Skip to main content

PET Hybrid Imaging of the Thorax

  • Chapter
  • First Online:
Diagnostic Imaging for Thoracic Surgery
  • 900 Accesses

Abstract

For many years scintigraphy, planar imaging of radioactive emission using a large area detector, formed the backbone of nuclear medicine techniques with low spatial resolution but high sensitivity. Combined with the properties of a tracer, a substance labelled with a radioactive element (radionuclide), the technique could be used for imaging tissue properties or physiological processes. Advances in engineering and computing technology allowed the technique to move into 3-dimensional image reconstruction and then combined with radiological techniques, particularly CT, to provide state-of-the-art hybrid imaging techniques. Positron-emission tomography (PET) is fast becoming the dominant nuclear medicine technique, due to its higher sensitivity and resolution than single-photon-emission computed tomography (SPECT). It has been widely used for investigating malignant diseases and increasingly used for inflammatory diseases and infection. Whilst computed tomography (CT) images represent a snapshot of patient anatomy, radiopharmaceuticals and PET provide the means to image pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Amsterdam: Elsevier; 2012.

    Google Scholar 

  2. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fraioli F, Punwani S. Clinical and research applications of simultaneous positron emission tomography and MRI. Br J Radiol. 2014;87(1033):20130464.

    Article  CAS  PubMed  Google Scholar 

  4. Kinahan PE, Fletcher JW, et al. PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505. https://doi.org/10.1053/j.sult.2010.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Scarsbrook A, Barrington S. Evidence-based indications for the use of PET-CT in the United Kingdom 2016. Royal college of radiologists. 2016. https://www.rcr.ac.uk/publication/evidence-based-indications-use-pet-ct-united-kingdom-2016. Accessed 3 April 2017.

  6. Gupta NC, Maloof J, Gunel E. Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PET. J Nucl Med. 1996;37(6):943–8.

    PubMed  CAS  Google Scholar 

  7. Inoue T, Kim EE, Komaki R, et al. Detecting recurrent or residual lung cancer with FDG-PET. J Nucl Med. 1995;36(5):788–93.

    PubMed  CAS  Google Scholar 

  8. Ruilong Z, Daohai X, Li G, et al. Diagnostic value of 18F-FDG-PET/CT for the evaluation of solitary pulmonary nodules: a systematic review and meta-analysis. Nucl Med Commun. 2017;38(1):67–75.

    Article  PubMed  Google Scholar 

  9. Yilmaz F, Tastekin G. Sensitivity of (18)F-FDG PET in evaluation of solitary pulmonary nodules. Int J Clin Exp Med. 2015;8(1):45–51. eCollection 2015.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54. https://doi.org/10.1007/s00259-014-2961-x.

    Article  PubMed  CAS  Google Scholar 

  11. Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Giaj Levra M, Kerr K, Popat S, Reck M, Senan S, Simo GV, Vansteenkiste J, Peters S. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines. 2016. www.esmo.org/Guidelines/Lung-and-Chest-Tumours. Accessed 10 May 2017.

  12. Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL. Metastases from non-small cell lung cancer: mediastinal staging in the 1990s—meta-analytic comparison of PET and CT. Radiology. 1999;213(2):530–6.

    Article  CAS  PubMed  Google Scholar 

  13. Akhurst T, Downey RJ, Ginsberg MS, et al. An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung. Cancer. Ann Thorac Surg. 2002;73(1):259–64.

    Article  PubMed  Google Scholar 

  14. Chopra A, Ford A, De Noronha R, Matthews S. Incidental findings on positron emission tomography/CT scans performed in the investigation of lung cancer. Br J Radiol. 2012;85(1015):e229–37. https://doi.org/10.1259/bjr/60606623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lee SM, Goo JM, Park CM, et al. Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol. 2016;26(11):3850–7.

    Article  PubMed  Google Scholar 

  16. Marom EM, McAdams HP, Erasmus JJ, et al. Staging non-small cell lung cancer with whole-body PET. Radiology. 1999;212(3):803–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hellwig D, Ukena D, Paulsen F, et al. Meta-analysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German consensus conference on PET in oncology 2000. Pneumologie. 2001;55(8):367–77.

    Article  CAS  PubMed  Google Scholar 

  18. Sheikhbahaei S, Mena E, Yanamadala A, Reddy S, Solnes LB, Wachsmann J, Subramaniam RM. The value of FDG PET/CT in treatment response assessment, follow-up, and surveillance of lung cancer. Am J Roentgenol. 2017;208:420–33. https://doi.org/10.2214/AJR.16.16532.

    Article  Google Scholar 

  19. Fraioli F, Kayani I, Smith L-J, et al. Positive 18F Fluorodeoxyglucose-positron emission tomography/computer tomography predicts Preinvasive Endobronchial lesion progression to invasive cancer. Am J Respir Crit Care Med. 2016;193:576–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weller A, O’Brien MER, Ahmed M. Mechanisms and non-mechanism based imaging biomarkers for assessing biological response to treatment in non-small cell lung cancer. Eur J Cancer. 2016;59:65–78.

    Article  CAS  PubMed  Google Scholar 

  21. Kalemkerian GP. Staging and imaging of small cell lung cancer. Cancer Imaging. 2011;11(1):253–8.

    Article  PubMed Central  Google Scholar 

  22. Bodei L, Sundin A, Kidd M, Prasad V, Modlin IM. The status of neuroendocrine tumor imaging: from darkness to light? Neuroendocrinology. 2015;101:1–17. https://doi.org/10.1159/000367850.

    Article  PubMed  CAS  Google Scholar 

  23. Caplin ME, Baudin E, Ferolla P, et al. Pulmonary neuroendocrine (carcinoid) tumors: European neuroendocrine tumor society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol. 2015;26(8):1604–20. https://doi.org/10.1093/annonc/mdv041.

    Article  PubMed  CAS  Google Scholar 

  24. Deppen SA, Blume J, Bobbey A, et al. 68Ga-DOTATATE compared with 111In-DTPA-octreotide and conventional imaging for pulmonary and gastroenteropancreatic neuroendocrine tumors: a systematic review and meta-analysis. J Nucl Med. 2016;57(6):872–8.

    Article  CAS  PubMed  Google Scholar 

  25. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014;32(27):3048–58. https://doi.org/10.1200/JCO.2013.53.5229.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, Hoos A, Barrington SF, Armand P. Refinement of the Lugano classification response criteria for lymphoma in the era of immunomodulatory therapy. 2016. www.bloodjournal.org/content/early/.../blood-2016-05-718528. Accessed 10 May 2017.

  27. Baas P, Dl F, Kerr KM, Van Schil PE, Haas RL, Peter S. Malignant pleural mesothelioma: ESMO clinical practice guidelines. Ann Oncol. 2015;26(5):v31–9. https://doi.org/10.1093/annonc/mdv199.

    Article  PubMed  Google Scholar 

  28. Kruse M, Sherry SJ, Paidpally V, Mercier G, Subramaniam RM. FDG PET/CT in the management of primary pleural tumors and pleural metastases. AJR Am J Roentgenol. 2013;201(2):W215–26. https://doi.org/10.2214/AJR.13.10572. Review.

    Article  PubMed  Google Scholar 

  29. Erasmus JJ, Truong MT, Smythe WR, et al. Integrated computed tomography-positron emission tomography in patients with potentially resectable malignant pleural mesothelioma: staging implications. J Thorac Cardiovasc Surg. 2005;129(6):1364–70.

    Article  PubMed  Google Scholar 

  30. Plathow C, Staab A, Schmaehl A, et al. Computed tomography, positron emission tomography, positron emission tomography/computed tomography, and magnetic resonance imaging for staging of limited pleural mesothelioma: initial results. Investig Radiol. 2008;43(10):737–44. https://doi.org/10.1097/RLI.0b013e3181817b3d.

    Article  Google Scholar 

  31. Basu S, Saboury B, Torigian DA, Alavi A. Current evidence base of FDG-PET/CT imaging in the clinical management of malignant pleural mesothelioma: emerging significance of image segmentation and global disease assessment. Mol Imaging Biol. 2011;13(5):801–11. https://doi.org/10.1007/s11307-010-0426-6.

    Article  PubMed  Google Scholar 

  32. Carretta A, Landoni C, Melloni G, Ceresoli GL, et al. P.18-FDG positron emission tomography in the evaluation of malignant pleural diseases - a pilot study. Eur J Cardiothorac Surg. 2000;17(4):377–83.

    Article  CAS  PubMed  Google Scholar 

  33. Sung YM, Lee KS, Kim BT, Choi JY, Shim YM, Yi CA. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. J Nucl Med. 2006;47(10):1628–34.

    PubMed  Google Scholar 

  34. Lordick F, Mariette C, Haustermans K, Obermannová R, Arnold D. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(5):v50–7. https://doi.org/10.1093/annonc/mdw329.

    Article  PubMed  CAS  Google Scholar 

  35. van Westreenen HL, Westerterp M, Bossuyt PM, et al. Systematic review of the staging performance of18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol. 2004;22(18):3805–12. Review.

    Article  PubMed  Google Scholar 

  36. Van Vliet EP, Heijenbrok-Kal MH, Hunink MG, et al. Staging investigations for oesophageal cancer: a meta-analysis. Br J Cancer. 2008;98(3):547–57. https://doi.org/10.1038/sj.bjc.6604200.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cuenca X, Hennequin C, Hindié E, Rivera S, et al. Evaluation of early response to concomitant chemoradiotherapy by interim 18F-FDG PET/CT imaging in patients with locally advanced oesophageal carcinomas. Eur J Nucl Med Mol Imaging. 2013;40(4):477–85. https://doi.org/10.1007/s00259-012-2325-3.

    Article  PubMed  CAS  Google Scholar 

  38. Love C, Tomas MB, Tronco GG, Palestro CJ. FDG PET of infection and inflammation. Radiographics. 2005;25(5):1357–68.

    Article  PubMed  Google Scholar 

  39. Skoura E, Zumla A, Bomanji J. Imaging in tuberculosis. Int J Infect Dis. 2015;32:87–93.

    Article  PubMed  Google Scholar 

  40. Kim IJ, Lee JS, Kim SJ, Kim YK. Double-phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity. Eur J Nucl Med Mol Imaging. 2008;35(4):808–14.

    Article  PubMed  Google Scholar 

  41. Martinez V, Castilla-Lievre MA, Guillet-Caruba C, Grenier G. (18)F-FDG PET/CT in tuberculosis: an early non-invasive marker of therapeutic response. Int J Tuberc Lung Dis. 2012;16(9):1180–5. https://doi.org/10.5588/ijtld.12.0010.

    Article  PubMed  CAS  Google Scholar 

  42. Sathekge M, Maes A, D’Asseler Y, Vorster M, et al. Tuberculous lymphadenitis: FDG PET and CT findings in responsive and nonresponsive disease. Eur J Nucl Med Mol Imaging. 2012;39(7):1184–90. https://doi.org/10.1007/s00259-012-2115-y.

    Article  PubMed  Google Scholar 

  43. Pineda C, Espinosa R, Pena A. Radiographic imaging in osteomyelitis: the role of plain radiography, computed tomography, ultrasonography, magnetic resonance imaging and scintigraphy. Semin Plast Surg. 2009;23(2):80–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ito K, Kubota K, Morooka M, Hasuo K, et al. Clinical impact of (18)F-FDG PET/CT on the management and diagnosis of infectious spondylitis. Nucl Med Commun. 2010;31(8):691–8. https://doi.org/10.1097/MNM.0b013e32833bb25d.

    Article  PubMed  Google Scholar 

  45. Sharma P, Mukherjee A, Karunanithi S, Bal C, Kumar R. Potential role of 18F-FDG PET/CT in patients with fungal infections. Am J Roentgenol. 2014;203:180–9.

    Article  Google Scholar 

  46. Davison JM, Subramaniam RM, Surasi DS, et al. FDG PET/CT in patients with HIV. Am J Roentgenol. 2011;197:284–94.

    Article  Google Scholar 

  47. Balink H, Bennink RJ, van Eck-Smit BLF, Verberne HJ. The role of 18F-FGD PET/CT in large vessel vasculitis: appropriateness of current classification criteria? Biomed Res Int. 2014;2014:687608. https://doi.org/10.1155/2014/687608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Papathanasiou ND, Du Y, Menezes LJ, Almuhaideb A, Shastry M, Beynon H, Bomanji JB. 18FFludeoxyglucose PET/CT in the evaluation of large-vessel vasculitis: diagnostic performance and correlation with clinical and laboratory parameters. Br J Radiol. 2012;85(1014):e188–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bucerius J. Monitoring Vasculitis with 18F-FDG PET. QJ Nucl Med Mol Imaging. 2016;60(3):219–35.

    Google Scholar 

  50. Lee YH, Choi SJ, Ji JD, Song GG. Diagnostic accuracy of 18F-FDG PET or PET/CT for large vessel vasculitis: a meta-analysis. Z Rheumatol. 2016;75(9):924–31. Review.

    Article  CAS  PubMed  Google Scholar 

  51. Soussan M, Nicolas P, Schramm C, Katsahian S, Pop G, Fain O, Mekinian A. Management of large-vessel vasculitis with FDG-PET: a systematic literature review and meta-analysis. Medicine (Baltimore). 2015;94(14):e622. https://doi.org/10.1097/MD.0000000000000622.

  52. Prabhakar HB, Rabinowitz CB, Gibbons FK, O’Donnell WJ, Shepard J-AO, Aquino SL. Imaging features of sarcoidosis on MDCT, FDG PET, and PET/CT. Am J Roentgenol. 2008;190:S1–6.

    Article  Google Scholar 

  53. Mostard RL, van Kroonenburgh MJ, Drent M. The role of the PET scan in the management of sarcoidosis. Curr Opin Pulm Med. 2013;19(5):538–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Leon Menezes for the cardiac sarcoid case, and to Dr. Ben Thomas and Dr. Trine Hjørnevik for commenting on the physics and technical part of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deena Neriman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neriman, D., Vahedi, A., Voo, S., Connelly, J., Fraioli, F. (2018). PET Hybrid Imaging of the Thorax. In: Anzidei, M., Anile, M. (eds) Diagnostic Imaging for Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-89893-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89893-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89892-6

  • Online ISBN: 978-3-319-89893-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics