigation benchmark (instance 9)
e1) for strategy ss. Refinements (blue) with strategy si. The set of bad states
increase in saturation. Discrete jumps (left box, red); the set of good states
occur at multiples of 5¢, Bad states are  (bottom box, green); Refinements of
e1 < 42 (bottom, red). strategy s1 (blue, orange).

Fig. 6. Result plots for the platoon and the navigation benchmarks with refinement.
(Color figure online)

per location, the effect of partial refinement can especially be observed for
this benchmark. Whole subtrees can be cut off and are shown to be unreach-
able on higher refinement levels such that the number of nodes is reduced.
The presented method renders most effectively for systems exhibiting non-
determinism, which is reflected in a strongly branching search tree.

— Coarse analysis allows for fast discovery of the search tree, possibly requir-
ing more nodes to be computed. We can observe that for models with non-
determinism the number of nodes at the highest required level is lower than
when using the classical approach. Together with the running times this con-
firms our assumption that putting effort in selective, partial refinement of
single branches pays off in terms of computational effort.

In conclusion we expect a strategy where a coarse analysis precedes a fine-
grained setting (e.g. strategy ss) which allows to detect enabled transitions
quickly and to recover fast after the removal of a spurious counterexample shows
good results on average.

5 Conclusion

We presented a reachability analysis algorithm with dynamic configuration
adjustment, which allows to refine search configurations to obtain conclusive
results, but exploits as much information as possible from previous computa-
tions in order to keep the computational effort as low as possible. We plan to
continue our work in several directions:
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Incrementality. Our current implementation re-uses information from previous
refinement levels about the time intervals of jump enabledness. We will imple-
ment also the re-usage of information when an invariant is definitely true or
definitely violated (when the flowpipe segment for a time interval was fully con-
tained or fully outside the invariant set).

Additional parameters. The current implementation supports 3 parameters in
search strategies: time-step size, state set representation, aggregation and clus-
tering settings. We aim at extend our search strategies with the adjustment of
further parameters.

Dynamic strategy synthesis. Using information about a counterexample, e.g. the
Hausdorff distance between the set of bad states and the state set intersecting
it, automatically deriving strategies for partial path refinement could be further
investigated.

Parameter synthesis. With little modification we can use our approach also to
synthesize the coarsest parameter setting which still allows to verify safety. This
can be achieved by strategies, where the parameter settings decrease in precision
and the analysis stops when a bad state is potentially reachable.

Partial path refinement. Partial refinement of counterexamples, for example
restricted to a suffix, could possibly improve the effectiveness of the approach (if
the refinement of the suffix renders a bad state unreachable).

Conditional strategies. We defined search strategies to be ordered sequences of
parameter configurations, which are used one after the other for refinements.
Introducing trees of configurations with conditional branching would allow even
more powerful strategies where the characteristics of the system or runtime infor-
mation (like previous refinement times, state set sizes, number of sets aggregated
etc.) can be used to determine which branch to take for the next refinement.
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