Skip to main content

Diagnostic Imaging of Chest Wall Tumors

  • Chapter
  • First Online:
Diagnostic Imaging for Thoracic Surgery

Abstract

There are several imaging devices routinely utilized for evaluation of chest wall tumors predominantly focused in determining the extent of tumor involvement and the potential for respectability. This comprises computed radiography (CR), ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), [F-18] FDG positron-emission tomography (PET)/CT, and [F-18] FDG PET/MRI. CR, CT, and MRI are the first line; of these MRI allows tissue characterization, accurate assessment of tumor extent, differentiation from adjacent inflammation, information of blood flow, diffusion capacity, texture features, and specification of metabolites within tumors. Imaging devices are also noninvasive methods which have revolutionized oncological imaging by combination of metabolic activities and morphologic features. They are also useful in guiding biopsy, evaluating patient prognosis, staging the disease, monitoring therapeutic response, and detecting recurrences in chest wall tumors. This leads to the appropriate management of patients with these masses. In vivo morphologic and metabolic information obtained by these several modalities plays an important role to manage patients with chest wall tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah AA, D’Amico TA. Primary chest wall tumors. J Am Coll Surg. 2010;210:360–6.

    Article  PubMed  Google Scholar 

  2. Tateishi U, Gladish GW, Kusumoto M, Hasegawa T, Yokoyama R, Tsuchiya R, Moriyama N. Chest wall tumors: radiologic findings and pathologic correlation: Part 1. Benign tumors. Radiographics. 2003;23:1477–90.

    Article  PubMed  Google Scholar 

  3. Carter BW, Gladish GW. MR Imaging of chest wall tumors. Magn Reson Imaging Clin N Am. 2015;23:197–215.

    Article  PubMed  Google Scholar 

  4. Tateishi U, Gladish GW, Kusumoto M, Hasegawa T, Yokoyama R, Tsuchiya R, Moriyama N. Chest wall tumors: radiologic findings and pathologic correlation: Part 2. Malignant tumors. Radiographics. 2003;23:1491–508.

    Article  PubMed  Google Scholar 

  5. O’Sullivan P, O’Dwyer H, Flint J, Munk PL, Muller N. Soft tissue tumours and mass-like lesions of the chest wall: a pictorial review of CT and MR findings. Br J Radiol. 2007;80:574–80.

    Article  PubMed  Google Scholar 

  6. Carter BW, Benveniste MF, Betancourt SL, de Groot PM, Lichtenberger JP 3rd, Amini B, Abbott GF. Imaging evaluation of malignant chest wall neoplasms. Radiographics. 2016;36:1285–306.

    Article  PubMed  Google Scholar 

  7. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang CK, Li CW, Hsieh TJ, Chien SH, Liu GC, Tsai KB. Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology. 2004;232:599–605.

    Article  PubMed  Google Scholar 

  9. Negendank WG, Crowley MG, Ryan JR, Keller NA, Evelhoch JL. Bone and soft-tissue lesions: diagnosis with combined H-1 MR imaging and P-31 MR spectroscopy. Radiology. 1989;173:181–8.

    Article  CAS  PubMed  Google Scholar 

  10. Pauwels EK, Sturm EJ, Bombardieri E, Cleton FJ, Stokkel MP. Positron-emission tomography with [18F]fluorodeoxyglucose. Part I. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol. 2000;126:549–59.

    Article  CAS  PubMed  Google Scholar 

  11. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Kim E. Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology. 2007;245:839–47.

    Article  PubMed  Google Scholar 

  12. Andersen KF, Fuglo HM, Rasmussen SH, Petersen MM, Loft A. Volume-based F-18 FDG PET/CT imaging markers provide supplemental prognostic information to histologic grading in patients with high-grade bone or soft tissue sarcoma. Medicine (Baltimore). 2015;94:2319.

    Article  CAS  Google Scholar 

  13. Eary JF, Conrad EU, O’Sullivan J, Hawkins DS, Schuetze SM, O’Sullivan F. Sarcoma mid-therapy [F-18] fluorodeoxyglucose positron emission tomography (FDG PET) and patient outcome. J Bone Joint Surg Am. 2014;96:152–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Al-Ibraheem A, Buck AK, Benz MR, Rudert M, Beer AJ, Mansour A, Pomykala KL, Haller B, Juenger H, Scheidhauer K, Schwaiger M, Herrmann K. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of recurrent bone and soft tissue sarcoma. Cancer. 2013;119:1227–34.

    Article  CAS  PubMed  Google Scholar 

  15. Shin DS, Shon OJ, Han DS, Choi JH, Chun KA, Cho IH. The clinical efficacy of 18F-FDG-PET/CT in benign and malignant musculoskeletal tumors. Ann Nucl Med. 2008;22:603–9.

    Article  PubMed  Google Scholar 

  16. Tateishi U, Yamaguchi U, Miyake M, Maeda T, Chuman H, Arai Y, Jurik AG, editors. Primary bone tumours. Imaging of the sternocostoclavicular region: Springer-Verlag; 2007. p. 207–28.

    Google Scholar 

  17. London K, Stege C, Cross S, Onikul E, Graf N, Kaspers G, Dalla-Pozza L, Howman-Giles R. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. Pediatr Radiol. 2012;42:418–30.

    Article  PubMed  Google Scholar 

  18. Tateishi U, Hosono A, Makimoto A, Sakurada A, Terauchi T, Arai Y, Imai Y, Kim EE. Accuracy of 18F fluorodeoxyglucose positron emission tomography/computed tomography in staging of pediatric sarcomas. J Pediatr Hematol Oncol. 2007;29:608–12.

    Article  PubMed  Google Scholar 

  19. Al-Ibraheem A, Buck AK, Benz MR, Rudert M, Beer AJ, Mansour A, Pomykala KL, Haller B, Juenger H, Scheidhauer K, Schwaiger M, Herrmann K. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of recurrent bone and soft tissue sarcoma. Cancer. 2013;119:1227–34.

    Article  CAS  PubMed  Google Scholar 

  20. Tateishi U, Hasegawa T, Terauchi T, et al. Incidence of multiple primary malignancies in a cohort of adult patients with soft tissue sarcoma. Jpn J Clin Oncol. 2005;35:444–52.

    Article  PubMed  Google Scholar 

  21. Yang JC, Chang AE, Baker AR, et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol. 1998;16:197–203.

    Article  CAS  PubMed  Google Scholar 

  22. Wendtner CM, Abdel-Rahman S, Krych M, et al. Response to neoadjuvant chemotherapy combined with regional hyperthermia predicts long-term survival for adult patients with retroperitoneal and visceral high-risk soft tissue sarcomas. J Clin Oncol. 2002;20:3156–64.

    Article  CAS  PubMed  Google Scholar 

  23. Sobin LH, Gospodarowicz MK. International Union Against Cancer (UICC): TNM Classification of malignant tumours. 7th ed. New York, NY: Wiley; 2009.

    Google Scholar 

  24. Amin MB, Edge S, Greene F, et al. AJCC cancer staging manual. 8th ed. New York, NY: Springer; 2017.

    Book  Google Scholar 

  25. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013.

    Google Scholar 

  26. Folpe AL, Lyles RH, Sprouse JT, et al. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6:1279–87.

    PubMed  CAS  Google Scholar 

  27. Schwarzbach MHM, Hinz U, Dimitrakopoulou-Strauss A, et al. Prognostic significance of preoperative [18-F]fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. Ann Surg. 2005;241:286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tateishi U, Yamaguchi U, Seki K, et al. Glut-1 expression and enhanced glucose metabolism are associated with tumor grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:683–91.

    Article  CAS  PubMed  Google Scholar 

  29. Ito S, Nemoto T, Satoh S, et al. Human rhabdomyosarcoma cells retain insulin-regulated glucose transport activity through glucose transporter 1. Arch Biochem Biophys. 2000;3:72–82.

    Article  CAS  Google Scholar 

  30. Nieweg OE, Prium J, van Ginkel RJ, et al. Fluorine-18 fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J Nucl Med. 1996;37:257–61.

    PubMed  CAS  Google Scholar 

  31. Nishiyama Y, Tateishi U, Kawai A, Chuman H, Nakatani F, Miyake M, Terauchi T, Inoue T, Kim EE. Prediction of treatment outcomes in patients with chest wall sarcoma: evaluation with PET/CT. Jpn J Clin Oncol. 2012;42:912–8.

    Article  PubMed  Google Scholar 

  32. Glasser DB, Lane JM, Huvos AG, Marcove RC, Rosen G. Survival, prognosis, and therapeutic response in osteogenic sarcoma. The Memorial Hospital experience. Cancer. 1992;69:698–708.

    Article  CAS  PubMed  Google Scholar 

  33. Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, Raymond AK, Lewis VO, Anderson PM, Bassett RL Jr, Harrell RK, Marom EM. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med. 2009;50:340–7.

    Article  PubMed  Google Scholar 

  34. Cheon GJ, Kim MS, Lee JA, Lee SY, Cho WH, Song WS, Koh JS, Yoo JY, Oh DH, Shin DS, Jeon DG. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med. 2009;50:1435–40.

    Article  CAS  PubMed  Google Scholar 

  35. Ludwig JA. Ewing sarcoma: historical perspectives, current state-of-the-art, and opportunities for targeted therapy in the future. Curr Opin Oncol. 2008;20:412–8.

    Article  PubMed  Google Scholar 

  36. Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad EU 3rd, Eary JF. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23:8828–34.

    Article  PubMed  Google Scholar 

  37. Sharma P, Khangembam BC, Suman KC, Singh H, Rastogi S, Khan SA, Bakhshi S, Thulkar S, Bal C, Malhotra A, Kumar R. Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma. Eur J Nucl Med Mol Imaging. 2013;40:1036–43.

    Article  CAS  PubMed  Google Scholar 

  38. Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31:189–95.

    Article  PubMed  Google Scholar 

  39. Chakarun CJ, Forrester DM, Gottsegen CJ, Patel DB, White EA, Matcuk GR Jr. Giant cell tumor of bone: review, mimics, and new developments in treatment. Radiographics. 2013;33:197–211.

    Article  PubMed  Google Scholar 

  40. Makis W, Alabed YZ, Nahal A, Novales-Diaz JA, Hickeson M. Giant cell tumor pulmonary metastases mimic primary malignant pulmonary nodules on 18F-FDG PET/CT. Nucl Med Mol Imaging. 2012;46:134–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Uslu L, Asa S, Sager S, Halaç M. Multiple cardiac masses and distant metastatic foci in a patient with high grade pleomorphic sarcoma of the heart revealed by follow-up FDG PET/CT. Nuklearmedizin. 2014;53(2):8–9.

    Google Scholar 

  42. Enomoto K, Inohara H, Hamada K, Tamura M, Tomita Y, Kubo T, Hatazawa J. FDG PET imaging of myxofibrosarcoma on the sphenoid sinus. Clin Nucl Med. 2008;33:421–2.

    Article  PubMed  Google Scholar 

  43. Schwarzbach MH, Dimitrakopoulou-Strauss A, Mechtersheimer G, Hinz U, Willeke F, Cardona S, Attigah N, Strauss LG, Herfarth C, Lehnert T. Assessment of soft tissue lesions suspicious for liposarcoma by F18-deoxyglucose (FDG) positron emission tomography (PET). Anticancer Res. 2001;21:3609–14.

    PubMed  CAS  Google Scholar 

  44. Brenner W, Eary JF, Hwang W, Vernon C, Conrad EU. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging. 2006;33:1290–5.

    Article  PubMed  Google Scholar 

  45. Murphey MD, Ruble CM, Tyszko SM, Zbojniewicz AM, Potter BK, Miettinen M. From the archives of the AFIP: musculoskeletal fibromatoses: radiologic-pathologic correlation. Radiographics. 2009;29:2143–73.

    Article  PubMed  Google Scholar 

  46. Kleis M, Daldrup-Link H, Matthay K, Goldsby R, Lu Y, Schuster T, Schreck C, Chu PW, Hawkins RA, Franc BL. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging. 2009;36:23–36.

    Article  PubMed  Google Scholar 

  47. Kasper B, Dimitrakopoulou-Strauss A, Strauss LG, Hohenberger P. Positron emission tomography in patients with aggressive fibromatosis/desmoid tumours undergoing therapy with imatinib. Eur J Nucl Med Mol Imaging. 2010;37:1876–82.

    Article  PubMed  Google Scholar 

  48. Tateishi U, Yamaguchi U, Maeda T, Seki K, Terauchi T, Kawai A, Arai Y, Moriyama N, Kakizoe T. Staging performance of carbon-11 choline positron emission tomography/computed tomography in patients with bone and soft tissue sarcoma: comparison with conventional imaging. Cancer Sci. 2006;97:1125–8.

    Article  CAS  PubMed  Google Scholar 

  49. Treglia G, Giovannini E, Di Franco D, Calcagni ML, Rufini V, Picchio M, Giordano A. The role of positron emission tomography using carbon-11 and fluorine-18 choline in tumors other than prostate cancer: a systematic review. Ann Nucl Med. 2012;26:451–61.

    Article  CAS  PubMed  Google Scholar 

  50. Buck AK, Herrmann K, Büschenfelde CM, Juweid ME, Bischoff M, Glatting G, Weirich G, Möller P, Wester HJ, Scheidhauer K, Dechow T, Peschel C, Schwaiger M, Reske SN. Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res. 2008;14:2970–7.

    Article  CAS  PubMed  Google Scholar 

  51. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Chin LK, Hofstrand PD, Grierson JR, Eary JF, Krohn KA. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.

    Article  CAS  PubMed  Google Scholar 

  52. Inoue T, Kim EE, Wong FC, Yang DJ, Bassa P, Wong WH, Korkmaz M, Tansey W, Hicks K, Podoloff DA. Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. J Nucl Med. 1996;37:1472–6.

    PubMed  CAS  Google Scholar 

  53. Eiber M, Takei T, Souvatzoglou M, Mayerhoefer ME, Fürst S, Gaertner FC, Loeffelbein DJ, Rummeny EJ, Ziegler SI, Schwaiger M, Beer AJ. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med. 2014;55:191–7.

    Article  PubMed  Google Scholar 

  54. Kaneta T. A brief review of Japanese guidelines for the clinical use of (18)F-FDG-PET/MRI 2012 (Ver 1.0). Ann Nucl Med. 2013;27:309–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Scientific Research Expenses for Health and Welfare Programs; the Grant-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare, No. 15K09885; the Scientific Research Expenses for Health and Welfare Programs, No. 29-A-3 (Takashi Terauchi and Ukihide Tateishi: squad leaders); Practical Research for Innovative Cancer Control; and Project Promoting Clinical Trials for Development of New Drugs by Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ukihide Tateishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tateishi, U., Ogihara, Y., Kitazume, Y., Kishino, M., Hyeyeol, B. (2018). Diagnostic Imaging of Chest Wall Tumors. In: Anzidei, M., Anile, M. (eds) Diagnostic Imaging for Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-89893-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89893-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89892-6

  • Online ISBN: 978-3-319-89893-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics