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Abstract. Automated techniques for analysis and optimization of
finite-precision computations have recently garnered significant interest.
Most of these were, however, developed independently. As a consequence,
reuse and combination of the techniques is challenging and much of
the underlying building blocks have been re-implemented several times,
including in our own tools. This paper presents a new framework, called
Daisy, which provides in a single tool the main building blocks for accu-
racy analysis of floating-point and fixed-point computations which have
emerged from recent related work. Together with its modular structure
and optimization methods, Daisy allows developers to easily recombine,
explore and develop new techniques. Daisy’s input language, a subset
of Scala, and its limited dependencies make it furthermore user-friendly
and portable.

1 Introduction

Floating-point or fixed-point computations are an integral part of many embed-
ded and scientific computing applications, as are the roundoff errors they intro-
duce. They expose an interesting tradeoff between efficiency and accuracy: the
more precision we choose, the closer the results will be to the ideal real arith-
metic, but the more costly the computation becomes. Unfortunately, the unintu-
itive and complex nature of finite-precision arithmetic makes manual optimiza-
tion infeasible such that automated tool support is indispensable.

This has been recognized previously and several tools for the analysis and
optimization of finite-precision computations have been developed. For instance,
the tools Fluctuat [22], Rosa [14], Gappa [17], FPTaylor [41], Real2Float [31]
and PRECiSA [34] automatically provide sound error bounds on floating-point
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(and some also on fixed-point) roundoff errors. Such a static error analysis is
a pre-requisite for any optimization technique providing rigorous results, such
as recent ones which choose a mixed-precision assignment [10] or an error-
minimizing rewriting of the non-associative finite-precision arithmetic [15,37].

Many of these techniques are complementary. The static analysis techniques
have different strengths, weaknesses, and accuracy/efficiency tradeoffs, and opti-
mization techniques should ideally be combined for best results [16]. How-
ever, today’s techniques are mostly developed independently, resulting in re-
implementations and making re-combination and re-use challenging and time-
consuming.

In this paper, we present the framework Daisy for the analysis and opti-
mization of finite-precision computations. In contrast to previous work, we have
developed Daisy from the ground up to be modular, and thus easily extensi-
ble. Daisy is being actively developed and currently already provides many of
today’s state-of-the-art techniques — all in one tool. In particular, it provides
dataflow- as well as optimization-based sound roundoff error analysis, support for
mixed-precision and transcendental functions, rewriting optimization, interfaces
to several SMT solvers and code generation in Scala and C. Daisy furthermore
supports both floating-point and fixed-point arithmetic (whenever the techniques
do), making it generally applicable to both scientific computing and embedded
applications.

Daisy is aimed at tool developers as well as non-expert users. To make it user-
friendly, we adopt the input format of Rosa, which is a real-valued functional
domain-specific language in Scala. Unlike other tools today, which have custom
input formats [41] or use prefix notation [12], Daisy’s input is easily human
readable1 and natural to use.

Daisy is itself written in the Scala programming language [35] and has lim-
ited and optional dependencies, making it portable and easy to install. Daisy’s
main design goals are code readability and extensibility, and not necessarily per-
formance. We demonstrate with our experiments that roundoff errors computed
by Daisy are nonetheless competitive with state-of-the-art tools with reasonable
running times.

Daisy has replaced Rosa for our own development, and we are happy to report
that simple extensions (e.g. adding support for fused multiply-add operations)
were integrated quickly by MSc students previously unfamiliar with the tool.

Contributions. We present the new tool Daisy which integrates several tech-
niques for sound analysis and optimization of finite-precision computations:

– static dataflow analysis for finite-precision roundoff errors [14] with mixed-
precision support and additional support for the dReal SMT solver [21],

– FPTaylor’s optimization-based absolute error analysis [41],
– transcendental function support, for dataflow analysis following [13],
– interval subdivision, used by Fluctuat [22] to obtain tighter error bounds,
– rewriting optimization based on genetic programming [15].
1 We realize a preference for prefix or infix notation is personal.
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We show in Sect. 5 that results computed by Daisy are competitive. The code is
available open-source at https://github.com/malyzajko/daisy.

We focus primarily on sound verification techniques. The goal of this effort
is not to develop the next even more accurate technique, rather to consolidate
existing ones and to provide a solid basis for further research. Other efforts
related to Daisy, which have been described elsewhere and which we do not
focus on here are the generation and checking of formal certificates [4], relative
error computation [26], and mixed-precision tuning [16].

2 User’s Guide: An Overview of Daisy

We first introduce Daisy’s functionality from a user’s perspective, before review-
ing background in roundoff error analysis (Sect. 3) and then describing the devel-
oper’s view and the internals of Daisy (Sect. 4).

Installation. Daisy is set up with the simple build tool (sbt) [30], which takes
care of installing all Scala-related dependencies fully automatically. This basic
setup was successfully tested on Linux, macOS and Windows. Some of Daisy’s
functionality requires additional libraries, which are also straight-forward to
install: the Z3 and dReal SMT-solvers [19,21], and the MPFR arbitrary-precision
library [20]. Z3 works on all platforms, we have tested MPFR on Linux and Mac,
and dReal on Linux.

Input Specification Language. The input to Daisy is a source program written in
a real-valued specification language; Fig. 1 shows an example nonlinear embed-
ded controller [15]. The specification language is not executable (as real-valued
computation is infeasible), but it is a proper subset of Scala. The Real data type
is implemented with Scala’s dedicated support for numerical types.

Each input program consists of a number of functions which are handled by
Daisy separately. In the function’s precondition (the require clause), the user

Fig. 1. Example input program

https://github.com/malyzajko/daisy
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provides the ranges of all input variables2. In addition, Daisy allows to specify
an initial error (beyond only roundoff) on input variables with the notation
x1 +/- 1e-5 as well as additional (non-interval) constraints, e.g. x1 * x2 <= 100.

The function body consists of a numerical expression with possibly local vari-
able declarations. Daisy supports arithmetic (+,−, ∗, /,

√), the standard tran-
scendental functions (sin, cos, tan, log, exp) as well as fused multiply-add (FMA).
Daisy currently does not support conditionals and loops; we discuss the chal-
lenges and possible future avenues in Sect. 6. The (optional) postcondition in
the ensuring clause specifies the result’s required accuracy in terms of worst-case
absolute roundoff error. For our controller, this information may be for instance
determined from the specification of the system’s sensors or the analysis of the
controller’s stability [32].

Main Functionality. The main mode of interaction with Daisy is through a
command-line interface. Here we review Daisy’s main features through the most
commonly used command-line options. Brackets denote a choice and curly braces
optional parameters. For more options and more fine-grained settings, run --help.

The main feature of Daisy is the analysis of finite-precision roundoff errors.
For this, Daisy provides several methods:

--analysis=[dataflow:opt:relative] {--subdiv}

Daisy supports forward dataflow analysis (as implemented in Rosa, Fluctuat
and Gappa) and an optimization-based analysis (as implemented in FPTaylor
and Real2Float). These methods compute absolute error bounds, and whenever
a relative error can be computed, it is also reported. Daisy also supports a
dedicated relative error computation [26] which is often more accurate, but also
more expensive. All methods can be combined with interval subdivision, which
can provide tighter error bounds at the expense of larger running times. We
explain these analyses in more detail in Sect. 3.

Accuracy and correspondingly cost of both dataflow and optimization-based
analysis can be adjusted by choosing the method which is used to bound ranges:

--rangeMethod=[interval:affine:smt] {--solver=[z3, dReal]}

With the smt option, the user can select between currently two SMT solvers,
which have to be installed separately. For dataflow analysis, one can also select
the method for bounding errors: --errorMethod=[interval, affine].

Daisy performs roundoff error analysis by default w.r.t. to uniform double
floating-point precision, but it also supports various other floating-point and
fixed-point precisions:

--precision=[Fixed8:Fixed16:Fixed32:Float16:Float32:Float64:Quad:QuadDouble]

2 The magnitude of roundoff errors depends on the magnitude of all intermediate
expressions; in general, with unbounded ranges, roundoff errors are also unbounded.
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Mixed-precision, i.e. choosing different precisions for different variables, is sup-
ported by providing a mapping from variables to precisions in a separate file
(--mixed-precision=file).

Finite-precision arithmetic is not associative, i.e. different rewritings, even
though they are equivalent under a real-valued semantics, will exhibit different
roundoff errors. The --rewrite optimization [15] uses genetic search to find a
rewriting for which it can show the smallest roundoff error.

Daisy prints the analysis result to the terminal. If a postcondition is spec-
ified, but the computed error does not satisfy it, Daisy also prints a warning.
Optionally, the user can also choose to generate executable code (--codegen) in
Scala or C, which is especially useful for fixed-point arithmetic, as Daisy’s code
generator includes all necessary bit shifts.

Static analysis computes a sound over-approximation of roundoff errors, but
an under-approximation can also be useful, e.g. to estimate how big the over-
approximation of static analysis is. This is provided by the --dynamic analysis
in Daisy which runs a program in the finite precision of interest and a higher-
precision version side-by-side. For this, the MPFR library is required.

Online Interface. We also provide an online interface for Daisy, which allows
one to quickly try it out, although it does not yet support all the options:
daisy.mpi-sws.org, see the screenshot in Fig. 2.

Fig. 2. Screenshot of Daisy’s online interface

3 Theoretical Foundations

Before describing the inner architecture of Daisy, we review necessary back-
ground on finite-precision arithmetic and static analysis of their roundoff errors.

http://www.daisy.mpi-sws.org
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Floating-Point Arithmetic. One of the most commonly used finite-
precision representations is floating-point arithmetic, which is standardized by
IEEE754 [24]. The standard defines several precisions as well as rounding oper-
ators; here we will consider the most commonly used ones, i.e. single and double
precision with operations in rounding-to-nearest mode. Then, arithmetic opera-
tions satisfy the following abstraction:

x ◦fl y = (x ◦ y)(1 + e) + d , |e| ≤ εm, |d| ≤ δm (1)

where ◦ ∈ +,−, ∗, / and ◦fl denotes the respective floating-point version. Square
root follows similarly, and unary minus does not introduce roundoff errors. The
machine epsilon εm bounds the maximum relative error for so-called normal
values. Roundoff errors of subnormal values, which provide gradual underflow,
are expressed as an absolute error, bounded by δm. εm = 2−24, δm = 2−150 and
εm = 2−53, δm = 2−1075 for single and double precision, respectively.

Higher precisions are usually implemented in software libraries on top of
standard double floating-point precision [2]. Daisy supports quad and quad-
double precision, where we assume εm = 2−113 and εm = 2−211, respectively.
Depending on the library, δm may or may not be defined, and Daisy can be
adjusted accordingly.

Static analyses usually use this abstraction of floating-point arithmetic, as
bit-precise reasoning does not scale, and furthermore is unsuitable for computing
roundoff errors w.r.t. continuous real-valued semantics (note that Eq. 1 is also
real-valued). The abstraction furthermore only holds in the absence of not-a-
number special values (NaN) and infinities. Daisy’s static analysis detects such
cases automatically and reports them as errors.

Fixed-Point Arithmetic. Floating-point arithmetic requires dedicated sup-
port, either in hardware or software, and depending on the application this
support may be too costly. An alternative is fixed-point arithmetic which can
be implemented with integers only, but which in return requires that the radix
point alignments are precomputed at compile time. While no standard exists,
fixed-point values are usually represented by bit vectors with an integer and a
fractional part, separated by an implicit radix point. At runtime, the alignments
are then performed by bit-shift operations. These shift operations can also be
handled by special language extensions for fixed-point arithmetic [25]. For more
details see [1], whose fixed-point semantics we follow. We use truncation as the
rounding mode for arithmetic operations. The absolute roundoff error at each
operation is determined by the fixed-point format, i.e. the (implicit) number
of fractional bits available, which in turn can be computed from the range of
possible values at that operation.

Range Arithmetic. The magnitude of floating-point and fixed-point roundoff
errors depends on the magnitudes of possible values. Thus, in order to accurately
bound roundoff errors, any static analysis first needs to be able to bound the
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ranges of all (intermediate) expressions accurately, i.e. tightly. Different range
arithmetics have been developed and each has a different accuracy/efficiency
tradeoff. Daisy supports interval [33] and affine arithmetic [18] as well as a
more accurate, but also more expensive, combination of interval arithmetic and
SMT [14].

Interval arithmetic (IA) [33] is an efficient choice for range estimation, which
computes a bounding interval for each basic operation ◦ ∈ {+,−, ∗, /} as

[x0, x1] ◦ [y0, y1] = [min(x ◦ y),max(x ◦ y)], where x ∈ [x0, x1], y ∈ [y0, y1]

and analogously for square root. Interval arithmetic cannot track correlations
between variables (e.g. x − x �= [0, 0]), and thus can introduce significant over-
approximations of the true ranges, especially when the computations are longer.

Affine arithmetic (AA) [18] tracks linear correlations by representing possible
values of variables as affine forms:

x̂ = x0 +
n∑

i=1

xiεi, where εi ∈ [−1, 1]

where x0 denotes the central value (of the represented interval) and each
noise term xiεi denotes a deviation from this central value. The range rep-
resented by an affine form is computed as [x̂] = [x0 − rad(x̂), x0 + rad(x̂)],
rad(x̂) =

∑n
i=1 |xi|. Linear operations are performed term-wise and are com-

puted exactly, whereas nonlinear ones need to be approximated and thus intro-
duce over-approximations. Overall, AA can produce tighter ranges in practice
(though not universally). In particular, AA is often beneficial when the individ-
ual noise terms (xi’s) are small, e.g. when they track roundoff errors.

The over-approximation due to nonlinear arithmetic can be mitigated [14]
by refining ranges computed by IA with a binary search in combination with a
SMT solver which supports nonlinear arithmetic such as Z3 [19] or dReal [21].

Static Analysis for Roundoff Error Estimation. The worst-case absolute
roundoff error that most static analyses approximate is:

max
x∈[a,b]

|f(x) − f̃(x̃)| (2)

where [a, b] is the range for x given in the precondition, and f and x are a
mathematical real-valued arithmetic expression and variable, respectively, and f̃
and x̃ their finite-precision counterparts. This definition extends to multivariate
f component-wise.

An automated and general estimation of relative errors ( |f(x)−f̃(x̃)|
|f(x)| ), though

it may be more desirable, presents a significant challenge today. For instance,
when the range of f(x) includes zero, relative errors are not well defined and
this is often the case in practice. For a more thorough discussion, we refer the
reader to [26]; the technique is also implemented within Daisy.

For bounding absolute errors, two main approaches exist today, which we
review in the following.
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Dataflow Analysis. One may think that just evaluating a program in interval
arithmetic and interpreting the width of the resulting interval as the error bound
would be sufficient. While this is certainly a sound approach, it computes too
pessimistic error bounds in general. This is especially true if we consider rela-
tively large ranges on inputs; we cannot distinguish which part of the interval
width is due to the input interval or due to accumulated roundoff errors.

Thus, dataflow analysis computes roundoff error bounds in two steps, recur-
sively over the abstract syntax tree (AST) of the arithmetic expression:

1. range analysis computes sound range bounds (for real semantics),
2. error analysis propagates errors from subexpressions and computes the new

worst-case roundoffs using the previously computed ranges.

In practice, these two steps can be performed in a single pass over the AST. A
side effect of this separation is that it provides us with a modular approach: we
can choose different range arithmetics with different accuracy/efficiency tradeoffs
for ranges and errors (and possibly for different parts of a program).

The main challenge of dataflow analysis is to minimize over-approximations
due to nonlinear arithmetic (linear arithmetic can be handled well with AA).
Previous tools chose different strategies. For instance, Rosa [14] employs the com-
bination of interval arithmetic with a non-linear SMT-solver, which we described
earlier. Fluctuat [22], which uses AA for both bounding the ranges as well as the
errors, uses interval subdivision. In Fluctuat, the user can designate up to two
variables whose input ranges will be subdivided into intervals of equal width.
The analysis is performed separately for each and the overall error is then the
maximum error over all subintervals. Interval subdivision increases the runtime
of the analysis, especially for multivariate functions, and the choice of which
variables to subdivide and by how much is usually not straight-forward.

Optimization-based Analysis. FPTaylor [41], Real2Float [31] and PRECiSA [34],
unlike Daisy, Rosa, Gappa and Fluctuat, formulate the roundoff error bounds
computation as an optimization problem, where the absolute error expression
from Eq. 2 is to be maximized, subject to interval constraints on its parameters.
Due to the discrete nature of floating-point arithmetic, FPTaylor optimizes the
continuous, real-valued abstraction from Eq. 1. However, this expression is still
too complex and features too many variables for optimization procedures in
practice.

FPTaylor introduces the Symbolic Taylor approach, where the objective func-
tion is simplified using a first order Taylor approximation with respect to e and
d (the variables representing roundoff errors at each arithmetic operation). To
solve the optimization problem, FPTaylor uses a rigorous branch-and-bound
procedure.

4 Developer’s Guide: Daisy’s Internals

This section provides more details on Daisy’s architecture and explains some
of our design decisions. Daisy is written in the Scala programming language
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which provides a strong type system as well as a large collection of (parallel)
libraries. While Scala supports both imperative and functional programming
styles, we have written Daisy functionally as much as possible, which we found
to be beneficial to ensuring correctness and readability of code.

4.1 Input Language and Frontend

Daisy’s input language is implemented as a domain-specific language in Scala,
and Daisy’s frontend calls the Scala compiler which performs parsing and type-
checking. While designing our own simple input format and parser would be
certainly more efficient in terms of Daisy’s running time (and could be done in
the future), we have deliberately chosen not to do this. An existing programming
language provides clear semantics and feels natural to users. Using the Scala
compiler furthermore helps to ensure that Daisy parses the program correctly,
for instance that it indeed conforms e.g. to Scala’s typing rules. Furthermore,
extending the input language is usually straight-forward.

The other major design decision was to make the input program real-valued.
This explicitly specifies the baseline against which roundoff errors should be
computed, but it also makes it easy for the user to explore different options.
For instance, changing the precision only requires changing a flag, whereas a
finite-precision input program (like FPTaylor’s or Fluctuat’s) requires editing
the source code.

Mixed-precision is also supported respecting Scala semantics and is thus
transparent. The user may annotate variables, including local ones, with different
precisions. To specify the precision of every individual operation, the program
can be transformed into three-address form (Daisy can do this automatically),
and then each arithmetic operation can be annotated via the corresponding
variable.

Daisy currently does not support data structures such as arrays or lists in its
input language, mainly because the static analysis of these is largely orthogonal
to the analysis of the actual computation and we believe that standard strategies
like unrolling computations over array elements or abstracting the array as a
single variable can be employed.

4.2 Modular Architecture

Daisy is built up in a modular way by implementing its functionality in phases,
which can be combined. See the overview in Fig. 3. Each phase takes as input and
returns as output a Program and a Context, and can modify both. For instance,
rewriting transforms the program and roundoff error analysis adds the analysis
information to the context. This information is then re-used by later phases,
for instance the analysis information is used to generate fixed-point arithmetic
programs in the code generation phase. This modularity allows, for instance,
the rewriting optimization phase to be combined with any other roundoff error
analysis.
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Frontend

{ Rewriting }

{ TACTransformer }

TaylorError RelativeDynamic

Info

CodeGeneration

// Roundo  analyses

Fig. 3. Overview of Daisy’s phases. Phases in curly braces are optional.

In addition to the modular architecture, Daisy’s main functionality is pro-
vided as a set of library tools, which allows for further reuse across different
phases. It could also be used as a separate library in other tools. Here we high-
light the main functionality provided:

– Rational provides an implementation of rational numbers based on Java’s
BigInteger library. Rationals are used throughout Daisy for computations in
order to avoid internal roundoff errors which could affect soundness.

– MPFRFloat is an interface to GNU’s MPFR arbitrary precision library [20].
– Interval and AffineForm provide implementations of interval and affine arith-

metic. Daisy uses no external libraries for these in order to facilitate extensions
and integration.

– SMTRange implements Rosa’s combination of interval arithmetic with an SMT
solver [14] for improved range bounds. Daisy uses the scala-smtlib library3

to interface with the Z3 and dReal SMT solvers. Other solvers can be added
with little effort, provided they support the SMT-LIB standard [3].

– RoundoffEvaluators implement dataflow roundoff error analysis. The analysis
is parametric in the range method used, and due to its implementation as a
library function can be easily used in different contexts.

– Taylor provides methods for computing and simplifying partial derivatives.
– GeneticSearch provides a generic implementation of a (simple) genetic search,

which is currently used for the rewriting optimization.

The fixed-point precision class in Daisy supports any bitlength (i.e. only
the frontend has a limited selection) and floating-point types can be straight-
forwardly added by specifying the corresponding machine epsilon and repre-
sentable range.

4.3 Implementation Details

Here we provide details about Daisy’s implementation of previous techniques.
The dataflow analysis approach, e.g. in Rosa, only considered arithmetic

3 https://github.com/regb/scala-smtlib.

https://github.com/regb/scala-smtlib
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operations without transcendental functions. Daisy extends this support by
implementing these operations in interval and affine arithmetic. The former is
straight-forward, whereas for AA Daisy computes sound linear approximations
of the functions, following [13] which used this approach in a dynamic analysis.
Following most libraries of mathematical functions, we assume that transcenden-
tal functions are rounded correctly to one unit in the last place. Since internal
computations are performed with rational types, the operations for transcen-
dental functions are approximated with the corresponding outward or upwards
rounding to ensure soundness. To support the combination of interval arith-
metic and SMT, we integrate the dReal solver in Daisy, which provides support
for transcendental functions. Although dReal is only δ-complete, this does not
affect Daisy’s soundness as the algorithm relies on UNSAT answers, which are
always sound in dReal.

Interval subdivision can be an effective tool to reduce overapproximations
in static analysis results, which is why Daisy offers it for all its analyses. Daisy
subdivides every input variable range into a fixed number of subintervals (the
number can be controlled by the user) and takes the cartesian product. The
analysis is then performed separately for each set of subintervals. This clearly
increases the running time, but is also trivially parallelizable.

Daisy also includes an initial implementation of FPTaylor’s optimization-
based static analysis. The major difference is that Daisy does not use a branch-
and-bound algorithm for solving the optimization problem, but relies on the
already existing range analyses. We would like to include a proper optimization
solver in the future; currently custom interfaces have been an obstacle.

5 Experimental Evaluation

We have experimentally evaluated Daisy’s roundoff error analysis on a number of
finite-precision verification benchmarks taken from related work [15,16,31,41].
Benchmarks marked with a superscript T contain transcendental functions. The
goal of this evaluation is twofold. First, Daisy should be able to compute reason-
ably tight error bounds in a reasonable amount of time to be useful. Secondly,
exploiting the fact that Daisy implements several different analysis methods
within a single tool allows us to provide a direct comparison of their tradeoffs.

We compare Daisy with FPTaylor, which has been shown previously to pro-
vide tight error bounds [41]. It furthermore implements the optimization-based
approach, which we re-implement in Daisy (in an albeit preliminary version). We
do not compare against tools which employ dataflow static analysis, as Daisy’s
analyses essentially subsume those.

Comparison with FPTaylor. We first compare roundoff errors computed by
Daisy with different methods against errors computed by FPTaylor (version from
20 Sept 2017) in Table 1. All errors are computed for uniform double floating-
point precision, assuming roundoff errors on inputs. We abbreviate the settings
used in Daisy by e.g. IA - AA, where IA and AA specify the methods used
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Table 2. Execution times of FPTaylor and Daisy for different settings

Benchmark FPTaylor Z3 - AA AA-AA (sub) opt - Z3

bspline 2 s 884 ms 4 s 450 ms 2 s 190 ms 3 s 320 ms
doppler 1 s 465 ms 3 s 221 ms 2 s 657 ms 2 s 939 ms
himmilbeau 660 ms 3 s 545 ms 1 s 975 ms 2 s 760 ms
invertedPend. 14 s 69 ms 3 s 109 ms 2 s 31 ms 2 s 570 ms
kepler 18 s 629 ms 40 s 627 ms 3 s 160 ms 21 s 893 ms
rigidBody 1 s 430 ms 6 s 31 ms 2 s 206 ms 4 s 118 ms
sine 1 s 580 ms 4 s 49 ms 2 s 179 ms 3 s 114 ms
sqrt 7 s 381 ms 4 s 92 ms 1 s 884 ms 2 s 988 ms
traincar 27 s 846 ms 22 s 670 ms 7s 452 ms 15 s 61 ms
turbine 2 s 452 ms 7 s 93 ms 3 s 951 ms 5 s 522 ms
jetEngine 1 s 434 ms 35 s 267 ms 3 s 583 ms 19 s 425 ms
transcendental 34 s 547 ms 2 s 770 ms 2s 959 ms 2 s 865 ms

for computing the ranges and errors, respectively. ‘sub’ means subdivision, ‘rw’
rewriting and ‘opt’ denotes the optimization-based approach. We underline the
lowest roundoff errors computed among the different Daisy settings (without
rewriting). The column marked ‘%’ denotes the factor by which the lowest error
computed by Daisy differs from FPTaylor’s computed error.

FPTaylor supports different backend solvers; we have performed experiments
with the internal branch-and-bound and the Gelpia solver, but observed only
minor differences. We thus report results for the Gelpia solver. We furthermore
chose the lowest verbosity level in both FPTaylor and Daisy to reduce the exe-
cution time. Table 1 also shows an underapproximation of roundoff errors com-
puted using Daisy’s dynamic analysis which provides an idea of the tightness of
roundoff errors.

Table 2 shows the corresponding execution times of the tools. Execution times
are average real time measured by the bash time command. We have performed
all experiments on a Linux desktop computer with an Intel Xeon 3.30GHz pro-
cessor and 32GB RAM, with Scala version 2.11.11.

The focus when implementing Daisy was to provide a solid framework with
modular and clear code, not to improve roundoff error bounds. Nonetheless,
Daisy’s roundoff error bounds are mostly competitive with FPTaylor’s, with the
notable exception of the jetEngine benchmark (additionally, interval arithmetic
fails to bound the divisor away from zero).

Overall we observe that using an SMT solver for tightening ranges is helpful,
but interval subdivision is preferable. Furthermore, using affine arithmetic for
bounding errors is preferable over interval arithmetic. Finally, rewriting can often
improve roundoff error bounds significantly.

Our optimization-based analysis is not yet quite as good as FPTaylor’s, but
acceptable for a first re-implementation. We suspect the difference is mainly due
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to the fact that Daisy does not use a dedicated optimization procedure, which
we hope to include in the future.

Execution times of FPTaylor and Daisy are comparable. It should be noted
that the times are end-to-end, and in particular for Daisy this includes the Scala
compiler frontend, which takes a constant 1.3 s (irrespective of input). Clearly,
with a hand-written parser this could be improved, but we do not consider this
as critical. Furthermore, Daisy performs overflow checks at every intermediate
subexpression; it is unclear whether FPTaylor does this as well.

Table 1 seems to suggest that one should use FPTaylor’s optimization-based
approach for bounding roundoff errors. We include dataflow analysis in Daisy
nonetheless for several reasons. First, dataflow analysis computes overflow checks
without extra cost. Secondly, the optimization-based approach is only applicable
when errors can be specified as relative errors, which is not the case for instance
for fixed-point arithmetic, which is important for many embedded applications.

Fixed-Point vs Floating-Point. In Table 3 we use Daisy to compare round-
off errors for 32-bit fixed-point and 32-bit floating-point arithmetic, with and
without rewriting. For this comparison, we use the dataflow analysis, as the
optimization-based approach is not applicable to fixed-point arithmetic. Not sur-
prisingly, the results confirm that (at least for our examples with limited ranges)
fixed-point arithmetic can provide better accuracy for the same bitlength, and
furthermore that rewriting can improve the error bounds further.

6 Related Work

We have already mentioned the directly related techniques and tools Gappa,
Fluctuat, Rosa, FPTaylor, Real2Float and PRECiSA throughout the paper.
Except for Fluctuat and Rosa, these tools also provide either a proof script
or a certificate for the correctness (of certain parts) of the analysis, which can be
independently checked in a theorem prover. Certificate generation and checking
for Daisy has been described in a separate paper [4].

Daisy currently handles straight-line arithmetic expressions, i.e. it does not
handle conditionals and loops. Abstract interpretation of floating-point programs
handles conditionals by joins, however, for roundoff error analysis this approach
is not sufficient. The real-valued and finite-precision computations can diverge
and a simple join does not capture this ‘discontinuity error’. Programs with
loops are challenging, because roundoff errors in general grow with each loop
iteration and thus a nontrivial fixpoint does not exist in general (loop unrolling
can however be applied). Widening operators compute non-trivial bounds only
for very special cases where roundoff errors decrease with each loop iteration.
These challenges have been (partially) addressed [16,23], and we plan to include
those techniques in Daisy in the future. Nonetheless, conditionals and loops
remain open problems.

Sound techniques have also been applied for both the range and the
error analysis for bitwidth optimization of fixed-point arithmetic, for instance
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Table 3. Roundoff errors for 32-bit floating-point and fixed-point arithmetic.

Z3 - AA Z3 - AA + rewriting
Benchmark float 32 fixed 32 float 32 fixed 32

bspline0 8.69e-8 2.28e-9 8.69e-8 2.28e-9
bspline1 3.77e-7 7.86e-9 2.58e-7 6.00e-9
doppler 2.25e-4 3.52e-6 9.26e-5 1.45e-6
himmilbeau 5.37e-4 8.84e-6 6.85e-4 1.13e-5
invertedPendulum 1.97e-5 3.54e-7 1.30e-5 2.03e-7
kepler0 4.87e-5 7.60e-7 3.06e-5 4.78e-7
kepler1 2.13e-4 3.33e-6 1.76e-4 2.76e-6
kepler2 1.21e-3 1.88e-5 8.85e-4 1.38e-5
rigidBody1 1.73e-4 3.12e-6 1.20e-4 2.30e-6
rigidBody2 1.96e-2 3.13e-4 1.56e-2 2.51e-4
sine 3.73e-7 7.14e-9 3.17e-7 6.68e-9
sineOrder3 6.58e-7 1.31e-8 6.54e-7 1.39e-8
sqroot 1.66e-4 8.00e-6 1.60e-4 7.68e-6
train4 out1 2.30e-1 4.14e-3 1.79e-1 3.34e-3
train4 state9 4.65e-6 1.45e-7 1.79e-6 1.03e-7
turbine1 4.76e-5 1.05e-6 4.66e-5 1.04e-6
turbine2 6.61e-5 1.19e-6 6.40e-5 1.16e-6
turbine3 3.37e-5 7.42e-7 3.21e-5 7.17e-7
jetEngine 6.22 1.00e-1 1.44e-1 2.46e-3

in [28,29,36,38] and Lee et. al. [29] provide a nice overview of static and dynamic
techniques.

Dynamic analysis can be used to find inputs which cause large roundoff
errors, e.g. running a higher-precision floating-point program alongside the orig-
inal one [5] or with a guided search to find inputs which maximize errors [11]. In
comparison, Daisy’s dynamic analysis is a straight-forward approach, and some
more advanced techniques could be integrated as well.

Optimization techniques targeting accuracy of floating-point computations,
like rewriting [37] or mixed-precision tuning [10] include some form of round-
off error analysis, and any of the above approaches, including Daisy’s, can be
potentially used as a building block.

More broadly related are abstract interpretation-based static analyses, which
are sound w.r.t. floating-point arithmetic [6,9,27]. These techniques can prove
the absence of runtime errors, such as division-by-zero, but cannot quantify
roundoff errors. Floating-point arithmetic has also been formalized in theorem
provers and entire numerical programs have been proven correct and accurate
within these [7,39]. Most of these formal verification efforts are, however, to
a large part manual. Floating-point arithmetic has also been formalized in an
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SMT-lib [40] theory and SMT solvers exist which include floating-point decision
procedures [8,19]. These are, however, not suitable for roundoff error quantifica-
tion, as a combination with the theory of reals would be necessary which does
not exist today.

7 Conclusion

We have presented the framework Daisy which integrates several state-of-the-
art techniques for the analysis and optimization of finite-precision programs. It
is actively being developed, improved and extended and we believe that it can
serve as a useful building block in future optimization techniques.
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