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Abstract. An advantage of model checking is its ability to generate wit-
nesses or counterexamples.Approaches exist to generate small orminimum
witnesses for simple unnested formulas, but no existing method guarantees
minimality for general nested ones. Here, we give a definition of witness
size, use edge-valued decision diagrams to recursively compute the min-
imum witness size for each subformula, and describe a general approach
to build minimum tree-like witnesses for existential CTL. Experimental
results show that for some models, our approach is able to generate mini-
mum witnesses while the traditional approach is not.

1 Introduction

Model checking is an automated technique to rigorously establish the correct-
ness of a system by exploring its computation graph, explicitly or symbolically.
Instead of merely answering “yes” or “no”, model checkers may be able to return
a witness or counterexample to verify satisfaction or violation of a specification.
Since witnesses and counterexamples provide important debugging information
and may be inspected by engineers, smaller ones are always preferable.

Computation Tree Logic (CTL) is widely used to express temporal proper-
ties due to its simple yet expressive semantics. Although much work has been
published on witness or counterexample generation [8,11,14], to the best of our
knowledge, no existing method guarantees their minimality for a general CTL
formula with nested temporal quantifiers. Clarke et al. [7] showed that the gen-
eral form of a counterexample to a universal CTL formula is tree-like; of course,
for CTL, counterexample generation for a universal formula can be converted
to witness generation for an existential formula, thus we choose to limit our dis-
cussion to witness generation for the existential fragment of CTL. The use of
backward exploration to verify EX, EF, and EU properties inherently guarantees
minimality of their linear witnesses, while a minimum lasso-shaped EG witness
can be generated by computing transitive closures, for example using the satura-
tion algorithm [17]. However, these approaches do not extend to general tree-like
witnesses, i.e., local minimality does not imply global minimality.

By recursively computing local fixpoints, the saturation algorithm [3] has
clear advantages over traditional symbolic breadth-first approaches for state-
space generation. It has also been applied to the computation of minimum EF [4]
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and EG [17] witnesses. Here, we extend these ideas into a global approach to build
minimum witnesses for arbitrary existential CTL formulas.

Our paper is organized as follows. Section 2 summarizes background on CTL,
decision diagrams, and symbolic CTL model checking. Section 3 defines the wit-
ness size and formalizes the computation of its minimum. Section 4 proposes
saturation-based algorithms to symbolically encode minimum witness sizes for
each existential temporal operator, needed to obtain an overall minimum witness
size. Section 5 describes how to generate a witness from the computed witness
size functions. Section 6 presents experimental results, Sect. 7 comments on our
definition of witness size, and Sect. 8 concludes and outlines future work.

2 Background

We denote sets using calligraphic letters (e.g., A, B, C), except for the booleans
B = {0, 1}, the natural numbers N = {0, 1, 2...}, and N∞ = N ∪ {∞}.

2.1 Kripke Structures, CTL, and Witnesses

A Kripke structure is a tuple (S,Sinit,N ,A,L), where S is the state space,
Sinit ⊆ S are the initial states, N : S → 2S is the next-state function, A is a
set of atomic propositions, and L : S → 2A is a labeling that gives the atomic
propositions holding in each state (subject to true ∈ A holding in every state).

We assume S to be the product S1×· · ·×SL of L finite state spaces, i.e., each
global state i ∈ S is a tuple (i1, ..., iL), where ik ∈ Sk is the local state for the kth

submodel. We also assume N to be disjunctively partitioned according to a set
E of asynchronous events, i.e., N =

⋃
e∈E Ne and, for each e ∈ E , Ne : S → 2S .

Ne(i) contains the states that can be nondeterministically reached in one step
when event e occurs in state i. Correspondingly, we let N −1

e denote the previous-
state function, i.e., N −1

e (j) = {i : j ∈ Ne(i)}, the set of states that can reach j
in one step through the occurrence of event e, and we let N −1 =

⋃
e∈E N −1

e .
Let P(i) be the set of paths starting at i ∈ S, i.e., finite sequences (i0, i1, ..., in)

for n ≥ 0, or infinite sequences (i0, i1, ...), where i0 = i and im ∈ N (im−1) for all
applicable m. Let C(i) ⊆ P(i) be the set of cycles starting at i, i.e., finite paths
(i0, i1, ..., in) with n > 0 and i0 = in = i.

We consider ECTL, the existential fragment of the temporal logic CTL [6],
where formulas have syntax (φ and ρ are formulas, a is an atomic proposition):

φ ::= a | ¬a |φ ∧ ρ |φ ∨ ρ |EXφ |EφUρ |EGφ,

and the conditions for state i to satisfy formula φ, written i |= φ, are as follows:

i |= a ⇔ a ∈ L(i)
i |= ¬a ⇔ a �∈ L(i)
i |= φ∧ρ ⇔ i |= φ and i |= ρ
i |= φ∨ρ ⇔ i |= φ or i |= ρ
i |= EXφ ⇔ ∃(i0, i1) ∈ P(i), i1 |= φ
i |= EφUρ ⇔ ∃(i0, i1, ..., in) ∈ P(i), n ≥ 0, in |= ρ ∧ ∀m ∈ {0, ..., n − 1}, im |= φ
i |= EGφ ⇔ ∃(i0, i1, ...) ∈ P(i),∀m ≥ 0, im |= φ

(formula EFφ is just a shorthand for EtrueUφ, so we do not discuss it separately).
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Since the state space S is finite, all infinite paths contain a cycle. Thus, path
(i0, i1, ...) demonstrating i |= EGφ must have a finite prefix (i0, ..., im, ..., in), for
some m ≥ 0 and n > m, where im = in, that is, it is a “lasso” formed by merging
(on state im) a possibly empty “handle” (i0, ..., im) and a “cycle” (im, ..., in).

We focus on witness generation, i.e., the computation of “tree-like” sub-
graphs demonstrating how a state satisfies an ECTL formula. This also serves
to generate counterexamples for ACTL, the universal fragment of CTL, since a
counterexample to AXφ, AGφ, or A[φUρ] is a witness to EX(¬φ), EF(¬φ), or
E[¬ρU(¬φ ∧ ¬ρ)] ∨ EG(¬ρ), respectively (where the negation ¬ can be “pushed
down” to atomic propositions), i.e., the negation of an ACTL formula is an
ECTL formula.

2.2 Decision Diagrams

We encode sets and relations symbolically with (ordered) multiway decision dia-
grams (MDDs) [10]. An L-level MDD over S = S1×· · ·×SL is an acyclic directed
edge-labeled level graph with terminal nodes 0 and 1, at level 0, while each non-
terminal node p is at some level p.lvl = k ∈ {1, ..., L}, and, for ik ∈ Sk, has an
outgoing edge labeled with ik and pointing to a child p[ik] at level p[ik].lvl < k.

MDD node p at level k encodes function fp : S → B, recursively defined
by fp(i1, ..., iL) = fp[ik](i1, ..., iL), with base case fp(i1, ..., iL) = p when k = 0.
Interpreting fp as an indicator function, p encodes set Xp = {i : fp(i) = 1} ⊆ S.
To encode relations over S, we use 2L-level MDDs over (S1×S1)×· · ·×(SL×SL),
where the first set in each pair corresponds to a “from”, or “unprimed”, local
state and the second set corresponds to a “to”, or “primed”, local state.

We use instead (ordered) additive edge-valued MDDs, (EV+MDDs) [4] to
encode partial integer-valued functions. An EV+MDD is an acyclic directed edge-
labeled and edge-valued level graph with terminal node Ω, at level 0, while each
nonterminal node p is at some level p.lvl = k ∈ {1, ..., L}, and, for ik ∈ Sk, has
an outgoing edge with label ik, pointing to a child p[ik].c at a level p[ik].c.lvl < k,
and value p[ik].v ∈ N∞. We write p[ik] = 〈p[ik].v, p[ik].c〉.

EV+MDD node p at level k encodes function fp : S → N∞ recursively defined
by fp(i1, ..., iL) = p[ik].v + fp[ik].c(i1, ..., iL), with base case fΩ(i1, ..., iL) = 0.

For efficiency, we restrict ourselves to canonical forms of decision diagrams,
where each function that can be encoded by a given class of decision diagrams
has a unique representation in that class. All such forms forbid duplicate nodes:
if p.lvl = q.lvl = k > 0 and ∀ik ∈ Sk, p[ik] = q[ik], then p = q. For ease of
exposition, we only consider the quasi-reduced form in this paper, achieved by
forbidding skipped levels: all roots (nodes without parent nodes) are at level
L and, if p.lvl = k, then all p’s children are at level k − 1. For EV+MDDs, in
addition, we require normalized nodes: each nonterminal node must have at least
one edge with value 0 and all edges with value ∞ must point to Ω. This means
that the minimum value of the function encoded by any node is 0, but we can
encode any partial function g : S → N∞ with a “root edge” 〈σ, p〉, where σ is
the minimum value assumed by g, while p at level L satisfies fp = g − σ.
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Fig. 1. Algorithm to compute the element-wise minimum of two functions.

However, our algorithms are actually implemented using the more efficient
fully-identity-reduced form for 2L-level MDDs and EV+MDDs (indicated MDD2
and EV+MDD2 in our algorithms, respectively) [5]. This form allows us to exploit
independence of events from local states: given e ∈ E , let Top(e) = k if e affects
or depends on the kth local state but not the lth one, for any l > k. In the
following, we then define Nk =

⋃
e:Top(e)=k Ne.

Procedure Min in Fig. 1 shows the classic recursive manipulation of decision
diagrams. Given functions f, g : S → N∞, let Minf,g : S → N∞ be their element-
wise minimum: for i ∈ S, Minf,g(i) = min{f(i), g(i)}. Given two EV+MDDs
〈α, p〉 and 〈β, q〉 encoding f and g, procedure Min returns the EV+MDD encoding
Minf,g. As the EV+MDDs are quasi-reduced, p.lvl =q.lvl unless α=∞ or β=∞.

Procedure Normalize (line 8) normalizes a node u by subtracting the mini-
mum edge value μ from all its edge values, so that at least one is 0, stores the
normalized u in the unique table (if not already there), and returns 〈μ, u〉.

Throughout this paper, procedures XxxGet (line 4) or XxxPut (line 10) are
queries to or insertions into compute tables (or “caches”), commonly used in
decision diagrams operations to avoid re-computation. The structure of the hash
key and returned value may of course depend on the specific operation Xxx .

2.3 Symbolic CTL Algorithms

McMillan proposed symbolic CTL model checking based on binary decision dia-
grams (BDDs) [12]. Given the BDDs encoding the set of states satisfying φ and ρ,
algorithms to compute the BDD encoding the set of states satisfying EXφ, EφUρ,
and EGφ suffice, since all CTL formulas can be expressed using these three CTL
operators, plus the standard logical operations of negation, conjunction, and
disjunction. Using MDDs instead of BDDs is a relatively obvious extension.

Clarke et al. [8] proposed the first symbolic approach to CTL witness genera-
tion. Considering first unnested CTL formulas, a witness forEXa can be generated
by one image computation, and is by definition minimum since all witnesses have
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size two. Using a symbolic breadth-first search, witness generation for EaUb also
guarantees minimality, while minimality is more difficult to satisfy for EGa, where
a witness is a path from an initial state to a cycle, such that all states along that
path and on the cycle satisfy a. In other words, a state i satisfying EGa must have a
successor also satisfyingEGa; thus, we can incrementally build a path of states sat-
isfyingEGa, which must finally lead to a state already on the path, closing the cycle
and resulting in a witness. A witness generation algorithm for (weakly fair)EGwas
proposed in [8] based on this idea. Since imight have multiple successors satisfying
EGa, the algorithm is nondeterministic and the size of the witness depends on the
state chosen at each step. While the algorithm uses a symbolic encoding, the app-
roach is largely explicit, as it follows a single specific path. Decision diagrams help
by efficiently encoding all states satisfying EG, but offer no help at all when decid-
ing which of the states in N (i) satisfying EG should be chosen next, to continue
the path from i.

Witness generation for arbitrarily nested CTL formulas is much harder. Of
course, we cannot exhibit witnesses for universal formulas, only counterexamples,
thus the presence of both existential and universal (non-negated) quantifiers in a
CTL formula φ means that we can neither provide a witness (in case φ holds) nor
a counterexample (in case φ does not hold). The most general approach to date
is by Clarke et al. [7] for general (nested) ACTL formulas, which proposed algo-
rithms to generate tree-like counterexamples, or witnesses for general (nested)
ECTL formulas. However, their work did not address minimality.

3 Defining the Minimum Witness Size

We focus on the generation of minimum witnesses for general (nested) ECTL
formulas. As discussed by Clarke et al. [7], these witnesses are finite tree-like
Kripke structures and complete for ECTL. To discuss their size, we unfold these
witnesses, i.e., the same state may appear multiple times and each appearance
contributes to the count defining the size of the witness. For example, con-
sider the (portion of a) Kripke structure shown in Fig. 2(a), satisfying formula
E(EGa)Ub (state are identified by numbers and the atomic propositions holding
in each state are listed close to it). An unfolded tree-like witness for this formula
is shown in Fig. 2(b), where state 5’s self-loop is repeated three times, once for
each of the states 1, 2, and 3, since we need to show that each of them satisfies
EGa (for clarity, a cycle is represented as a linear path along which the first and
the last states are the same; dashed nodes represent the states closing cycles).
Another way to think of this witness is that the first states of paths [[1, 5, 5]],
[[2, 5, 5]], and [[3, 5, 5]], each satisfying the inner formula φ′ = EGa, are “glued”
onto the first three states of path [[1, 2, 3, 4]], satisfying the outermost formula
Eφ′Uφ′′, as is the first (and only) state of path [[4]], satisfying the (atomic) inner
formula φ′′ = b. We write 5 for the last state of the EG witnesses to stress that
state 5 does not need to have its witness repeated, since it is just closing the
cycle. We define the size of a witness as the number of nodes in the resulting
tree-like graph. Thus, a witness for a is path [[1]], of size 1, a witness for EXa
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Fig. 2. A Kripke structure satisfying E(EGa)Ub and its tree-like witness.

is path [[1, 2]], of size 2, a witness for EaUb is path [[1, 2, 3, 4]], of size 4, and a
witness to E(EGa)Ub is the three-like graph [[[[1, 5, 5]], [[2, 5, 5]], [[3, 5, 5]], 4]], of size
10. For conjunction, we need additional path notation: a witness for EXa∧EaUb
is a tree-like graph [[[[1, 5]]♦[[1, 2, 3, 4]]]], of size 5, where the separator ♦ indicates
that the tree-like graphs to its left and its right are to be merged on their root.

We recursively define function πφ : S → N∞ describing the minimum witness
size for an ECTL formula φ starting from a state i ∈ S as follows:

πa(i) = if i |= a: 1, else: ∞
π¬a(i) = if i |= a: ∞, else: 1

πφ∧ρ(i) = πφ(i) + πρ(i) − 1 (the “−1” avoids double-counting state i)

πφ∨ρ(i) = min{πφ(i), πρ(i)}
πEXφ(i) = min{πφ(j) : ∀j ∈ N (i)} + 1

πEφUρ(i) = if i |= EφUρ: min{πρ(i), πφ(i) + min{πEφUρ(j) : ∀j ∈ N (i)}}, else: ∞
πEGφ(i) = if i |= EGφ: min{χφ(i), πφ(i) + min{πEGφ(j) : ∀j ∈ N (i)}}, else: ∞
χφ(i) = if C(i) �= ∅: min{∑n

i=1 πφ(ii) : ∀(i0, i1, ..., in) ∈ C(i)} + 1, else: ∞
where C(i) is the set of cycles starting at i, and χφ(i) is the minimum witness
size among cycles satisfying EGφ and starting at i. In the sum for χφ(i), we
exclude πφ(i0) and add 1 because state i = i0 = in starting and ending the cycle
appears twice, but we should not count the witness for i |= φ twice.

4 Computing the Minimum Witness Size

The first and most complex step to generate a minimum tree-like witness for an
arbitrary ECTL formula φ∗ is to build: (1) for each subformula φ of φ∗, starting
from the innermost atomic propositions, an EV+MDD encoding the size πφ(i) of
a minimum witness for φ starting from each state i, and (2) for each subformula
EGφ of φ∗, an EV+MDD2 encoding the size, TCφ(i, j), of a minimum witness
for a path of states satisfying φ from each state i to each state j.

We present algorithms to compute the minimum witness size for EU and EG,
while we omit the simpler ones for logical operators, EX, and atomic propositions.
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EUSat(EV+MDD 〈αρ, pρ〉, EV+MDD 〈βφ, qφ〉)
1: 〈μ, u〉 ← ConsSat(〈αρ, pρ〉, 〈βφ, qφ〉)
2: return 〈μ, u〉

ConsSat(EV+MDD 〈α, p〉, EV+MDD 〈β, q〉)
1: if α = ∞ or β = ∞ then return 〈∞, Ω〉
2: k ← p.lvl � we assume quasi-reduced rule, thus p.lvl = q.lvl
3: if l = 0 then return 〈α, Ω〉
4: if ConsSatGet(p,〈β,q〉,〈γ,u〉) then return 〈α+γ,u〉 �ConsSat(〈0,p〉,〈β,q〉)=〈γ,u〉
5: u ← EVMDDNode(k)
6: for each i ∈ Sk do
7: if q[i].v = ∞ then u[i] ← p[i]
8: else u[i] ← ConsSat(p[i], 〈β + q[i].v, q[i].c〉)
9: repeat
10: for each i, j ∈ Sk do
11: 〈τ, t〉 ← ConsRelProdSat(〈α + u[i].v, u[i].c〉, 〈β + q[j].v, q[j].c〉, N −1

k [i][j])
12: u[j] ← Min(u[j], 〈τ, t〉)
13: until u does not change
14: 〈μ, u〉 ← Normalize(u)
15: ConsSatPut(p, 〈β, q〉, 〈μ − α, u〉) � memoize the result
16: return 〈μ, u〉
ConsRelProdSat(EV+MDD 〈α, p〉, EV+MDD 〈β, q〉, MDD2 r)
1: if α = ∞ or β = ∞ or r = 0 then return 〈∞, Ω〉
2: k ← p.lvl � we assume quasi-reduced rule, thus p.lvl = q.lvl
3: if l = 0 then return 〈α + β, Ω〉
4: if ConsRelProdSatGet(p, 〈β, q〉, r, 〈γ, u〉) then return 〈α + γ, u〉
5: u ← EVMDDNode(k)
6: for each i, j ∈ Sk do
7: 〈τ, t〉 ← ConsRelProdSat(〈α + p[i].v, p[i].c〉, 〈β + q[j].v, q[j].c〉, r[i][j])
8: u[j] ← Min(u[j], 〈τ, t〉)
9: 〈μ, u〉 ← Normalize(u)
10: 〈μ, u〉 ← ConsSat(〈μ, u〉, 〈β, q〉)
11: ConsRelProdSatPut(p, 〈β, q〉, r, 〈μ − α, u〉) � memoize the result
12: return 〈μ, u〉

Fig. 3. Algorithm to compute the minimum witness size for EU formulas.

4.1 Computing the Minimum Witness Size for EU Formulas

In [15], we introduced a “constrained” variant of saturation that restricts explo-
ration to states satisfying a given property. Instead of applying “after-the-fact”
intersections, this approach employs a “check-and-fire” policy, firing an event
only when the next states to be obtained satisfy the given property, through an
on-the-fly check. Now, we further extend this idea to take into account the sizes
of subwitnesses demonstrating the satisfaction of subformulas.
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EUSat in Fig. 3 is the top-level procedure to compute πEφUρ, given 〈αρ, pρ〉
encoding πρ and 〈βφ, qφ〉 encoding πφ (both obtained by computing the min-
imum witness size function of subformulas). ConsSat computes a fixpoint for
the subfunction encoded by 〈α, p〉, under constraint 〈β, q〉, w.r.t. events affect-
ing variables up to p’s level. ConsRelProdSat first recursively computes the
〈β, q〉-constrained relational product of 〈α, p〉 and r (specifically, it serves as
a constrained version of the pre-image operation since we use the previous-state
function), then it saturates the resulting node to ensure that it reaches a local
fixpoint.

When exploring the pre-image of state i, we compute, for each predecessor
j ∈ N (i), the sum of πρ(j) and the value currently associated to i (line 3 in
ConsRelProdSat), and use it to reduce the value associated to j, if smaller
(line 12 in ConsSat and line 8 in ConsRelProdSat). Upon reaching a fixpoint, we
have the size of the minimum tree-like EφUρ witness for each state i (∞ if
i �|= EφUρ).

The hash-key for the cache entries of ConsSat and ConsRelProdSat consists
of two nodes, p and q, plus the value β attached to the edge for q, representing
the constraint. Storing the difference α−β, as done for Min, would be incorrect
because saturation computes local fixpoints and thus may fire an event multiple
times in one call, and α just serves as an offset to all the values in the final
function, while, for each individual state, it does not affect whether the new
value obtained from one firing is smaller than the currently associated value.
In other words, if it is known that ConsSat(〈0, p〉, 〈β, q〉) = 〈γ, u〉, then we can
conclude that ConsSat(〈α, p〉, 〈β, q〉) = 〈α + γ, u〉, for any α > 0.

4.2 Computing the Minimum Witness Size for EG Formulas

A witness of EGp is a lasso-shaped infinite path consisting of a finite prefix
leading to a cycle [1]. Thus, two steps are needed to compute a minimum tree-
like witness for EGφ: (1) identify all states in cycles of states satisfying φ, and
their minimum witness size; (2) starting from these states, explore the model
backward to find all states satisfying EGp, and their minimum witness size. This
second step is essentially an EU computation, thus we focus on the first step.

Given a graph, the transitive closure (TC) describes the reachability between
any pair of nodes. Computing TCs was deemed infeasible for large models [13],
but recent attempts using saturation to compute TCs symbolically have been
successful [16,17]. We generalize this approach so that, for EGφ, the size of a
minimum φ witness for each state in a φ cycle contributes to the cycle size.

We compute function TCφ : S × S → N∞ s.t. TCφ(i, j) is the minimum size
of any path i, i1, · · · , j, computed as πφ(i1) + · · · + πφ(j), or ∞ if no such path
exists. We do not include πφ(i) because we compute TCφ to obtain the minimum
witness size of cycles, χφ(i) = TCφ(i, i)+1, and πφ(i) should not be added twice.

The procedure to compute TCφ is analogous to a symbolic implementation
of Dijkstra’s algorithm in a weighted graph. We initialize the function

λφ(i1, i2) =
{

πφ(i2) if i2 ∈ N (i1), i1 |= φ, and i2 |= φ
∞ otherwise
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and repeat the following computation until reaching a fixpoint:

λφ(i1, i2) = min{λφ(i1, i2),min{λφ(i1, i) + πφ(i2) : ∀i ∈ N −1(i2)}}.

This iteration never increases the value of λφ, thus it terminates, and when
it does the resulting fixpoint is TCφ. Procedures TCSat and TCRelProdSat
in Fig. 4 are similar to ConsSat and ConsRelProdSat in Fig. 3, except that
they apply saturation to an EV+MDD2. TCMin (line 14 in TCSat , line 11 in
TCRelProdSat) is an implementation of Min over pairs of states: for each i, j ∈ S,
TCMinf,g(i, j) = min{f(i, j), g(i, j)}.

Finally, we compute πEGφ with procedure EGSat, where 〈βφ, qφ〉 encodes πφ.
BuildLambda (line 1) builds an EV+MDD2 encoding function λφ, to initialize the
computation of TCφ. ExtractCycles (line 2) returns an EV+MDD encoding χφ(i)
by extracting elements TCφ(i, i) from TCφ, for i ∈ S, and adding 1 to them.

5 Generating a Minimum Tree-Like Witness

Recall that, if function f is encoded as an EV+MDD, one can retrieve MinVal(f),
the minimum value of f , in constant time (as the value labeling the edge pointing
to the root node) and MinState(f), a state achieving that minimum value, in
time proportional to the number of levels L (follow a path of 0-valued edges from
the root to Ω). Evaluating f(i) for a given state i also requires just L steps.

To obtain a minimum overall witness recursively, we start from an initial
state i∗ with a minimum witness for φ∗. This state can be found by building an
EV+MDD encoding the function finit : S → {0,∞} evaluating to 0 iff i ∈ Sinit,
and then the EV+MDD encoding πφ∗∧init , the elementwise maximum of finit and
πφ∗ (i.e., the restriction of the minimum witness size for φ∗ to the initial states).
If MinVal(πφ∗∧init) = ∞, no initial state satisfies φ∗, thus no witness exists.
Otherwise, there is a minimum witness of size MinVal(πφ∗∧init) starting from
an initial state i∗ = MinState(πφ∗∧init), and the call MinWit(i∗, φ∗, πφ∗(i∗)) (see
Fig. 5) will recursively generate one such minimum witness.

6 Experimental Results

We implemented both our EV+MDD-based approach to generate minimum tree-
like witnesses (MinWit) and the traditional MDD-aided BFS approach [7] to gen-
erate (not necessarily minimum) tree-like witnesses (Wit) in our model checker
SMART [2]. Then we ran them on a benchmark suite consisting of nine Petri net
models from the 2017 Model Checking Contest (https://mcc.lip6.fr/2017/). All
models have one or more scaling parameters affecting the number of states and
state-to-state transitions, thus the model size and complexity. To generate tree-
like witnesses, we define an ECTL formula that the model satisfies (the specific
formula is listed in the results presented in Table 1). The datasets we utilized are
available in the figshare repository [9].

https://mcc.lip6.fr/2017/
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EGSat(EV+MDD 〈βφ, qφ〉)
1: 〈τ, t〉 ← TCSat(BuildLambda(〈βφ, qφ〉), 〈βφ, qφ〉)
2: 〈μ, u〉 ← ConsSat(ExtractCycles(〈τ, t〉), 〈βφ, qφ〉)
3: return 〈μ, u〉

TCSat(EV+MDD2 〈α, p〉, EV+MDD 〈β, q〉)
1: if α = ∞ or β = ∞ then return 〈∞, Ω〉
2: k ← p.lvl � we assume quasi-reduced rule, thus p.lvl = q.lvl
3: if k = 0 then return 〈α, Ω〉
4: if TCSatGet(p,〈β,q〉,〈γ,u〉) then return 〈α+γ,u〉 � TCSat(〈0,p〉,〈β,q〉)=〈γ,u〉
5: u ← EVMDD2Node(k)
6: for each i, j ∈ Sk do
7: u[i].c[j] ← TCSat (〈α + p[i].v + p[i].c[j].v, p[i].c[j].c〉, 〈β + q[j].v, q[j].c〉)
8: for each i ∈ Sk do
9: w ← EVMDD2Node(prime(k))
10: repeat
11: for each j, j′ ∈ Sk do
12: 〈α′, u′〉 ← 〈α + u[i].v + u[i].c[j].v, u[i].c[j].c〉
13: 〈τ, t〉 ← TCRelProdSat(〈α′, u′〉, 〈β + q[j′].v, q[j′].c〉, Nk[j][j′])
14: w[j′] ← TCMin(w[j′], 〈τ, t〉)
15: until w does not change
16: u[i] ← Normalize(w)
17: 〈μ, u〉 ← Normalize(u)
18: TCSatPut(p, 〈β, q〉, 〈μ − α, u〉) � memoize the result
19: return 〈μ, u〉
TCRelProdSat(EV+MDD2 〈α, p〉, EV+MDD 〈β, q〉, MDD2 r)
1: if α = ∞ or β = ∞ or r = 0 then return 〈∞, Ω〉
2: k ← p.lvl � we assume quasi-reduced rule, thus p.lvl = q.lvl
3: if k = 0 then return 〈α + β, Ω〉
4: if TCRelProdSatGet(p, 〈β, q〉, r, 〈γ, u〉) then return 〈α + γ, u〉
5: u ← EVMDD2Node(k)
6: for each i ∈ Sk do
7: w ← EVMDD2Node(prime(k))
8: for each j, j′ ∈ Sk do
9: 〈α′, p′〉 ← 〈α + p[i].v + p[i].c[j].v, p[i].c[j].c〉
10: 〈τ, t〉 ← TCRelProdSat(〈α′, p′〉, 〈β + q[j′].v, q[j′].c〉, r[j][j′])
11: w[j′] ← TCMin(w[j′], 〈τ, t〉)
12: u[i] ← Normalize(w)
13: 〈μ, u〉 ← Normalize(u)
14: 〈μ, u〉 ← TCSat(〈μ, u〉, 〈β, q〉)
15: TCRelProdSatPut(p, 〈β, q〉, r, 〈μ − α, u〉) � memoize the result
16: return 〈μ, u〉

Fig. 4. Algorithm to compute the minimum witness size for EG formulas.
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MinWit(state i,ECTLformula φ, size n)
1: if φ ∈ A then return i � n = 1, φ is an atomic proposition
2: if φ = φ′ ∧ ρ′ then � n = πφ′(i) + πφ′(j) − 1
3: return [[MinWit(i, φ′, πφ′(i))]]♦[[MinWit(i, ρ′, πρ′(i))]]
4: if φ = φ′ ∨ ρ′ then � n = min{πφ′(i), πρ′(i)}
5: if n = πφ′(i) then return [[MinWit(i, φ′, πφ′(i))]]
6: else return [[MinWit(i, ρ′, πρ′(i))]]
7: if φ = EXφ′ then
8: choose j ∈ N (i) s.t. πφ′(j) = n − 1 � there exists at least one such j
9: return i, [[MinWit(j, φ′, n − 1)]]
10: if φ = Eφ′Uρ′ then
11: if πρ′(i) = n then � a minimum witness for i |= ρ′ works for i |= Eφ′Uρ′

12: return [[MinWit(i, ρ′, n)]]
13: else � no witness for i |= ρ′ is minimum for i |= Eφ′Uρ′

14: choose j ∈ N (i) s.t. πφ′(j) = n − πφ′(i) � there exists at least one such j
15: return [[MinWit(i, φ′, πφ′(i))]],MinWit(j, φ, n − πφ′(i))
16: if φ = EGφ′ then
17: if TCφ′(i,i)=n−1 then � a minimum cycle witness for i works for i |= EGφ′

18: return CloseCycle(i, i, φ′, n − 1)
19: else � i is on the handle of a lasso for a minimum witness for i |= EGφ′

20: choose j ∈ N (i) s.t. πφ(j) = n − πφ′(i) � there exists at least one such j
21: return [[MinWit(i, φ′, πφ′(i))]],MinWit(j, φ, n − πφ′(i))

CloseCycle(state j, state i,ECTLformula φ, size n)
1: if πφ(i) = n then � it must be that i ∈ N (j), close the cycle with i
2: return [[MinWit(j, φ, πφ(j))]], i
3: else
4: choose k ∈ N (j) s.t. TCφ(k, i) = n − πφ(k) � there exists at least one such k
5: return [[MinWit(j, φ, πφ(j))]],CloseCycle(k, i, φ, n − πφ(k))

Fig. 5. Algorithm to generate a minimum tree-like witness.

For MinWit, we run each model instance with a timeout of one hour, and
report the runtime, the peak memory consumption, and the size of the minimum
witness. For Wit, we run each instance 100 times and report the total runtime,
the peak memory consumption, and the minimum, average and maximum size
among the all the generated witnesses. The minimum witness size is in bold
when Wit did not manage to generate a minimum witness in any of the 100
runs. Obviously, the choice of R = 100 runs is arbitrary: the larger R is, the
more likely Wit is to generate smaller witnesses, possibly a minimum one, but,
on the other hand, the overall time Wit spends for witness generation is roughly
proportional to R. Fundamentally, however, we have no easy way to know if the
smallest witness generated by Wit is a minimum one, regardless of how large R
is, while MinWit guarantees minimality.

A few observations are in order. First, it is not surprising that MinWit is
sometimes orders of magnitude slower and requires more memory than Wit.
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Table 1. Performance comparison of MinWit and Wit.

Model (parms) #States #Trans Time (s) Memory (MB) Size

MinWit Wit MinWit Wit MinWit Wit

min avg max

EG(EF((Section 2 = 1) ∧ (Section 3 = 1)))

CircularTrain(12) 2.0 · 102 5.0 · 102 0.4 0.0 20.6 4.8 25 32 71 275

CircularTrain(24) 8.7 · 104 4.1 · 105 2244.9 4.6 2924.5 11.8 37 91 404 889

E(EF(ERKPP > 5)UEG(RKIPP RP > 5))

ERK(20) 1.7 · 106 1.6 · 107 93.9 3.8 591.0 6.5 129 258 313 391

ERK(22) 2.8 · 106 2.7 · 107 224.1 4.4 932.1 6.9 129 246 314 393

ERK(25) 5.7 · 106 5.4 · 107 793.4 5.0 1800.6 8.0 129 256 315 397

EF((P1 = 3) ∧ EG((P1 > P2) ∧ (P2 > P3)))

FMS(5) 2.9 · 106 3.2 · 107 0.6 2.7 21.0 7.6 13 13 48 193

FMS(8) 2.5 · 108 3.6 · 109 31.6 17.5 447.6 13.7 22 22 51 201

FMS(10) 2.5 · 109 4.1 · 1010 458.9 30.6 1510.1 23.5 28 28 54 217

EF((P1 < P2) ∧ EG(P1 = P4))

Kanban(20) 8.1 · 1011 1.1 · 1013 18.4 1530.3 269.6 289.0 10 10 10 11

Kanban(22) 2.1 · 1012 2.9 · 1013 28.6 2297.8 395.9 410.4 10 10 10 11

Kanban(25) 7.7 · 1012 1.1 · 1014 53.9 4224.4 691.6 707.9 10 10 10 11

E(EF(Phase1 < Phase2)U (Phase2 > Phase3))

MAPK(8) 6.1 · 106 7.9 · 107 14.0 2.0 353.0 6.1 70 126 126 126

MAPK(12) 3.2 · 108 5.0 · 109 1881.4 6.2 1764.2 8.7 109 204 204 204

EF((Think 1 = 0) ∧ EG(Eat 1 = 0))

Philosophers(20) 3.5 · 109 5.4 · 1010 1.3 2.1 52.4 9.2 5 5 8 22

Philosophers(50) 7.2 · 1023 2.8 · 1025 44.9 10.8 763.5 29.1 5 5 7 20

Philosophers(100) 5.2 · 1047 4.0 · 1049 timeout 52.1 − 94.0 − 5 7 28

E(EF(P client ack 1 = 1)U ((P server ack 1 = 1) ∧ (P server ack 2 = 1)))

SimpleLoadBal(2) 8.3 · 102 3.4 · 103 0.1 0.8 9.0 5.9 23 23 32 44

SimpleLoadBal(5) 1.2 · 105 7.5 · 105 37.6 19.2 1032.6 41.0 23 26 69 80

E(EF(TaskOnDisk < CPUUnit)U (CPUUnit < DiskControllerUnit))

SmallOS(64,32) 9.1 · 106 6.8 · 107 17.5 1987.7 374.6 401.6 662 694 1189 1552

SmallOS(128,64) 2.6 · 108 2.0 · 109 294.4 53522.2 3228.4 1850.0 2342 2430 4698 5920

EF(EG(Undress < InBath))

SwimmingPool(1) 9.0 · 104 4.5 · 105 109.7 4.7 1334.9 6.6 16 16 24 43

SwimmingPool(2) 3.4 · 106 2.0 · 107 timeout 39.1 − 22.3 − 16 24 53

Building EV+MDDs or EV+MDD2s encoding both states and size information
is much more expensive than the image computations on MDDs used to just run
the model checking phase, as Wit does. However, this is offset by a minimality
guarantee. Interestingly, there are cases where MinWit completes with a run-
time and memory consumption comparable to a single run of Wit (e.g., Kanban)
or even faster (e.g., SmallOS). We give credit to the saturation algorithm for its
efficient locality-exploiting exploration.

Second, for models where small, simple witnesses exist, Wit may be able
to generate a minimum witness. Since the backward exploration guarantees the
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local minimality of subwitnesses for EX, EF and EU segments, such greedy strat-
egy may result in a global minimum witness, determined by the structure of the
model. But this occurrence cannot be guaranteed, regardless of whether we use
100 runs or 10,000 runs, so that, even when Wit happens to generate a minimum
witness, users do not know that this is indeed the case.

Third, for models where only large, complex witnesses exist, generating a
minimum witness is almost impossible for Wit, while the witness from MinWit
can be only 40% as large as the smallest one generated by Wit (e.g., Circular-
Train with N = 24). Additionally, Wit’s greedy strategy may trap itself into a
local optimum. For example, the ECTL formula used for model MAPK does not
contain EG, and the minimum, average, and maximum witness sizes generated
by Wit are equal, implying that Wit is unaware of other possibilities when
it chooses branching states. Adopting a probabilistic non-optimal strategy like
simulated annealing may alleviate this problem, but it still would not provide
guarantees and would likely require many more runs.

The main limitation of MinWit is that, since computing the minimum wit-
ness size function is computationally intensive, long runtimes and large amounts
of memory are required as the model complexity scales up. However, engineers
usually debug models with small scaling parameters first, perhaps running model
checking tools overnight, thus, the resource requirement of MinWit may often
be acceptable in practice. In real-world applications, we believe that MinWit
and Wit can complement each other. Wit generates a large number of wit-
nesses in a short time, but if all the witnesses are complex, MinWit can be run
to find a smaller, easier-to-inspect one. Conversely, if MinWit fails to generate
a minimum witness due to time or memory limitation, Wit can be run to obtain
not-necessarily-minimum ones by running it repeatedly, as many times as one
can afford. The best approach, given enough resources and in the presence of
critical deadlines, may well be to run both methods in parallel, so that we can
be sure to have a minimum witness if MinWit completes, but we have at least
some witnesses from Wit, if MinWit fails to complete in time.

7 A Comment About Our Definition of Witness Size

In Sect. 3, we defined the witness size as “the number of appearances of states in
the unfolded tree-like witness”. An alternative definition could have been “the
number of distinct states in the unfolded tree-like witness”. However, a state
may appear multiple times for different purposes in a witness. For example, the
witness for EF(a ∧EGb) in Fig. 6 contains state 2 twice, one in [[3, 2, 3]] to verify
for the EG fragment, the other in [[1, 2, 3]] to verify the EF fragment. Considering
each appearance separately makes each subpath independently verifiable, while
merging states that appear multiple times and counting only distinct states loses
this information. Admittedly, our definition of witness size also enables our app-
roach to obtain minimum witnesses, while we do not know a practical algorithm
that can derive minimum witnesses according to a definition of size where com-
mon paths and states appearing multiple times are counted without repetition.
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b a, b
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a, b

Fig. 6. A witness for EF(a ∧ EGb).

Of course, after obtaining a minimum witness according to our definition, we
could attempt to merge shared portions among subpaths that demonstrate the
same property, but doing so would not generally result in minimum witnesses
according to this alternative view of witness size.

8 Conclusions

We presented a definition of witness size and an approach to compute minimum
tree-like witnesses for ECTL formulas, based on edge-valued decision diagrams
to capture a global view of witness size. Experimental results demonstrate that
our approach is able to generate minimum witnesses (with a guarantee that it
is doing so) for some models, while the traditional approach is not. While the
runtime and memory requirements of our approach tend to be higher, sometimes
they are comparable to that of the traditional approach.

There are several directions for future work to improve this approach itself or
extend its applicability. One interesting possibility is to selectively employ our
approach or the traditional approach for different subformulas; this would not
guarantee witness minimality, but could generate smaller witness than with the
traditional approach alone, while being faster than using our approach alone.
Especially for EG formulas, the traditional approach has no global view about
the size of witnesses it generates, while, for formulas where the minimum witness
size from each state varies widely, the EV+MDDs and EV+MDD2s built by our
method tend to be large and costly to compute. Thus, heuristics that consider
both the structure of the model and of the formula are needed.

Finally, our approach could be further extended by generalizing the concept
of “size” to “weight”. Specifically, by assigning a weight to each state, engineers
could convey their preference to model checkers, which would then tend to gener-
ate witnesses containing the desired states and subpaths, instead of just counting
the number of states in the witness. The algorithmic difference in doing so would
be negligible, the only additional cost could be a potential growth in the size of
the corresponding EV+MDDs and EV+MDD2s, as the functions being encoded
might have less sharing of nodes.
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