Skip to main content

Involvement of Heat Shock Protein 70 (Hsp70) in Gastrointestinal Cancers

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

  • 645 Accesses

Abstract

Intracellular protein homeostasis is largely controlled by Heat shock proteins (Hsp). Heat shock proteins (Hsp) impart an age-old defense mechanism for all forms of life on earth. Misfolded proteins are refolded with the aid of Hsp and proteins which are damaged beyond repair are eliminated with assistance from Hsp. Hsp are known as molecular chaperones for their cytoprotective roles. In cancer cells the Hsp are frequently overexpressed and are assumed to be associated with tumor formation. Hsp demonstrate specific affinity to particular classes of oncogenic peptides and client proteins in cancer cells, and are able to stabilize mutated oncogene proteins. They play a key regulatory role in prevention of apoptotic cell death during tumorigenesis and thereby enhance cell growth and proliferation. They may also promote chemoresistance in cancer cells. Here we present the current knowledge on the role of molecular chaperones in particular heat shock protein 70 (Hsp70) in human gastrointestinal cancers along with their therapeutic targeting. This review will focus on the role of Hsp 70 and related chaperones in several gastrointestinal cancers such as pancreatic, gastric, and liver cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-SMA:

α-smooth muscle actin protein

CHIP:

carboxyl-terminus of Hsp70 interacting Protein

CSC:

cancer stem cells

GC:

gastric cancer

GI:

gastrointestinal

HCC:

hepatocellular carcinoma

HNSCC:

head and neck squamous cell cancer

HOP:

Hsp70/Hsp90 organizing protein

MAPK:

mitogen activated protein kinase

References

  • Aghdassi, A., Phillips, P., Dudeja, V., et al. (2007). Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Research, 67(2), 616–625.

    Article  CAS  PubMed  Google Scholar 

  • Alcolea, M. P., & Jones, P. H. (2013). Tracking cells in their native habitat: Lineage tracing in epithelial neoplasia. Nature Reviews Cancer, 13, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Arora, N., Alsaied, O., Dauer, P., et al. (2017). Downregulation of Sp1 by Minnelide leads to decrease in HSP70 and decrease in tumor burden of gastric cancer. PLoS One, 12(2), e0171827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Axsen, W. S., Styer, C. M., & Solnick, J. V. (2009). Inhibition of heat shock protein expression by Helicobacter pylori. Microbial Pathogenesis, 47, 231–236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee, S., Majumdar, N., Dudeja, V., et al. (2012). MUC1c regulates cell survival in pancreatic cancer by preventing lysosomal permeabilization. PLoS One, 7(8), e43020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bekaii-Saab, T., & El-Rayes, B. (2017). Identifying and targeting cancer stem cells in the treatment of gastric cancer. Cancer, 123(8), 1303–1312.

    Article  PubMed  Google Scholar 

  • Bertuccio, P., Chatenoud, L., Levi, F., et al. (2009). Recent patterns in gastric cancer: A global overview. International Journal of Cancer, 125(3), 666–673.

    Article  PubMed  CAS  Google Scholar 

  • Bilimoria, K. Y., Bentrem, D. J., Ko, C. Y., et al. (2007). National failure to operate on early stage pancreatic cancer. Annals of Surgery, 246, 173–180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray, F., Jemal, A., Grey, N., et al. (2012). Global cancer transitions according to the human development index (2008–2030): A population-based study. The Lancet Oncology, 13, 790–801.

    Article  PubMed  Google Scholar 

  • Brocchieri, L., Conway de Macario, E., & Macario, A. J. L. (2007). Chaperonomics, a new tool to study ageing and associated diseases. Mechanisms of Ageing and Development, 128, 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Brungs, D., Aghmesheh, M., Vine, K.,. L., et al. (2016). Gastric cancer stem cells: Evidence, potential markers, and clinical implications. Journal of Gastroenterology, 51(4), 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Cao, Z., Xu, J., Huang, H., et al. (2015). MiR-1178 promotes the proliferation, G1/S transition, migration and invasion of pancreatic cancer cells by targeting CHIP. PLoS One, 10(1), e0116934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cappello, F., Bellafiore, M., Palma, A., et al. (2002). Defective apoptosis and tumorigenesis: Role of p53 mutation and Fas/FasL system dysregulation. European Journal of Histochemistry, 46, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., & Yu, J. (2016). Modulation of toll-like receptor signaling in innate immunity by natural products. International Immunopharmacology, 37, 65–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, W., Lin, K., Zhang, L., et al. (2016). The cytomegalovirus protein UL138 induces apoptosis of gastric cancer cells by binding to heat shock protein 70. Oncotarget, 7, 5630–5645.

    PubMed  Google Scholar 

  • Chou, S. D., Prince, T., & Gong, J. (2012). mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One, 7, e39679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chuma, M., Sakamoto, M., Yamazaki, K., et al. (2003). Expression profiling in multistage hepatocarcinogenesis: Identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology, 37, 198–207.

    Article  PubMed  CAS  Google Scholar 

  • de Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., et al. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676–680.

    Article  PubMed  CAS  Google Scholar 

  • Di Tommaso, L., & Roncalli, M. (2017). Tissue biomarkers in hepatocellular tumors: Which, when, and how. Frontiers in Medicine, 4, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Tommaso, L., Franchi, G., Park, Y. N., et al. (2007). Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology, 45, 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Ding, S. Z., Fischer, W., Kaparakis-Liaskos, M., et al. (2010). Helicobacter pylori-induced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS One, 5(4), e9875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferro, A., Peleteiro, B., Malvezzi, M., et al. (2014). Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. European Journal of Cancer, 50, 1330–1344.

    Article  PubMed  Google Scholar 

  • Gao, H., Wang, Y., Liu, X., et al. (2004). Global transcriptome analysis of the heat shock response of Shewanella oneidensis. Journal of Bacteriology, 186,(22), 7796–7803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, Q., Zhao, Y. J., Wang, X. Y., et al. (2012). CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma. Cancer Research, 72, 3546–3556.

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann, M., Cervello, M., Montalto, G., et al. (2014). Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Frontiers in Immunology, 5, 307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gheldof, A., & Berx, G. (2013). Cadherins and epithelial-to-mesenchymal transition. Progress in Molecular Biology and Translational Science, 116, 317–336.

    Article  PubMed  CAS  Google Scholar 

  • Giessrigl, B., Krieger, S., Rosner, M., et al. (2012). Hsp90 stabilizes Cdc25A and counteracts heat shock-mediated Cdc25A degradation and cell-cycle attenuation in pancreatic carcinoma cells. Human Molecular Genetics, 21(21), 4615–4627.

    Article  PubMed  CAS  Google Scholar 

  • Gogate, S. S., Fujita, N., Skubutyte, R., et al. (2012). Tonicity enhancer binding protein (TonEBP) and hypoxia-inducible factor (HIF) coordinate heat shock protein 70 (Hsp70) expression in hypoxic nucleus pulposus cells: Role of Hsp70 in HIF-1α degradation. Journal of Bone and Mineral Research, 27, 1106–1117.

    Article  PubMed  CAS  Google Scholar 

  • Gong, W. (2013). Invasion potential of H22 hepatocarcinoma cells is increased by HMGB1-induced tumor NF-κBsignaling via initiation of HSP70. Oncology Reports, 30(3), 1249–1256. https://doi.org/10.3892/or.2013.2595.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, S., Deepti, A., Deegan, S., et al. (2010). HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biology, 8, e1000410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hadjimichael, C., Chanoumidou, K., & Papadopoulou, N. (2015). Common stemness regulators of embryonic and cancer stem cells. World Journal Stem Cells, 7(9), 1150–1184.

    Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Horibe, T., Torisawa, A., Kohno, M., et al. (2014). Synergetic cytotoxic activity toward breast cancer cells enhanced by the combination of Antp-TPR hybrid peptide targeting Hsp90 and Hsp70- targeted peptide. BMC Cancer, 14, 615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, X., Ghisolfi, L., Keates, A. C., et al. (2012). Induction of cancer cell stemness by chemotherapy. Cell Cycle, 11(14), 2691–2698.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, T. S., Han, H. S., Choi, H. K., et al. (2003). Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. Journal of Gastroenterology and Hepatology, 18(6), 690–700.

    Article  PubMed  Google Scholar 

  • Hyun, J. J., Lee, H. S., Keum, B., et al. (2013). Expression of heat shock protein 70 modulates the chemoresponsiveness of pancreatic cancer. Gut Liver, 7(6), 739–746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer). (2012). GLOBOCAN 2012. Lyon: IARC. URL: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.

    Google Scholar 

  • Joly, A. L., Wettstein, G., Mignot, G., et al. (2010). Dual role of heat-shock proteins as regulator of apoptosis andinnate immunity. Journal of Innate Immunity, 2, 238–247.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J. W., Hwang, S. Y., Hwang, J. S., et al. (2007). Ionising radiation induces changes associated with epithelialmesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. European Journal of Cancer, 7, 1214–1224.

    Article  PubMed  CAS  Google Scholar 

  • Kajiro, M., Hirota, R., Nakajima, Y., et al. (2009). The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nature Cell Biology, 11(3), 312–319.

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y., Jung, W. Y., Lee, H., et al. (2013). Prognostic significance of heat shock protein 70 expression in early gastric carcinoma. Korean Journal Pathology, 47, 219–226.

    Article  Google Scholar 

  • Kimura, E., Enns, R. E., Alcaraz, J. E., et al. (1993). Correlation of the survival of ovarian cancer patients with mRNA expression of the 60kDa heatshock protein Hsp60. Journal of Clinical Oncology, 11, 891–898.

    Article  PubMed  CAS  Google Scholar 

  • Kose, S., Furuta, M., & Imamoto, N. (2012). Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage. Cell, 149, 578–589.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, K., & Watt, F. M. (2012). Lineage tracing. Cell, 148(1–2), 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. S., Montebello, J., Rush, M., et al. (1994). Overexpression of heat shock protein (hsp) 70 associated with abnormal p53 expression in cancer of the pancreas. Zentralblatt für Pathologie, 140(3), 259–264.

    PubMed  CAS  Google Scholar 

  • Lee, H. W., Lee, E. H., Kim, S. H., et al. (2013). Heat shock protein 70 (HSP70) expression is associated with poor prognosis in intestinal type gastric cancer. Virchows Archiv, 463(4), 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Li, Y., Liu, D., et al. (2013). Extracellular HSP70/HSP70-PCs promote epithelial-mesenchymal transition of hepatocarcinoma cells. PLoS One, 8(12), e84759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, W. L., Chen, Y., & Lu, G. F. (2011). Down-regulation of HSP70 sensitizes gastric epithelial cells to apoptosis and growth retardation triggered by H. pylori. BMC Gastroenterology, 11, 145.

    Article  Google Scholar 

  • Lüders, J., Demand, J., & Höhfeld, J. (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. The Journal of Biological Chemistry, 275, 4613–4617.

    Article  PubMed  Google Scholar 

  • Ma, W., Zhang, Y., Mu, H., et al. (2015). Glucose regulates heat shock factor 1 transcription activity via mTOR pathway in HCC cell lines. Cell Biology International, 39, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  • Macario, A. J. L., & Conway de Macario, E. (2005). Sick chaperones, cellular stress and disease. The New England Journal of Medicine, 353, 1489–1501.

    Article  PubMed  CAS  Google Scholar 

  • Macario, A. J. L., & Conway de Macario, E. (2009). The chaperoning system: Physiology and pathology. In A. Gerbino, G. Crescimanno, & G. Zummo (Eds.), Experimental medicine reviews, Plumelia (Vol. 2/3, pp. 9–21).

    Google Scholar 

  • Macario, A. J. L., Cappello, F., Zummo, G., et al. (2010). Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Annals of the New York Academy of Sciences, 1197, 85–93.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie, T. N., Majumdar, N., Banerjee, S., et al. (2013). Triptolide induces the expression of miR-142- 3p: A negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Molecular Cancer Therapeutics, 12(7), 1266–1275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mashaghi, A., Bezrukavnikov, S., Minde, D. P., et al. (2016). Alternative modes of client binding enable functional plasticity of Hsp70. Nature, 539, 448–451.

    Article  PubMed  CAS  Google Scholar 

  • Massey, A. J., Williamson, D. S., Browne, H., et al. (2010). A novel, small molecule inhibitor of Hsc70/Hsp70potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemotherapy and Pharmacology, 66(3), 535–545.

    Article  PubMed  CAS  Google Scholar 

  • Mendillo, M. L., Santagata, S., Koeva, M., et al. (2012). HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 150, 549–562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michaelis, M., Doerr, H. W., & Cinat, J. (2009). The story of human cytomegalovirus and cancer: Increasing evidence and open questions. Neoplasia, 11, 1–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Misra, S., Hascall, V. C., Markwald, R. R., et al. (2015). Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in Immunology, 6, 201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monma, H., Harashima, N., Inao, T., et al. (2013). The HSP70 and autophagy inhibitor pifithrin-μ enhances the antitumor effects of TRAIL on human pancreatic cancer. Molecular Cancer Therapeutics, 12(4), 341–351.

    Article  PubMed  CAS  Google Scholar 

  • Monteiro, J., & Fodde, R. (2010). Cancer stemness and metastasis: Therapeutic consequences and perspectives. European Journal of Cancer, 46(7), 1198–1203.

    Article  PubMed  CAS  Google Scholar 

  • Muller, P., Ruckova, E., Halada, P., et al. (2013). C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene, 32(25), 3101–3110.

    Article  PubMed  CAS  Google Scholar 

  • Murata, S., Minami, Y., Minami, M., et al. (2001). CHIP is a chaperone- dependent E3 ligase that ubiquitylates unfolded protein. EMBO Reports, 2(12), 1133–1138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakagawa, H., & Maeda, S. (2012). Molecular mechanisms of liver injury and hepatocarcinogenesis: Focusing on the role of stress-activated MAPK. Pathology Research International, 2012, 172894.

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman, B., Liu, Y., Lee, H. F., et al. (2012). HSP90 inhibitor 17-AAG selectively eradicates lymphoma in stem cells. Cancer Research, 72(17), 4551–4561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oettle, H., Post, S., Neuhaus, P., et al. (2007). Adjuvant chemotherapy with gemcitabine vs observation patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA, 297, 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Partida-Rodrıguez, O., Torres, J., Flores-Luna, L., et al. (2010). Polymorphisms in TNF and HSP-70 show a significant association with gastric cancer and duodenal ulcer. International Journal of Cancer, 1126(8), 1861–1868.

    Article  CAS  Google Scholar 

  • Qiu, C., Xie, Q., Zhang, D., et al. (2014). GM-CSF induces cyclin D1 expression and proliferation of endothelial progenitor cells via PI3K and MAPK signaling. Cellular Physiology and Biochemistry, 33, 784–795.

    Article  PubMed  CAS  Google Scholar 

  • Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Cellular and Molecular Life Sciences, 18, 571–573.

    Article  CAS  Google Scholar 

  • Ruckova, E., Muller, P., Nenutil, R., et al. (2012). Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperonesystem in cancer. Cellular & Molecular Biology Letters, 17(3), 446–458.

    Article  CAS  Google Scholar 

  • Schepers, A. G., Hugo, J., Snippert, H. J., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.

    Article  CAS  PubMed  Google Scholar 

  • Schildkopf, P., Frey, B., Ott, O. J., et al. (2011). Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiotherapy and Oncology, 101, 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, M. J. (1990). Heat shock proteins. The Journal of Biological Chemistry, 265, 12111–12114.

    PubMed  CAS  Google Scholar 

  • Schmitt, E., Gehrmann, M., Brunet, M., et al. (2007). Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. Journal of Leukocyte Biology, 81, 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Shevtsov, M., & Multhoff, G. (2016). Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Frontiers in Immunology, 7, 171.

    PubMed  PubMed Central  Google Scholar 

  • Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 10–29.

    Google Scholar 

  • Smith, D. F., Whitesell, L., Nair, S. C., et al. (1995). Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Molecular and Cellular Biology, 15(12), 6804–6812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strutt, D. I., Weber, U., & Mlodzik, M. (1997). The role of RhoA in tissue polarity and frizzled signalling. Nature, 387, 292–295.

    Article  PubMed  CAS  Google Scholar 

  • Tahara, T., Shibata, T., Arisawa, T., et al. (2009). The BB genotype of heat-shock protein (HSP) 70-2 gene is associated with gastric pre-malignant condition in H. pylori-infected older patients. Anticancer Research, 29, 3453–3458.

    PubMed  CAS  Google Scholar 

  • Takaishi, S., Okumura, T., Shuiping, T., et al. (2009). Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells, 27(5), 1006–1020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tao, L. P., Zou, H., & Huang, Z. M. (2014). Effects of Helicobacter pylori and heat shock protein 70 on the proliferation of human gastric epithelial cells. Gastroenterology Research and Practice, 2014, 79342.

    Google Scholar 

  • Tissieres, A., Mitchell, H. K., & Tracy, U. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 84, 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, S. Y., Jesus, A., Segovia, J. A., et al. (2014). DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: Role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathogens, 10, e1003848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valtcheva, N., Primorac, A., & Jurisic, G. (2013). The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. The Journal of Biological Chemistry, 288, 35736–35748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vries, R. G. J., Huch, M., & Clevers, H. (2010). Stem cells and cancer of the stomach and intestine. Molecular Oncology, 45, 373–384.

    Article  Google Scholar 

  • Walsh, N., O'Donovan, N., Kennedy, S., et al. (2009). Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Science, 7, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walsh, N., Larkin, A., Swan, N., et al. (2011). RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Letters, 306, 180–189.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Ye, R., Barron, E., et al. (2010). Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death and Differentiation, 17, 488–498.

    Article  PubMed  CAS  Google Scholar 

  • Wegele, H., Müller, L., & Buchner, J. (2004). Hsp70 and Hsp90—A relay team for protein folding. Reviews of Physiology, Biochemistry and Pharmacology, 151, 1–44.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M. J., Jan, C., Tsay, Y. G., et al. (2010). Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling. Molecular Cancer, 9, 283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, F. H., Yuan, Y., Li, D., et al. (2012). Extracellular HSPA1A promotes the growth of hepatocarcinoma by augmenting tumor cell proliferation and apoptosis-resistance. Cancer Letters, 317, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Wu, T. T., Tai, Y. T., Cherng, Y. G., et al. (2013). GATA-2 transduces LPS-induced il-1β gene expression in macrophages via a toll-like receptor 4/MD88/MAPK-dependent mechanism. PLoS One, 8, e72404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia, Y., Liu, Y., Rocchi, P., et al. (2012). Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Letters, 318(2), 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y. C., Wang, S. W., Hung, H. Y., et al. (2007). Isolation and characterization of human gastric cell lines with stem cell phenotypes. Journal of Gastroenterology and Hepatology, 22(9), 1460–1468.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Wang, J., Zhou, Y., et al. (2012). Hsp70 promotes chemoresistance by blocking Bax mitochondrial translocation in ovarian cancer cells. Cancer Letters, 321, 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Yanoma, T., Ogata, K., Yokobori, T., et al. (2017). Heat shock-induced HIKESHI protects cell viability via nuclear translocation of heat shock protein 70. Oncology Reports, 38(3), 1500–1506.

    Article  PubMed  Google Scholar 

  • Yi, Z., Li, Y., Liu, D., et al. (2017). Extracellular HSP70/HSP70-PCs regulate hepatocarcinoma cell migration and invasion via RhoA. Oncology Letters, 13, 1095–1100.

    Article  PubMed  CAS  Google Scholar 

  • Young, J. C., Agashe, V. R., Siegers, K., et al. (2004). Pathways of chaperone-mediated protein folding in the cytosol. Nature Reviews. Molecular Cell Biology, 5, 781–791.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Jiang, Y., Jia, Z., et al. (2006). Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clinical & Experimental Metastasis, 23, 401.

    Article  CAS  Google Scholar 

  • Zhang, T., Hamza, A., Cao, X., et al. (2008). A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Molecular Cancer Therapeutics, 7(1), 162–170.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Pang, E., Loo, R. R., et al. (2011). Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells. Proteomics, 11(24), 4638–4647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, H., Gao, H., Liu, C., et al. (2015a). Expression and clinical significance of HSPA2 in pancreatic ductal-adenocarcinoma. Diagnostic Pathology, 10, 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y., Guo, X., Li, Z., et al. (2015b). A systematic investigation based on microRNA-mediated gene regulatory network reveals that dysregulation of microRNA-19a/Cyclin D1 axis confers an oncogenic potential and a worse prognosis in human hepatocellular carcinoma. RNA Biology, 12, 643–657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z. G., & Shen, W. L. (2005). Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901. World Journal of Gastroenterology, 11(1), 73–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhe, Y., Li, Y., Liu, D., et al. (2016). Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biology, 37, 13951–13959.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

D. Datta acknowledges financial support from Visva-Bharati University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, D., Banerjee, S., Ghosh, A., Banerjee Mustafi, S., Sen, P., Raha, S. (2018). Involvement of Heat Shock Protein 70 (Hsp70) in Gastrointestinal Cancers. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_4

Download citation

Publish with us

Policies and ethics