Skip to main content

Exergetic Optimization of a Parabolic Trough Solar Collector

  • Chapter
  • First Online:
The Role of Exergy in Energy and the Environment

Part of the book series: Green Energy and Technology ((GREEN))

  • 1008 Accesses

Abstract

In this chapter, detailed thermal and optical models for PTSCs were formed. The purpose of the model is to determine the collector losses in PTSCs and thus to obtain the collector efficiency. A parametric study was conducted to assess the effect of some key design and operating parameters on the performance of the PTSC. An exergy analysis for PTSC is conducted to obtain the exergetic efficiency of PTSCs and to find the exergy destruction of the PTSCs. In addition, an optimization study using Taguchi method was applied to find the design parameters that give the maximum exergetic efficiency of the PTSC. The results show that when the solar radiation and aperture width increase, the exergetic efficiency increases for any heat transfer fluid used. On the other hand, when the outer diameter and wind speed increase, the exergetic efficiency decreases. In addition, Taguchi results show that the exergetic efficiency gets its maximum value (50.19%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas R, Montes MJ, Rovira A, Martínez-Val JM (2016) Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions. Sol Energy 124:198–215

    Article  Google Scholar 

  2. Mokheimer EM, Dabwan YN, Habib MA, Said SA, Al-Sulaiman FA (2014) Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia. Energy Convers Manag 86:622–633

    Article  Google Scholar 

  3. Kalogirou SA (2004) Solar energy engineering: processes and systems. Elsevier Academic Press, San Diego

    Google Scholar 

  4. Manikandan KS, Kumaresan G, Velraj R, Iniyan S (2012) Parametric study of solar parabolic trough collector system. Asian J Appl Sci 5(6):384–393

    Article  Google Scholar 

  5. Qu M, Archer DH, Yin H (2007) A linear parabolic trough solar collector performance model. In: ASME 2007 energy sustainability conference, pp 663–670. American Society of Mechanical Engineers Long Beach, California, USA, July 27–30, 2007

    Google Scholar 

  6. Yılmaz İH, Söylemez MS (2014) Thermo-mathematical modelling of parabolic trough collector. Energy Convers Manag 88:768–784

    Article  Google Scholar 

  7. Padilla RV, Demirkaya G, Goswami DY, Stefanakos E, Rahman MM (2011) Heat transfer analysis of parabolic trough solar receiver. Appl Energy 88(12):5097–5110

    Article  Google Scholar 

  8. Kalogirou SA (2012) A detailed thermal model of a parabolic trough collector receiver. Energy 48(1):298–306

    Article  Google Scholar 

  9. Conrado LS, Rodriguez-Pulido A, Calderón G (2017) Thermal performance of parabolic trough solar collectors. Renew Sust Energ Rev 67:445–459

    Google Scholar 

  10. Cakici DM, Erdogan A, Colpan CO (2017) Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors. Energy 120:306–319

    Article  Google Scholar 

  11. Bergman TL, Incropera FP (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  12. Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes, vol 191. ARRB Group Limited, White Plains

    Google Scholar 

  13. Erdogan A, Colpan CO, Cakici DM (2017) Thermal design and analysis of a shell and tube heat exchanger integrating a geothermal based organic Rankine cycle and parabolic trough solar collectors. Renew Energy 109:372–391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunay, C., Erdogan, A., Ozgur Colpan, C. (2018). Exergetic Optimization of a Parabolic Trough Solar Collector. In: Nižetić, S., Papadopoulos, A. (eds) The Role of Exergy in Energy and the Environment. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89845-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89845-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89844-5

  • Online ISBN: 978-3-319-89845-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics