Skip to main content

Indications to the Use of Computed Tomography in Thoracic Pathologies

  • Chapter
  • First Online:
Diagnostic Imaging for Thoracic Surgery
  • 909 Accesses

Abstract

During the past decades, improvement in computed tomography (CT) technology and post-processing techniques have favoured its wide use in the clinical practice.

Nowadays, CT does not only provide a mere anatomical assessment but is also capable to give information regarding the chemical composition, as well as the blood flow of the scanned tissue. The rapid coverage of large anatomic volumes and its high spatial and temporal resolution also make CT particularly suitable in the assessment of criticaly ill patients. Moreover, CT allows a detailed assessment of lung parenchyma, interstitium, and airways, as well as the thoracic vasculature and coronary arteries. Because of these technical and diagnostic characteristics CT has gained a crucial role in the assessment of thoracic pathologies.

Given the risk associated with radiation exposure and contrast media administration, it is of paramount importance to appropriately use CT in the clinical situations in which this technique has the proper diagnostic yield.

The purpose of this chapter is to explain the clinical indication of CT in thoracic pathologies to establish the appropriateness criteria for use of this technique in standard diagnostic care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han BK, Rigsby CK, Leipsic J, Bardo D, Abbara S, Ghoshhajra B, et al. Computed tomography imaging in patients with congenital heart disease, Part 2: Technical recommendations. An expert consensus document of the society of cardiovascular computed tomography (SCCT): endorsed by the society of pediatric radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):493–513. https://doi.org/10.1016/j.jcct.2015.07.007.

    Article  PubMed  Google Scholar 

  2. Han BK, Lindberg J, Grant K, Schwartz RS, Lesser JR. Accuracy and safety of high pitch computed tomography imaging in young children with complex congenital heart disease. Am J Cardiol. 2011;107(10):1541–6. https://doi.org/10.1016/j.amjcard.2011.01.065.

    Article  PubMed  Google Scholar 

  3. Lell MM, May M, Deak P, Alibek S, Kuefner M, Kuettner A, et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Investig Radiol. 2011;46(2):116–23. https://doi.org/10.1097/RLI.0b013e3181f33b1d.

    Article  Google Scholar 

  4. Little BP. Approach to chest computed tomography. Clin Chest Med. 2015;36(2):127–45, vii. https://doi.org/10.1016/j.ccm.2015.02.001.

    Article  PubMed  Google Scholar 

  5. Panebianco V, Grazhdani H, Iafrate F, Petroni M, Anzidei M, Laghi A, et al. 3D CT protocol in the assessment of the esophageal neoplastic lesions: can it improve TNM staging? Eur Radiol. 2006;16(2):414–21. https://doi.org/10.1007/s00330-005-2851-5.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7. https://doi.org/10.1007/s00330-006-0517-6.

    Article  PubMed  Google Scholar 

  7. Hartman R, Kawashima A, Takahashi N, Silva A, Vrtiska T, Leng S, et al. Applications of dual-energy CT in urologic imaging: an update. Radiol Clin N Am. 2012;50(2):191–205. https://doi.org/10.1016/j.rcl.2012.02.007.

    Article  PubMed  Google Scholar 

  8. Kaza RK, Platt JF, Megibow AJ. Dual-energy CT of the urinary tract. Abdom Imaging. 2013;38(1):167–79. https://doi.org/10.1007/s00261-012-9901-7.

    Article  PubMed  Google Scholar 

  9. Remy-Jardin M, Faivre JB, Pontana F, Molinari F, Tacelli N, Remy J. Thoracic applications of dual energy. Semin Respir Crit Care Med. 2014;35(1):64–73. https://doi.org/10.1055/s-0033-1363452.

    Article  PubMed  Google Scholar 

  10. Castellino RA. Computer aided detection (CAD): an overview. Cancer Imaging. 2005;5:17–9. https://doi.org/10.1102/1470-7330.2005.0018.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fraioli F, Bertoletti L, Napoli A, Pediconi F, Calabrese FA, Masciangelo R, et al. Computer-aided detection (CAD) in lung cancer screening at chest MDCT: ROC analysis of CAD versus radiologist performance. J Thorac Imaging. 2007;22(3):241–6. https://doi.org/10.1097/RTI.0b013e318033aae8.

    Article  PubMed  Google Scholar 

  12. Versteylen MO, Kietselaer BL, Dagnelie PC, Joosen IA, Dedic A, Raaijmakers RH, et al. Additive value of semiautomated quantification of coronary artery disease using cardiac computed tomographic angiography to predict future acute coronary syndrome. J Am Coll Cardiol. 2013;61(22):2296–305. https://doi.org/10.1016/j.jacc.2013.02.065.

    Article  PubMed  Google Scholar 

  13. Bashir U, Siddique MM, McLean E, Goh V, Cook GJ. Imaging heterogeneity in lung cancer: techniques, applications, and challenges. AJR Am J Roentgenol. 2016;207(3):534–43. https://doi.org/10.2214/AJR.15.15864.

    Article  PubMed  Google Scholar 

  14. Hong SJ, Kim TJ, Choi YW, Park JS, Chung JH, Lee KW. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: imaging features and histological subtypes. Eur Radiol. 2016;26(10):3660–8. https://doi.org/10.1007/s00330-015-4196-z.

    Article  PubMed  Google Scholar 

  15. Fraioli F, Anzidei M, Zaccagna F, Mennini ML, Serra G, Gori B, et al. Whole-tumor perfusion CT in patients with advanced lung adenocarcinoma treated with conventional and antiangiogenetic chemotherapy: initial experience. Radiology. 2011;259(2):574–82. https://doi.org/10.1148/radiol.11100600.

    Article  PubMed  Google Scholar 

  16. Yuan X, Zhang J, Quan C, Cao J, Ao G, Tian Y, et al. Differentiation of malignant and benign pulmonary nodules with first-pass dual-input perfusion CT. Eur Radiol. 2013;23(9):2469–74. https://doi.org/10.1007/s00330-013-2842-x.

    Article  PubMed  Google Scholar 

  17. Doria-Rose VP, White MC, Klabunde CN, Nadel MR, Richards TB, McNeel TS, et al. Use of lung cancer screening tests in the United States: results from the 2010 National Health Interview Survey. Cancer Epidemiol Biomark Prev. 2012;21(7):1049–59. https://doi.org/10.1158/1055-9965.EPI-12-0343.

    Article  Google Scholar 

  18. Huber A, Landau J, Ebner L, Butikofer Y, Leidolt L, Brela B, et al. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging. Eur Radiol. 2016;26(10):3643–52. https://doi.org/10.1007/s00330-015-4192-3.

    Article  PubMed  Google Scholar 

  19. National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409. https://doi.org/10.1056/NEJMoa1102873.

    Article  Google Scholar 

  20. Brenner DJ. Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology. 2004;231(2):440–5. https://doi.org/10.1148/radiol.2312030880.

    Article  PubMed  Google Scholar 

  21. Imhof H, Schibany N, Ba-Ssalamah A, Czerny C, Hojreh A, Kainberger F, et al. Spiral CT and radiation dose. Eur J Radiol. 2003;47(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  22. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230(3):619–28. https://doi.org/10.1148/radiol.2303021726.

    Article  PubMed  Google Scholar 

  23. Mayo JR, Aldrich J, Muller NL, Fleischner S. Radiation exposure at chest CT: a statement of the Fleischner Society. Radiology. 2003;228(1):15–21. https://doi.org/10.1148/radiol.2281020874.

    Article  PubMed  Google Scholar 

  24. MacMahon H, Austin JH, Gamsu G, Herold CJ, Jett JR, Naidich DP, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237(2):395–400. https://doi.org/10.1148/radiol.2372041887.

    Article  PubMed  Google Scholar 

  25. Naidich DP, Bankier AA, MacMahon H, Schaefer-Prokop CM, Pistolesi M, Goo JM, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology. 2013;266(1):304–17. https://doi.org/10.1148/radiol.12120628.

    Article  PubMed  Google Scholar 

  26. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. https://doi.org/10.3322/caac.20138.

    Article  PubMed  Google Scholar 

  27. Chae EJ, Song JW, Krauss B, Song KS, Lee CW, Lee HJ, et al. Dual-energy computed tomography characterization of solitary pulmonary nodules. J Thorac Imaging. 2010;25(4):301–10. https://doi.org/10.1097/RTI.0b013e3181e16232.

    Article  PubMed  Google Scholar 

  28. Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e211S–e50S. https://doi.org/10.1378/chest.12-2355.

  29. Nair A, Klusmann MJ, Jogeesvaran KH, Grubnic S, Green SJ, Vlahos I. Revisions to the TNM staging of non-small cell lung cancer: rationale, clinicoradiologic implications, and persistent limitations. Radiographics. 2011;31(1):215–38. https://doi.org/10.1148/rg.311105039.

    Article  PubMed  Google Scholar 

  30. Glazer HS, Kaiser LR, Anderson DJ, Molina PL, Emami B, Roper CL, et al. Indeterminate mediastinal invasion in bronchogenic carcinoma: CT evaluation. Radiology. 1989;173(1):37–42. https://doi.org/10.1148/radiology.173.1.2781028.

    Article  PubMed  CAS  Google Scholar 

  31. Detterbeck FC, Figueroa AS. Lung cancer staging: the value of PET depends on the clinical setting. J Thorac Dis. 2014;6(12):1714–23. https://doi.org/10.3978/j.issn.2072-1439.2014.11.16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32. https://doi.org/10.1182/blood-2011-01-293050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Johnson SA, Kumar A, Matasar MJ, Schoder H, Rademaker J. Imaging for staging and response assessment in lymphoma. Radiology. 2015;276(2):323–38. https://doi.org/10.1148/radiol.2015142088.

    Article  PubMed  Google Scholar 

  34. Pinilla I, Gomez-Leon N, Del Campo-Del Val L, Hernandez-Maraver D, Rodriguez-Vigil B, Jover-Diaz R, et al. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma. Q J Nucl Med Mol Imaging. 2011;55(5):567–75.

    PubMed  CAS  Google Scholar 

  35. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. https://doi.org/10.1200/JCO.2013.54.8800.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hartridge-Lambert SK, Schoder H, Lim RC, Maragulia JC, Portlock CS. ABVD alone and a PET scan complete remission negates the need for radiologic surveillance in early-stage, nonbulky Hodgkin lymphoma. Cancer. 2013;119(6):1203–9. https://doi.org/10.1002/cncr.27873.

    Article  PubMed  CAS  Google Scholar 

  37. Kim TJ, Kim HY, Lee KW, Kim MS. Multimodality assessment of esophageal cancer: preoperative staging and monitoring of response to therapy. Radiographics. 2009;29(2):403–21. https://doi.org/10.1148/rg.292085106.

    Article  PubMed  Google Scholar 

  38. Rice TW. Clinical staging of esophageal carcinoma. CT, EUS, and PET. Chest Surg Clin N Am. 2000;10(3):471–85.

    PubMed  CAS  Google Scholar 

  39. Quint LE, Hepburn LM, Francis IR, Whyte RI, Orringer MB. Incidence and distribution of distant metastases from newly diagnosed esophageal carcinoma. Cancer. 1995;76(7):1120–5.

    Article  CAS  PubMed  Google Scholar 

  40. Morgenthaler TI, Brown LR, Colby TV, Harper CM Jr, Coles DT. Thymoma. Mayo Clin Proc. 1993;68(11):1110–23.

    Article  CAS  PubMed  Google Scholar 

  41. Regnard JF, Magdeleinat P, Dromer C, Dulmet E, de Montpreville V, Levi JF, et al. Prognostic factors and long-term results after thymoma resection: a series of 307 patients. J Thorac Cardiovasc Surg. 1996;112(2):376–84. https://doi.org/10.1016/S0022-5223(96)70265-9.

    Article  PubMed  CAS  Google Scholar 

  42. Lewis JE, Wick MR, Scheithauer BW, Bernatz PE, Taylor WF. Thymoma. A clinicopathologic review. Cancer. 1987;60(11):2727–43.

    Article  CAS  PubMed  Google Scholar 

  43. Osserman KE, Genkins G. Studies in myasthenia gravis: review of a twenty-year experience in over 1200 patients. Mt Sinai J Med. 1971;38(6):497–537.

    PubMed  CAS  Google Scholar 

  44. Rosado-de-Christenson ML, Strollo DC, Marom EM. Imaging of thymic epithelial neoplasms. Hematol Oncol Clin North Am. 2008;22(3):409–31. https://doi.org/10.1016/j.hoc.2008.03.011.

    Article  PubMed  Google Scholar 

  45. Huang J, Detterbeck FC, Wang Z, Loehrer PJ Sr. Standard outcome measures for thymic malignancies. J Thorac Oncol. 2010;5(12):2017–23. https://doi.org/10.1097/JTO.0b013e3181f13682.

    Article  PubMed  Google Scholar 

  46. Incarbone M, Pastorino U. Surgical treatment of chest wall tumors. World J Surg. 2001;25(2):218–30.

    Article  CAS  PubMed  Google Scholar 

  47. David EA, Marshall MB. Review of chest wall tumors: a diagnostic, therapeutic, and reconstructive challenge. Semin Plast Surg. 2011;25(1):16–24. https://doi.org/10.1055/s-0031-1275167.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Athanassiadi K, Kalavrouziotis G, Rondogianni D, Loutsidis A, Hatzimichalis A, Bellenis I. Primary chest wall tumors: early and long-term results of surgical treatment. Eur J Cardiothorac Surg. 2001;19(5):589–93.

    Article  CAS  PubMed  Google Scholar 

  49. Jeung MY, Gangi A, Gasser B, Vasilescu C, Massard G, Wihlm JM, et al. Imaging of chest wall disorders. Radiographics. 1999;19(3):617–37. https://doi.org/10.1148/radiographics.19.3.g99ma02617.

    Article  PubMed  CAS  Google Scholar 

  50. Tateishi U, Gladish GW, Kusumoto M, Hasegawa T, Yokoyama R, Tsuchiya R, et al. Chest wall tumors: radiologic findings and pathologic correlation: part 1. Benign tumors. Radiographics. 2003;23(6):1477–90. https://doi.org/10.1148/rg.236015526.

    Article  PubMed  Google Scholar 

  51. O'Sullivan P, O'Dwyer H, Flint J, Munk PL, Muller NL. Malignant chest wall neoplasms of bone and cartilage: a pictorial review of CT and MR findings. Br J Radiol. 2007;80(956):678–84. https://doi.org/10.1259/bjr/82228585.

    Article  PubMed  CAS  Google Scholar 

  52. Afilalo J, Therrien J, Pilote L, Ionescu-Ittu R, Martucci G, Marelli AJ. Geriatric congenital heart disease: burden of disease and predictors of mortality. J Am Coll Cardiol. 2011;58(14):1509–15. https://doi.org/10.1016/j.jacc.2011.06.041.

    Article  PubMed  Google Scholar 

  53. Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56(14):1149–57. https://doi.org/10.1016/j.jacc.2010.03.085.

    Article  PubMed  Google Scholar 

  54. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749–56. https://doi.org/10.1161/CIRCULATIONAHA.113.008396.

    Article  PubMed  Google Scholar 

  55. Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115(2):163–72. https://doi.org/10.1161/CIRCULATIONAHA.106.627224.

    Article  PubMed  Google Scholar 

  56. Stulak JM, Dearani JA, Burkhart HM, Ammash NM, Phillips SD, Schaff HV. Coronary artery disease in adult congenital heart disease: outcome after coronary artery bypass grafting. Ann Thorac Surg. 2012;93(1):116–22; discussion 22–3. https://doi.org/10.1016/j.athoracsur.2011.09.013.

    Article  PubMed  Google Scholar 

  57. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines on the Management of Adults with Congenital Heart Disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e143–263. https://doi.org/10.1016/j.jacc.2008.10.001.

    Article  PubMed  Google Scholar 

  58. Tutarel O, Kempny A, Alonso-Gonzalez R, Jabbour R, Li W, Uebing A, et al. Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur Heart J. 2014;35(11):725–32. https://doi.org/10.1093/eurheartj/eht257.

    Article  PubMed  Google Scholar 

  59. van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ. The changing epidemiology of congenital heart disease. Nat Rev Cardiol. 2011;8(1):50–60. https://doi.org/10.1038/nrcardio.2010.166.

    Article  PubMed  Google Scholar 

  60. Warnes CA. The adult with congenital heart disease: born to be bad? J Am Coll Cardiol. 2005;46(1):1–8. https://doi.org/10.1016/j.jacc.2005.02.083.

    Article  PubMed  Google Scholar 

  61. Holst KA, Dearani JA, Burkhart HM, Connolly HM, Warnes CA, Li Z, et al. Risk factors and early outcomes of multiple reoperations in adults with congenital heart disease. Ann Thorac Surg. 2011;92(1):122–8; discussion 9–30. https://doi.org/10.1016/j.athoracsur.2011.03.102.

    Article  PubMed  Google Scholar 

  62. Mackie AS, Pilote L, Ionescu-Ittu R, Rahme E, Marelli AJ. Health care resource utilization in adults with congenital heart disease. Am J Cardiol. 2007;99(6):839–43. https://doi.org/10.1016/j.amjcard.2006.10.054.

    Article  PubMed  Google Scholar 

  63. Gherardi GG, Iball GR, Darby MJ, Thomson JD. Cardiac computed tomography and conventional angiography in the diagnosis of congenital cardiac disease in children: recent trends and radiation doses. Cardiol Young. 2011;21(6):616–22. https://doi.org/10.1017/S1047951111000485.

    Article  PubMed  Google Scholar 

  64. Han BK, Lesser AM, Vezmar M, Rosenthal K, Rutten-Ramos S, Lindberg J, et al. Cardiovascular imaging trends in congenital heart disease: a single center experience. J Cardiovasc Comput Tomogr. 2013;7(6):361–6. https://doi.org/10.1016/j.jcct.2013.11.002.

    Article  PubMed  Google Scholar 

  65. Watson TG, Mah E, Joseph Schoepf U, King L, Huda W, Hlavacek AM. Effective radiation dose in computed tomographic angiography of the chest and diagnostic cardiac catheterization in pediatric patients. Pediatr Cardiol. 2013;34(3):518–24. https://doi.org/10.1007/s00246-012-0486-2.

    Article  PubMed  Google Scholar 

  66. Greenberg SB. Rebalancing the risks of computed tomography and magnetic resonance imaging. Pediatr Radiol. 2011;41(8):951–2. https://doi.org/10.1007/s00247-011-2159-3.

    Article  PubMed  Google Scholar 

  67. Carson JL, Kelley MA, Duff A, Weg JG, Fulkerson WJ, Palevsky HI, et al. The clinical course of pulmonary embolism. N Engl J Med. 1992;326(19):1240–5. https://doi.org/10.1056/NEJM199205073261902.

    Article  PubMed  CAS  Google Scholar 

  68. Horlander KT, Mannino DM, Leeper KV. Pulmonary embolism mortality in the United States, 1979-1998: an analysis using multiple-cause mortality data. Arch Intern Med. 2003;163(14):1711–7. https://doi.org/10.1001/archinte.163.14.1711.

    Article  PubMed  Google Scholar 

  69. Bettmann MA, Baginski SG, White RD, Woodard PK, Abbara S, Atalay MK, et al. ACR appropriateness criteria(R) acute chest pain—suspected pulmonary embolism. J Thorac Imaging. 2012;27(2):W28–31. https://doi.org/10.1097/RTI.0b013e31823efeb6.

    Article  PubMed  Google Scholar 

  70. Remy-Jardin M, Pistolesi M, Goodman LR, Gefter WB, Gottschalk A, Mayo JR, et al. Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner society. Radiology. 2007;245(2):315–29. https://doi.org/10.1148/radiol.2452070397.

    Article  PubMed  Google Scholar 

  71. Quiroz R, Kucher N, Zou KH, Kipfmueller F, Costello P, Goldhaber SZ, et al. Clinical validity of a negative computed tomography scan in patients with suspected pulmonary embolism: a systematic review. JAMA. 2005;293(16):2012–7. https://doi.org/10.1001/jama.293.16.2012.

    Article  PubMed  CAS  Google Scholar 

  72. Perrier A, Nendaz MR, Sarasin FP, Howarth N, Bounameaux H. Cost-effectiveness analysis of diagnostic strategies for suspected pulmonary embolism including helical computed tomography. Am J Respir Crit Care Med. 2003;167(1):39–44. https://doi.org/10.1164/rccm.2106128.

    Article  PubMed  Google Scholar 

  73. Schwickert HC, Schweden F, Schild HH, Piepenburg R, Duber C, Kauczor HU, et al. Pulmonary arteries and lung parenchyma in chronic pulmonary embolism: preoperative and postoperative CT findings. Radiology. 1994;191(2):351–7. https://doi.org/10.1148/radiology.191.2.8153305.

    Article  PubMed  CAS  Google Scholar 

  74. Lang IM. Chronic thromboembolic pulmonary hypertension—not so rare after all. N Engl J Med. 2004;350(22):2236–8. https://doi.org/10.1056/NEJMp048088.

    Article  PubMed  CAS  Google Scholar 

  75. Auger WR, Fedullo PF, Moser KM, Buchbinder M, Peterson KL. Chronic major-vessel thromboembolic pulmonary artery obstruction: appearance at angiography. Radiology. 1992;182(2):393–8. https://doi.org/10.1148/radiology.182.2.1732955.

    Article  PubMed  CAS  Google Scholar 

  76. Tardivon AA, Musset D, Maitre S, Brenot F, Dartevelle P, Simonneau G, et al. Role of CT in chronic pulmonary embolism: comparison with pulmonary angiography. J Comput Assist Tomogr. 1993;17(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  77. Bergin CJSC, Hauschildt JP, Huynh TV, Auger WR, Fedullo PF, Kapelanski DP. Chronic thromboembolism: diagnosis with helical CT and MR imaging with angiographic and surgical correlation. Radiology. 1997;204(3):695–702. https://doi.org/10.1148/radiology.204.3.9280245.

    Article  PubMed  CAS  Google Scholar 

  78. Ley S, Kauczor HU, Heussel CP, Kramm T, Mayer E, Thelen M, et al. Value of contrast-enhanced MR angiography and helical CT angiography in chronic thromboembolic pulmonary hypertension. Eur Radiol. 2003;13(10):2365–71. https://doi.org/10.1007/s00330-003-1878-8.

    Article  PubMed  Google Scholar 

  79. Bergin CJ, Sirlin C, Deutsch R, Fedullo P, Hauschildt J, Huynh T, et al. Predictors of patient response to pulmonary thromboendarterectomy. AJR Am J Roentgenol. 2000;174(2):509–15. https://doi.org/10.2214/ajr.174.2.1740509.

    Article  PubMed  CAS  Google Scholar 

  80. Heinrich M, Uder M, Tscholl D, Grgic A, Kramann B, Schafers HJ. CT scan findings in chronic thromboembolic pulmonary hypertension: predictors of hemodynamic improvement after pulmonary thromboendarterectomy. Chest. 2005;127(5):1606–13. https://doi.org/10.1378/chest.127.5.1606.

    Article  PubMed  Google Scholar 

  81. Oikonomou A, Dennie CJ, Muller NL, Seely JM, Matzinger FR, Rubens FD. Chronic thromboembolic pulmonary arterial hypertension: correlation of postoperative results of thromboendarterectomy with preoperative helical contrast-enhanced computed tomography. J Thorac Imaging. 2004;19(2):67–73.

    Article  PubMed  Google Scholar 

  82. Apfaltrer P, Sudarski S, Schneider D, Nance JW Jr, Haubenreisser H, Fink C, et al. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol. 2014;83(2):322–8. https://doi.org/10.1016/j.ejrad.2013.11.005.

    Article  PubMed  Google Scholar 

  83. Delesalle MA, Pontana F, Duhamel A, Faivre JB, Flohr T, Tacelli N, et al. Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology. 2013;267(1):256–66. https://doi.org/10.1148/radiol.12120195.

    Article  PubMed  Google Scholar 

  84. Ameli-Renani S, Rahman F, Nair A, Ramsay L, Bacon JL, Weller A, et al. Dual-energy CT for imaging of pulmonary hypertension: challenges and opportunities. Radiographics. 2014;34(7):1769–90. https://doi.org/10.1148/rg.347130085.

    Article  PubMed  Google Scholar 

  85. Dournes G, Verdier D, Montaudon M, Bullier E, Riviere A, Dromer C, et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy. Eur Radiol. 2014;24(1):42–51. https://doi.org/10.1007/s00330-013-2975-y.

    Article  PubMed  Google Scholar 

  86. Ameli-Renani S, Ramsay L, Bacon JL, Rahman F, Nair A, Smith V, et al. Dual-energy computed tomography in the assessment of vascular and parenchymal enhancement in suspected pulmonary hypertension. J Thorac Imaging. 2014;29(2):98–106. https://doi.org/10.1097/RTI.0000000000000061.

    Article  PubMed  Google Scholar 

  87. Litmanovich D, Bankier AA, Cantin L, Raptopoulos V, Boiselle PM. CT and MRI in diseases of the aorta. AJR Am J Roentgenol. 2009;193(4):928–40. https://doi.org/10.2214/AJR.08.2166.

    Article  PubMed  Google Scholar 

  88. Agarwal PP, Chughtai A, Matzinger FR, Kazerooni EA. Multidetector CT of thoracic aortic aneurysms. Radiographics. 2009;29(2):537–52. https://doi.org/10.1148/rg.292075080.

    Article  PubMed  Google Scholar 

  89. Litmanovich D, Zamboni GA, Hauser TH, Lin PJ, Clouse ME, Raptopoulos V. ECG-gated chest CT angiography with 64-MDCT and tri-phasic IV contrast administration regimen in patients with acute non-specific chest pain. Eur Radiol. 2008;18(2):308–17. https://doi.org/10.1007/s00330-007-0739-2.

    Article  PubMed  Google Scholar 

  90. Yoshioka K, Niinuma H, Ehara S, Nakajima T, Nakamura M, Kawazoe K. MR angiography and CT angiography of the artery of Adamkiewicz: state of the art. Radiographics. 2006;26(Suppl 1):S63–73. https://doi.org/10.1148/rg.26si065506.

    Article  PubMed  Google Scholar 

  91. Abbara S, Kalva S, Cury RC, Isselbacher EM. Thoracic aortic disease: spectrum of multidetector computed tomography imaging findings. J Cardiovasc Comput Tomogr. 2007;1(1):40–54. https://doi.org/10.1016/j.jcct.2007.04.003.

    Article  PubMed  Google Scholar 

  92. Morales JP, Greenberg RK, Lu Q, Cury M, Hernandez AV, Mohabbat W, Moon MC, Morales CA, Bathurst S, Schoenhagen P. Endoleaks following endovascular repair of thoracic aortic aneurysm: etiology and outcomes. J Endovasc Ther. 2008;15(6):631–8. https://doi:10.1583/08-2551.1. PubMed PMID: 19090634.

    Google Scholar 

  93. Jassal DS, Shapiro MD, Neilan TG, Chaithiraphan V, Ferencik M, Teague SD, et al. 64-slice multidetector computed tomography (MDCT) for detection of aortic regurgitation and quantification of severity. Investig Radiol. 2007;42(7):507–12. https://doi.org/10.1097/RLI.0b013e3180375556.

    Article  Google Scholar 

  94. Laissy JP, Messika-Zeitoun D, Serfaty JM, Sebban V, Schouman-Claeys E, Iung B, et al. Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart. 2007;93(9):1121–5. https://doi.org/10.1136/hrt.2006.107284.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Batra P, Bigoni B, Manning J, Aberle DR, Brown K, Hart E, et al. Pitfalls in the diagnosis of thoracic aortic dissection at CT angiography. Radiographics. 2000;20(2):309–20. https://doi.org/10.1148/radiographics.20.2.g00mc04309.

    Article  PubMed  CAS  Google Scholar 

  96. Prescott-Focht JA, Martinez-Jimenez S, Hurwitz LM, Hoang JK, Christensen JD, Ghoshhajra BB, et al. Ascending thoracic aorta: postoperative imaging evaluation. Radiographics. 2013;33(1):73–85. https://doi.org/10.1148/rg.331125090.

    Article  PubMed  Google Scholar 

  97. Novelline RA, Rhea JT, Rao PM, Stuk JL. Helical CT in emergency radiology. Radiology. 1999;213(2):321–39. https://doi.org/10.1148/radiology.213.2.r99nv01321.

    Article  PubMed  CAS  Google Scholar 

  98. White CS, Kuo D, Kelemen M, Jain V, Musk A, Zaidi E, et al. Chest pain evaluation in the emergency department: can MDCT provide a comprehensive evaluation? AJR Am J Roentgenol. 2005;185(2):533–40. https://doi.org/10.2214/ajr.185.2.01850533.

    Article  PubMed  Google Scholar 

  99. Meinel FG, Nikolaou K, Weidenhagen R, Hellbach K, Helck A, Bamberg F, et al. Time-resolved CT angiography in aortic dissection. Eur J Radiol. 2012;81(11):3254–61. https://doi.org/10.1016/j.ejrad.2012.03.006.

    Article  PubMed  Google Scholar 

  100. Sommer T, Fehske W, Holzknecht N, Smekal AV, Keller E, Lutterbey G, et al. Aortic dissection: a comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging. Radiology. 1996;199(2):347–52. https://doi.org/10.1148/radiology.199.2.8668776.

    Article  PubMed  CAS  Google Scholar 

  101. Kaji S, Akasaka T, Horibata Y, Nishigami K, Shono H, Katayama M, et al. Long-term prognosis of patients with type a aortic intramural hematoma. Circulation. 2002;106(12 Suppl 1):I248–52.

    PubMed  Google Scholar 

  102. Kaji S, Nishigami K, Akasaka T, Hozumi T, Takagi T, Kawamoto T, et al. Prediction of progression or regression of type a aortic intramural hematoma by computed tomography. Circulation. 1999;100(19 Suppl):II281–6.

    PubMed  CAS  Google Scholar 

  103. Johnson TR, Nikolaou K, Wintersperger BJ, Knez A, Boekstegers P, Reiser MF, et al. ECG-gated 64-MDCT angiography in the differential diagnosis of acute chest pain. AJR Am J Roentgenol. 2007;188(1):76–82. https://doi.org/10.2214/AJR.05.1153.

    Article  PubMed  Google Scholar 

  104. Choi SH, Choi SJ, Kim JH, Bae SJ, Lee JS, Song KS, et al. Useful CT findings for predicting the progression of aortic intramural hematoma to overt aortic dissection. J Comput Assist Tomogr. 2001;25(2):295–9.

    Article  CAS  PubMed  Google Scholar 

  105. Cho KR, Stanson AW, Potter DD, Cherry KJ, Schaff HV, Sundt TM 3rd. Penetrating atherosclerotic ulcer of the descending thoracic aorta and arch. J Thorac Cardiovasc Surg. 2004;127(5):1393–9; discussion 9–401. https://doi.org/10.1016/j.jtcvs.2003.11.050.

    Article  PubMed  Google Scholar 

  106. O'Gara PT, DeSanctis RW. Acute aortic dissection and its variants. Toward a common diagnostic and therapeutic approach. Circulation. 1995;92(6):1376–8.

    Article  CAS  PubMed  Google Scholar 

  107. Sueyoshi E, Imada T, Sakamoto I, Matsuoka Y, Hayashi K. Analysis of predictive factors for progression of type B aortic intramural hematoma with computed tomography. J Vasc Surg. 2002;35(6):1179–83.

    Article  PubMed  Google Scholar 

  108. Tittle SL, Lynch RJ, Cole PE, Singh HS, Rizzo JA, Kopf GS, et al. Midterm follow-up of penetrating ulcer and intramural hematoma of the aorta. J Thorac Cardiovasc Surg. 2002;123(6):1051–9.

    Google Scholar 

  109. Hayashi H, Matsuoka Y, Sakamoto I, Sueyoshi E, Okimoto T, Hayashi K, et al. Penetrating atherosclerotic ulcer of the aorta: imaging features and disease concept. Radiographics. 2000;20(4):995–1005. https://doi.org/10.1148/radiographics.20.4.g00jl01995.

    Article  PubMed  CAS  Google Scholar 

  110. Godoy MC, Naidich DP, Marchiori E, Leidecker C, Schmidt B, Assadourian B, et al. Single-acquisition dual-energy multidetector computed tomography: analysis of vascular enhancement and postprocessing techniques for evaluating the thoracic aorta. J Comput Assist Tomogr. 2010;34(5):670–7. https://doi.org/10.1097/RCT.0b013e3181e10627.

    Article  PubMed  Google Scholar 

  111. Numburi UD, Schoenhagen P, Flamm SD, Greenberg RK, Primak AN, Saba OI, et al. Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. AJR Am J Roentgenol. 2010;195(2):486–93. https://doi.org/10.2214/AJR.09.3872.

    Article  PubMed  Google Scholar 

  112. Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249(2):682–91. https://doi.org/10.1148/radiol.2483080193.

    Article  PubMed  Google Scholar 

  113. Brown KK. Pulmonary vasculitis. Proc Am Thorac Soc. 2006;3(1):48–57. https://doi.org/10.1513/pats.200511-120JH.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Hansell DM. Small-vessel diseases of the lung: CT-pathologic correlates. Radiology. 2002;225(3):639–53. https://doi.org/10.1148/radiol.2253011490.

    Article  PubMed  Google Scholar 

  115. Chung MP, Yi CA, Lee HY, Han J, Lee KS. Imaging of pulmonary vasculitis. Radiology. 2010;255(2):322–41. https://doi.org/10.1148/radiol.10090105.

    Article  PubMed  Google Scholar 

  116. Schmidt WA. Imaging in vasculitis. Best Pract Res Clin Rheumatol. 2013;27(1):107–18. https://doi.org/10.1016/j.berh.2013.01.001.

    Article  PubMed  Google Scholar 

  117. Allen CM, Al-Jahdali HH, Irion KL, Al Ghanem S, Gouda A, Khan AN. Imaging lung manifestations of HIV/AIDS. Ann Thorac Med. 2010;5(4):201–16. https://doi.org/10.4103/1817-1737.69106.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Boiselle PM, Tocino I, Hooley RJ, Pumerantz AS, Selwyn PA, Neklesa VP, et al. Chest radiograph interpretation of pneumocystis carinii pneumonia, bacterial pneumonia, and pulmonary tuberculosis in HIV-positive patients: accuracy, distinguishing features, and mimics. J Thorac Imaging. 1997;12(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  119. Hartman TE, Primack SL, Muller NL, Staples CA. Diagnosis of thoracic complications in AIDS: accuracy of CT. AJR Am J Roentgenol. 1994;162(3):547–53. https://doi.org/10.2214/ajr.162.3.8109494.

    Article  PubMed  CAS  Google Scholar 

  120. Kang EY, Staples CA, McGuinness G, Primack SL, Muller NL. Detection and differential diagnosis of pulmonary infections and tumors in patients with AIDS: value of chest radiography versus CT. AJR Am J Roentgenol. 1996;166(1):15–9. https://doi.org/10.2214/ajr.166.1.8571866.

    Article  PubMed  CAS  Google Scholar 

  121. Edinburgh KJ, Jasmer RM, Huang L, Reddy GP, Chung MH, Thompson A, et al. Multiple pulmonary nodules in AIDS: usefulness of CT in distinguishing among potential causes. Radiology. 2000;214(2):427–32. https://doi.org/10.1148/radiology.214.2.r00fe22427.

    Article  PubMed  CAS  Google Scholar 

  122. Tortoriello TA, Friedman JD, McKenzie ED, Fraser CD, Feltes TF, Randall J, et al. Mediastinitis after pediatric cardiac surgery: a 15-year experience at a single institution. Ann Thorac Surg. 2003;76(5):1655–60.

    Article  PubMed  Google Scholar 

  123. Braxton JH, Marrin CA, McGrath PD, Ross CS, Morton JR, Norotsky M, et al. Mediastinitis and long-term survival after coronary artery bypass graft surgery. Ann Thorac Surg. 2000;70(6):2004–7.

    Article  CAS  PubMed  Google Scholar 

  124. Akman C, Kantarci F, Cetinkaya S. Imaging in mediastinitis: a systematic review based on aetiology. Clin Radiol. 2004;59(7):573–85. https://doi.org/10.1016/j.crad.2003.12.001.

    Article  PubMed  CAS  Google Scholar 

  125. Abboud CS, Wey SB, Baltar VT. Risk factors for mediastinitis after cardiac surgery. Ann Thorac Surg. 2004;77(2):676–83. https://doi.org/10.1016/S0003-4975(03)01523-6.

    Article  PubMed  Google Scholar 

  126. Jolles H, Henry DA, Roberson JP, Cole TJ, Spratt JA. Mediastinitis following median sternotomy: CT findings. Radiology. 1996;201(2):463–6. https://doi.org/10.1148/radiology.201.2.8888241.

    Article  PubMed  CAS  Google Scholar 

  127. Macedo CABM, Uezumi KK, Castro CC, Lucarelli CL, Cerri GG. Acute mediastinitis: multidetector computed tomography findings following cardiac surgery. Radiol Bras. 2008;41(4):269–73.

    Article  Google Scholar 

  128. Merrill WH, Akhter SA, Wolf RK, Schneeberger EW, Flege JB Jr. Simplified treatment of postoperative mediastinitis. Ann Thorac Surg. 2004;78(2):608–12; discussion -12. https://doi.org/10.1016/j.athoracsur.2004.02.089.

    Article  PubMed  Google Scholar 

  129. Henry DA. International labor office classification system in the age of imaging: relevant or redundant. J Thorac Imaging. 2002;17(3):179–88.

    Article  PubMed  Google Scholar 

  130. Hansell DM. Computed tomography of diffuse lung disease: functional correlates. Eur Radiol. 2001;11(9):1666–80. https://doi.org/10.1007/s003300100880.

    Article  PubMed  CAS  Google Scholar 

  131. Lynch DA, Godwin JD, Safrin S, Starko KM, Hormel P, Brown KK, et al. High-resolution computed tomography in idiopathic pulmonary fibrosis: diagnosis and prognosis. Am J Respir Crit Care Med. 2005;172(4):488–93. https://doi.org/10.1164/rccm.200412-1756OC.

    Article  PubMed  Google Scholar 

  132. Cox CW, Rose CS, Lynch DA. State of the art: imaging of occupational lung disease. Radiology. 2014;270(3):681–96. https://doi.org/10.1148/radiol.13121415.

    Article  PubMed  Google Scholar 

  133. Hering KG, Tuengerthal S, Kraus T. Standardized CT/HRCT-classification of the German Federal Republic for work and environmental related thoracic diseases. Radiologe. 2004;44(5):500–11. https://doi.org/10.1007/s00117-004-1027-7.

    Article  PubMed  CAS  Google Scholar 

  134. Huuskonen O, Kivisaari L, Zitting A, Taskinen K, Tossavainen A, Vehmas T. High-resolution computed tomography classification of lung fibrosis for patients with asbestos-related disease. Scand J Work Environ Health. 2001;27(2):106–12.

    Article  CAS  PubMed  Google Scholar 

  135. Kraus T, Borsch-Galetke E, Elliehausen HJ, Frank K, Hering KG, Hieckel HG, et al. Recommendations for reporting benign asbestos-related findings in chest X-ray and CT to the accident insurances. Pneumologie. 2009;63(12):726–32. https://doi.org/10.1055/s-0029-1215322.

    Article  PubMed  CAS  Google Scholar 

  136. Suganuma N, Kusaka Y, Hering KG, Vehmas T, Kraus T, Parker JE, et al. Selection of reference films based on reliability assessment of a classification of high-resolution computed tomography for pneumoconioses. Int Arch Occup Environ Health. 2006;79(6):472–6. https://doi.org/10.1007/s00420-005-0067-2.

    Article  PubMed  Google Scholar 

  137. Suganuma N, Kusaka Y, Hering KG, Vehmas T, Kraus T, Arakawa H, et al. Reliability of the proposed international classification of high-resolution computed tomography for occupational and environmental respiratory diseases. J Occup Health. 2009;51(3):210–22.

    Article  PubMed  Google Scholar 

  138. Das M, Muhlenbruch G, Mahnken AH, Hering KG, Sirbu H, Zschiesche W, et al. Asbestos surveillance program Aachen (ASPA): initial results from baseline screening for lung cancer in asbestos-exposed high-risk individuals using low-dose multidetector-row CT. Eur Radiol. 2007;17(5):1193–9. https://doi.org/10.1007/s00330-006-0426-8.

    Article  PubMed  Google Scholar 

  139. Tiitola M, Kivisaari L, Zitting A, Huuskonen MS, Kaleva S, Tossavainen A, et al. Computed tomography of asbestos-related pleural abnormalities. Int Arch Occup Environ Health. 2002;75(4):224–8. https://doi.org/10.1007/s00420-001-0297-x.

    Article  PubMed  CAS  Google Scholar 

  140. Landrigan PJ. Asbestos--still a carcinogen. N Engl J Med. 1998;338(22):1618–9. https://doi.org/10.1056/NEJM199805283382209.

    Article  PubMed  CAS  Google Scholar 

  141. Cavallazzi KG. Mesothelioma and other asbestos-related pleural diseases. Pulm Dis. 2008;13:5.

    Google Scholar 

  142. Rusch VW, Godwin JD, Shuman WP. The role of computed tomography scanning in the initial assessment and the follow-up of malignant pleural mesothelioma. J Thorac Cardiovasc Surg. 1988;96(1):171–7.

    PubMed  CAS  Google Scholar 

  143. Wang ZJ, Reddy GP, Gotway MB, Higgins CB, Jablons DM, Ramaswamy M, et al. Malignant pleural mesothelioma: evaluation with CT, MR imaging, and PET. Radiographics. 2004;24(1):105–19. https://doi.org/10.1148/rg.241035058.

    Article  PubMed  Google Scholar 

  144. Friedman AC, Fiel SB, Fisher MS, Radecki PD, Lev-Toaff AS, Caroline DF. Asbestos-related pleural disease and asbestosis: a comparison of CT and chest radiography. AJR Am J Roentgenol. 1988;150(2):269–75. https://doi.org/10.2214/ajr.150.2.269.

    Article  PubMed  CAS  Google Scholar 

  145. Akira M, Yamamoto S, Inoue Y, Sakatani M. High-resolution CT of asbestosis and idiopathic pulmonary fibrosis. AJR Am J Roentgenol. 2003;181(1):163–9. https://doi.org/10.2214/ajr.181.1.1810163.

    Article  PubMed  Google Scholar 

  146. Meyer KC. Diagnosis and management of interstitial lung disease. Transl Respir Med. 2014;2:4. https://doi.org/10.1186/2213-0802-2-4.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Meyer KC. Interstitial lung disease in the elderly: pathogenesis, diagnosis and management. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(1):3–17.

    PubMed  CAS  Google Scholar 

  148. Kanne JP. Interstitial lung disease (ILD): imaging finding, and the role of imaging in evaluating the patient with known or suspected ILD. Semin Roentgenol. 2010;45(1):3. https://doi.org/10.1053/j.ro.2009.09.001.

    Article  PubMed  Google Scholar 

  149. Hodnett PA, Naidich DP. Fibrosing interstitial lung disease. A practical high-resolution computed tomography-based approach to diagnosis and management and a review of the literature. Am J Respir Crit Care Med. 2013;188(2):141–9. https://doi.org/10.1164/rccm.201208-1544CI.

    Article  PubMed  Google Scholar 

  150. Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du Bois RM, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185(9):1004–14. https://doi.org/10.1164/rccm.201202-0320ST.

    Article  PubMed  Google Scholar 

  151. Edey AJ, Devaraj AA, Barker RP, Nicholson AG, Wells AU, Hansell DM. Fibrotic idiopathic interstitial pneumonias: HRCT findings that predict mortality. Eur Radiol. 2011;21(8):1586–93. https://doi.org/10.1007/s00330-011-2098-2.

    Article  PubMed  Google Scholar 

  152. Woodhead F, Wells AU, Desai SR. Pulmonary complications of connective tissue diseases. Clin Chest Med. 2008;29(1):149–64, vii. https://doi.org/10.1016/j.ccm.2007.11.009.

    Article  PubMed  Google Scholar 

  153. Capobianco J, Grimberg A, Thompson BM, Antunes VB, Jasinowodolinski D, Meirelles GS. Thoracic manifestations of collagen vascular diseases. Radiographics. 2012;32(1):33–50. https://doi.org/10.1148/rg.321105058.

    Article  PubMed  Google Scholar 

  154. Visscher DW, Myers JL. Bronchiolitis: the pathologist’s perspective. Proc Am Thorac Soc. 2006;3(1):41–7. https://doi.org/10.1513/pats.200512-124JH.

    Article  PubMed  Google Scholar 

  155. Abbott GF, Rosado-de-Christenson ML, Rossi SE, Suster S. Imaging of small airways disease. J Thorac Imaging. 2009;24(4):285–98. https://doi.org/10.1097/RTI.0b013e3181c1ab83.

    Article  PubMed  Google Scholar 

  156. Lynch DA. Imaging of small airways disease and chronic obstructive pulmonary disease. Clin Chest Med. 2008;29(1):165–79, vii. https://doi.org/10.1016/j.ccm.2007.11.008.

    Article  PubMed  Google Scholar 

  157. Boiselle PM, Feller-Kopman D, Ashiku S, Weeks D, Ernst A. Tracheobronchomalacia: evolving role of dynamic multislice helical CT. Radiol Clin N Am. 2003;41(3):627–36.

    Article  PubMed  Google Scholar 

  158. Carden KA, Boiselle PM, Waltz DA, Ernst A. Tracheomalacia and tracheobronchomalacia in children and adults: an in-depth review. Chest. 2005;127(3):984–1005. https://doi.org/10.1378/chest.127.3.984.

    Article  PubMed  Google Scholar 

  159. Lee KS, Ernst A, Trentham DE, Lunn W, Feller-Kopman DJ, Boiselle PM. Relapsing polychondritis: prevalence of expiratory CT airway abnormalities. Radiology. 2006;240(2):565–73. https://doi.org/10.1148/radiol.2401050562.

    Article  PubMed  Google Scholar 

  160. Hein E, Rogalla P, Hentschel C, Taupitz M, Hamm B. Dynamic and quantitative assessment of tracheomalacia by electron beam tomography: correlation with clinical symptoms and bronchoscopy. J Comput Assist Tomogr. 2000;24(2):247–52.

    Article  CAS  PubMed  Google Scholar 

  161. Boiselle PM. Multislice helical CT of the central airways. Radiol Clin N Am. 2003;41(3):561–74.

    Article  PubMed  Google Scholar 

  162. Boiselle PM. Imaging of the large airways. Clin Chest Med. 2008;29(1):181–93, vii. https://doi.org/10.1016/j.ccm.2007.11.002.

    Article  PubMed  Google Scholar 

  163. Boiselle PM, Ernst A. State-of-the-art imaging of the central airways. Respiration. 2003;70(4):383–94.

    Article  PubMed  Google Scholar 

  164. Boiselle PM, Lee KS, Ernst A. Multidetector CT of the central airways. J Thorac Imaging. 2005;20(3):186–95.

    Article  PubMed  Google Scholar 

  165. Boiselle PM, Reynolds KF, Ernst A. Multiplanar and three-dimensional imaging of the central airways with multidetector CT. AJR Am J Roentgenol. 2002;179(2):301–8. https://doi.org/10.2214/ajr.179.2.1790301.

    Article  PubMed  Google Scholar 

  166. Lee EY, Siegel MJ. MDCT of tracheobronchial narrowing in pediatric patients. J Thorac Imaging. 2007;22(3):300–9. https://doi.org/10.1097/RTI.0b013e3180cab6e8.

    Article  PubMed  Google Scholar 

  167. Lee EY, Siegel MJ, Hildebolt CF, Gutierrez FR, Bhalla S, Fallah JH. MDCT evaluation of thoracic aortic anomalies in pediatric patients and young adults: comparison of axial, multiplanar, and 3D images. AJR Am J Roentgenol. 2004;182(3):777–84. https://doi.org/10.2214/ajr.182.3.1820777.

    Article  PubMed  Google Scholar 

  168. Siegel MJ. Multiplanar and three-dimensional multi-detector row CT of thoracic vessels and airways in the pediatric population. Radiology. 2003;229(3):641–50. https://doi.org/10.1148/radiol.2293020999.

    Article  PubMed  Google Scholar 

  169. Lee EY, Boiselle PM. Tracheobronchomalacia in infants and children: multidetector CT evaluation. Radiology. 2009;252(1):7–22. https://doi.org/10.1148/radiol.2513081280.

    Article  PubMed  Google Scholar 

  170. Lee EY, Boiselle PM, Cleveland RH. Multidetector CT evaluation of congenital lung anomalies. Radiology. 2008;247(3):632–48. https://doi.org/10.1148/radiol.2473062124.

    Article  PubMed  Google Scholar 

  171. Ramadan HH, Wax MK, Avery S. Outcome and changing cause of unilateral vocal cord paralysis. Otolaryngol Head Neck Surg. 1998;118(2):199–202. https://doi.org/10.1016/S0194-5998(98)80014-4.

    Article  PubMed  CAS  Google Scholar 

  172. Yumoto E, Minoda R, Hyodo M, Yamagata T. Causes of recurrent laryngeal nerve paralysis. Auris Nasus Larynx. 2002;29(1):41–5.

    Article  PubMed  Google Scholar 

  173. Bando H, Nishio T, Bamba H, Uno T, Hisa Y. Vocal fold paralysis as a sign of chest diseases: a 15-year retrospective study. World J Surg. 2006;30(3):293–8. https://doi.org/10.1007/s00268-005-7959-x.

    Article  PubMed  Google Scholar 

  174. Glazer HS, Aronberg DJ, Lee JK, Sagel SS. Extralaryngeal causes of vocal cord paralysis: CT evaluation. AJR Am J Roentgenol. 1983;141(3):527–31. https://doi.org/10.2214/ajr.141.3.527.

    Article  PubMed  CAS  Google Scholar 

  175. Paquette CM, Manos DC, Psooy BJ. Unilateral vocal cord paralysis: a review of CT findings, mediastinal causes, and the course of the recurrent laryngeal nerves. Radiographics. 2012;32(3):721–40. https://doi.org/10.1148/rg.323115129.

    Article  PubMed  Google Scholar 

  176. Pretorius PM, Milford CA. Investigating the hoarse voice. BMJ. 2008;337:a1726. https://doi.org/10.1136/bmj.a1726.

    Article  PubMed  Google Scholar 

  177. Robinson S, Pitkaranta A. Radiology findings in adult patients with vocal fold paralysis. Clin Radiol. 2006;61(10):863–7. https://doi.org/10.1016/j.crad.2006.02.016.

    Article  PubMed  CAS  Google Scholar 

  178. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532–55. https://doi.org/10.1164/rccm.200703-456SO.

    Article  PubMed  Google Scholar 

  179. Litmanovich DE, Hartwick K, Silva M, Bankier AA. Multidetector computed tomographic imaging in chronic obstructive pulmonary disease: emphysema and airways assessment. Radiol Clin N Am. 2014;52(1):137–54. https://doi.org/10.1016/j.rcl.2013.09.002.

    Article  PubMed  Google Scholar 

  180. Matsuoka S, Yamashiro T, Washko GR, Kurihara Y, Nakajima Y, Hatabu H. Quantitative CT assessment of chronic obstructive pulmonary disease. Radiographics. 2010;30(1):55–66. https://doi.org/10.1148/rg.301095110.

    Article  PubMed  Google Scholar 

  181. Mayo JR. CT evaluation of diffuse infiltrative lung disease: dose considerations and optimal technique. J Thorac Imaging. 2009;24(4):252–9. https://doi.org/10.1097/RTI.0b013e3181c227b2.

    Article  PubMed  Google Scholar 

  182. Hackx M, Gyssels E, Severo Garcia T, De Meulder I, Alard S, Bruyneel M, et al. Chronic obstructive pulmonary disease: CT quantification of airway dimensions, numbers of airways to measure, and effect of bronchodilation. Radiology. 2015;277(3):853–62. https://doi.org/10.1148/radiol.2015140949.

    Article  PubMed  Google Scholar 

  183. Albert P, Agusti A, Edwards L, Tal-Singer R, Yates J, Bakke P, et al. Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax. 2012;67(8):701–8. https://doi.org/10.1136/thoraxjnl-2011-201458.

    Article  PubMed  Google Scholar 

  184. Venuta F, de Giacomo T, Rendina EA, Ciccone AM, Diso D, Perrone A, et al. Bronchoscopic lung-volume reduction with one-way valves in patients with heterogenous emphysema. Ann Thorac Surg. 2005;79(2):411–6; discussion 6–7. https://doi.org/10.1016/j.athoracsur.2004.07.048.

    Article  PubMed  Google Scholar 

  185. Wood DE, McKenna RJ Jr, Yusen RD, Sterman DH, Ost DE, Springmeyer SC, et al. A multicenter trial of an intrabronchial valve for treatment of severe emphysema. J Thorac Cardiovasc Surg. 2007;133(1):65–73. https://doi.org/10.1016/j.jtcvs.2006.06.051.

    Article  PubMed  Google Scholar 

  186. Fraioli F, Calabrese FA, Venuta F, Anile M, Bertoletti L, Carbone I, et al. MDCT assessment of lung volume in patients undergoing bronchial stenting for treatment of pulmonary emphysema: correlation with respiratory tests and personal experience. Radiol Med. 2006;111(6):749–58. https://doi.org/10.1007/s11547-006-0078-4.

    Article  PubMed  CAS  Google Scholar 

  187. Pereira GC, Traughber M, Muzic RF Jr. The role of imaging in radiation therapy planning: past, present, and future. Biomed Res Int. 2014;2014:231090. https://doi.org/10.1155/2014/231090.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol. 2004;14(1):81–90. https://doi.org/10.1053/j.semradonc.2003.10.006.

    Article  PubMed  Google Scholar 

  189. Soo E, Edey AJ. The role of thoracic imaging in the intensive care unit. Br J Hosp Med (Lond). 2012;73(11):612–9.

    Article  Google Scholar 

  190. Hill JR, Horner PE, Primack SL. ICU imaging. Clin Chest Med. 2008;29(1):59–76, vi. https://doi.org/10.1016/j.ccm.2007.11.005.

    Article  PubMed  Google Scholar 

  191. Miller WT Jr, Tino G, Friedburg JS. Thoracic CT in the intensive care unit: assessment of clinical usefulness. Radiology. 1998;209(2):491–8. https://doi.org/10.1148/radiology.209.2.9807579.

    Article  PubMed  Google Scholar 

  192. Miller WT Sr. The chest radiograph in the intensive care unit. Semin Roentgenol. 1997;32(2):89–101.

    Article  PubMed  Google Scholar 

  193. Mirvis SE, Tobin KD, Kostrubiak I, Belzberg H. Thoracic CT in detecting occult disease in critically ill patients. AJR Am J Roentgenol. 1987;148(4):685–9. https://doi.org/10.2214/ajr.148.4.685.

    Article  PubMed  CAS  Google Scholar 

  194. DuBose J, Inaba K, Okoye O, Demetriades D, Scalea T, O'Connor J, et al. Development of posttraumatic empyema in patients with retained hemothorax: results of a prospective, observational AAST study. J Trauma Acute Care Surg. 2012;73(3):752–7. https://doi.org/10.1097/TA.0b013e31825c1616.

    Article  PubMed  Google Scholar 

  195. Hirshberg A, Wall MJ Jr, Ramchandani MK, Mattox KL. Reoperation for bleeding in trauma. Arch Surg. 1993;128(10):1163–7.

    Article  CAS  PubMed  Google Scholar 

  196. Karmy-Jones R, Holevar M, Sullivan RJ, Fleisig A, Jurkovich GJ. Residual hemothorax after chest tube placement correlates with increased risk of empyema following traumatic injury. Can Respir J. 2008;15(5):255–8.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Awerbuch E, Benavides M, Gershengorn HB. The impact of computed tomography of the chest on the management of patients in a medical intensive care unit. J Intensive Care Med. 2015;30(8):505–11. https://doi.org/10.1177/0885066614540122.

    Article  PubMed  Google Scholar 

  198. Kaewlai R, Avery LL, Asrani AV, Novelline RA. Multidetector CT of blunt thoracic trauma. Radiographics. 2008;28(6):1555–70. https://doi.org/10.1148/rg.286085510.

    Article  PubMed  Google Scholar 

  199. Exadaktylos AK, Sclabas G, Schmid SW, Schaller B, Zimmermann H. Do we really need routine computed tomographic scanning in the primary evaluation of blunt chest trauma in patients with “normal” chest radiograph? J Trauma. 2001;51(6):1173–6.

    PubMed  CAS  Google Scholar 

  200. Omert L, Yeaney WW, Protetch J. Efficacy of thoracic computerized tomography in blunt chest trauma. Am Surg. 2001;67(7):660–4.

    PubMed  CAS  Google Scholar 

  201. de Moya MA, Seaver C, Spaniolas K, Inaba K, Nguyen M, Veltman Y, et al. Occult pneumothorax in trauma patients: development of an objective scoring system. J Trauma. 2007;63(1):13–7. https://doi.org/10.1097/TA.0b013e31806864fc.

    Article  PubMed  Google Scholar 

  202. Miller LA. Chest wall, lung, and pleural space trauma. Radiol Clin N Am. 2006;44(2):213–24, viii. https://doi.org/10.1016/j.rcl.2005.10.006.

    Article  PubMed  Google Scholar 

  203. Wanek S, Mayberry JC. Blunt thoracic trauma: flail chest, pulmonary contusion, and blast injury. Crit Care Clin. 2004;20(1):71–81.

    Article  PubMed  Google Scholar 

  204. Chen JD, Shanmuganathan K, Mirvis SE, Killeen KL, Dutton RP. Using CT to diagnose tracheal rupture. AJR Am J Roentgenol. 2001;176(5):1273–80. https://doi.org/10.2214/ajr.176.5.1761273.

    Article  PubMed  CAS  Google Scholar 

  205. Scaglione M, Romano S, Pinto A, Sparano A, Scialpi M, Rotondo A. Acute tracheobronchial injuries: impact of imaging on diagnosis and management implications. Eur J Radiol. 2006;59(3):336–43. https://doi.org/10.1016/j.ejrad.2006.04.026.

    Article  PubMed  Google Scholar 

  206. Wintermark M, Schnyder P. The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest. 2001;120(2):543–7.

    Article  CAS  PubMed  Google Scholar 

  207. Larici AR, Gotway MB, Litt HI, Reddy GP, Webb WR, Gotway CA, et al. Helical CT with sagittal and coronal reconstructions: accuracy for detection of diaphragmatic injury. AJR Am J Roentgenol. 2002;179(2):451–7. https://doi.org/10.2214/ajr.179.2.1790451.

    Article  PubMed  Google Scholar 

  208. Mirvis SE, Shanmuganagthan K. Imaging hemidiaphragmatic injury. Eur Radiol. 2007;17(6):1411–21. https://doi.org/10.1007/s00330-006-0553-2.

    Article  PubMed  Google Scholar 

  209. Downing SW, Sperling JS, Mirvis SE, Cardarelli MG, Gilbert TB, Scalea TM, et al. Experience with spiral computed tomography as the sole diagnostic method for traumatic aortic rupture. Ann Thorac Surg. 2001;72(2):495–501; discussion -2.

    Article  CAS  PubMed  Google Scholar 

  210. Loyd JE, Tillman BF, Atkinson JB, Des Prez RM. Mediastinal fibrosis complicating histoplasmosis. Medicine (Baltimore). 1988;67(5):295–310.

    Article  CAS  Google Scholar 

  211. Hanley PC, Shub C, Lie JT. Constrictive pericarditis associated with combined idiopathic retroperitoneal and mediastinal fibrosis. Mayo Clin Proc. 1984;59(5):300–4.

    Article  CAS  PubMed  Google Scholar 

  212. Klisnick A, Fourcade J, Ruivard M, Baud O, Souweine B, Boyer L, et al. Combined idiopathic retroperitoneal and mediastinal fibrosis with pericardial involvement. Clin Nephrol. 1999;52(1):51–5.

    PubMed  CAS  Google Scholar 

  213. Mole TM, Glover J, Sheppard MN. Sclerosing mediastinitis: a report on 18 cases. Thorax. 1995;50(3):280–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Rossi SE, McAdams HP, Rosado-de-Christenson ML, Franks TJ, Galvin JR. Fibrosing mediastinitis. Radiographics. 2001;21(3):737–57. https://doi.org/10.1148/radiographics.21.3.g01ma17737.

    Article  PubMed  CAS  Google Scholar 

  215. Ferretti GR, Knoplioch J, Bricault I, Brambilla C, Coulomb M. Central airway stenoses: preliminary results of spiral-CT-generated virtual bronchoscopy simulations in 29 patients. Eur Radiol. 1997;7(6):854–9. https://doi.org/10.1007/s003300050218.

    Article  PubMed  CAS  Google Scholar 

  216. Kauczor HU, Wolcke B, Fischer B, Mildenberger P, Lorenz J, Thelen M. Three-dimensional helical CT of the tracheobronchial tree: evaluation of imaging protocols and assessment of suspected stenoses with bronchoscopic correlation. AJR Am J Roentgenol. 1996;167(2):419–24. https://doi.org/10.2214/ajr.167.2.8686619.

    Article  PubMed  CAS  Google Scholar 

  217. Lee KS, Yoon JH, Kim TK, Kim JS, Chung MP, Kwon OJ. Evaluation of tracheobronchial disease with helical CT with multiplanar and three-dimensional reconstruction: correlation with bronchoscopy. Radiographics. 1997;17(3):555–67.; ; discussion 68–70. https://doi.org/10.1148/radiographics.17.3.9153696.

    Article  PubMed  CAS  Google Scholar 

  218. Quint LE, Whyte RI, Kazerooni EA, Martinez FJ, Cascade PN, Lynch JP 3rd, et al. Stenosis of the central airways: evaluation by using helical CT with multiplanar reconstructions. Radiology. 1995;194(3):871–7. https://doi.org/10.1148/radiology.194.3.7862994.

    Article  PubMed  CAS  Google Scholar 

  219. Remy J, Remy-Jardin M, Artaud D, Fribourg M. Multiplanar and three-dimensional reconstruction techniques in CT: impact on chest diseases. Eur Radiol. 1998;8(3):335–51. https://doi.org/10.1007/s003300050391.

    Article  PubMed  CAS  Google Scholar 

  220. Luoma A, Nelems B. Thoracic outlet syndrome. Thoracic surgery perspective. Neurosurg Clin N Am. 1991;2(1):187–226.

    Article  CAS  PubMed  Google Scholar 

  221. Poitevin LA. Thoraco-cervico-brachial confined spaces an anatomic study. Ann Chir Main. 1988;7(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  222. Boezaart AP, Haller A, Laduzenski S, Koyyalamudi VB, Ihnatsenka B, Wright T. Neurogenic thoracic outlet syndrome: a case report and review of the literature. Int J Shoulder Surg. 2010;4(2):27–35. https://doi.org/10.4103/0973-6042.70817.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Matsumura JS, Rilling WS, Pearce WH, Nemcek AA Jr, Vogelzang RL, Yao JS. Helical computed tomography of the normal thoracic outlet. J Vasc Surg. 1997;26(5):776–83.

    Article  CAS  PubMed  Google Scholar 

  224. Remy-Jardin M, Remy J, Masson P, Bonnel F, Debatselier P, Vinckier L, et al. Helical CT angiography of thoracic outlet syndrome: functional anatomy. AJR Am J Roentgenol. 2000;174(6):1667–74. https://doi.org/10.2214/ajr.174.6.1741667.

    Article  PubMed  CAS  Google Scholar 

  225. Demondion X, Bacqueville E, Paul C, Duquesnoy B, Hachulla E, Cotten A. Thoracic outlet: assessment with MR imaging in asymptomatic and symptomatic populations. Radiology. 2003;227(2):461–8. https://doi.org/10.1148/radiol.2272012111.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Saba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavra, F., Saba, L. (2018). Indications to the Use of Computed Tomography in Thoracic Pathologies. In: Anzidei, M., Anile, M. (eds) Diagnostic Imaging for Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-89893-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89893-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89892-6

  • Online ISBN: 978-3-319-89893-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics