
Solving Discrete Logarithm Problem
in an Interval Using Periodic Iterates

Jianing Liu1,2,3 and Kewei Lv1,2,3(&)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing, China
{liujianing,lvkewei}@iie.ac.cn

2 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. The Pollard’s kangaroos method can solve the discrete logarithm
problem in an interval. We present an improvement of the classic algorithm,
which reduces the cost of kangaroos’ jumps by using the sine function to
implement periodic iterates and giving some pre-computation. Our experiments
show that this improvement is worthy of attention.

Keywords: Discrete logarithm problem � Pollard’s kangaroos method
Pollard’s rho method

1 Introduction

The discrete logarithm problem (DLP) in a group G is to find the integer n such that
gn = h holds given g, h 2 G. As one of the most important mathematical primitives in
modern cryptography, there are some classic algorithms to solve it, such as the Pol-
lard’s rho method, the index calculus method, and the Pollard’s kangaroos method as
well [1]. It’s interesting to study solving discrete logarithm problem of the given
interval in the practical cryptography system. The discrete logarithm problem in an
interval is defined as following:

Definition 1 (DLP in an interval). Let p be a prime number and G be a cyclic subgroup
of order q in F�

p . Given the generator g and an element h of G, and an integer N less
than the order of g, it is assumed that there exists an unknown integer n in the interval
[0, N] such that h = gn holds. To compute n.

Indeed, some instances belonging to this case had been studied, such as the DLP
with c-bit exponents (c-DLSE) [2–4], Boneh-Goh-Nissim homomorphic encryption
scheme [5], counting points on curves or abelian varieties over finite fields [6], the
analysis of the strong Diffie-Hellman problem [1, 7], and side-channel or small sub-
group attacks [8, 9] and reference therein. Pollard’s rho algorithm costs time O

ffiffiffi
n

pð Þ to
solve it. [4] improves Pollard’s kangaroos algorithm to solve DLP in an interval of size
N with expected running time ð2 + O(1))

ffiffiffiffi
N

p
group operations and polynomial stor-

age. Galbraith et al. improve it by increasing the number of kangaroos showing that

© Springer International Publishing AG, part of Springer Nature 2018
S. Qing et al. (Eds.): ICICS 2017, LNCS 10631, pp. 75–80, 2018.
https://doi.org/10.1007/978-3-319-89500-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_6&domain=pdf

when the number of kangaroos is four, total number of jumps is optimal and number
of group operations is ð1:714 + O(1))

ffiffiffiffi
N

p
[10]. [11] uses series of small integer

multiplications to replace every multiplication of elements of a group, which reduces
the cost of each jump in Pollard’s rho algorithm and to determine to compute a
complete multiplication according to whether some function values belong to the set
of distinguished points or not. The definition of distinguished points is originally
introduced in [12] for time-memory trade-off, which is some elements of group
G satisfying a certain condition such that these points can be checked easily. [11]
showed that when the related results meet the pre-defined distinguished point condi-
tion, we make a complete integer multiplication operation, thereby reducing the
number of complete multiplications and time cost of each jump. A preprocessing

storage size is O logpð Þrþ 1�loglogp
� �

and running time is at least 10 times faster than

the original algorithm.

Contribution. We use the sine-function to implement periodic iterates and give some
pre-computation to reduce the cost of Pollard’s kangaroos algorithm obviously. we can
reduce pj jj j2 bit operations of a complete integer multiplication to at most d ek k g2

�� �� bit
operations, where d ¼ loge p. The pre-defined distinguished point condition is [η − k, η],
where k ¼ loggþ m; m is an integer satisfying 0� m\g� loggb c. Furthermore, we also
properly increase the number of kangaroos to reduce the total number of jumps, which
improve both the time cost and the total number of jumps. Compared with the classic
algorithm, the efficiency is noticeably improved.

2 Pollard’s Kangaroos Algorithm

The Pollard’s kangaroos algorithm [13] is based on random walk and each kangaroo
jumps one step at a time. The main process is: First, fix a set of small integers of
k elements S ¼ s1; s2; . . .; skf g, which is also considered as the set of the distances of
jump steps such that the mean value of the elements of S is about

ffiffiffiffi
N

p
and k is a small

integer. We randomly select some elements from group G to form the distinguished set
D = {g1, g2, g3,…, gt}, such that the size of D is approximately Dj j= Gj j ¼ cffiffiffi

N
p , where

c is a constant and c �1. Define a random map f from G to S. mA kangaroo’s jumps

corresponds to a sequence in G; giþ 1 ¼ gig
f ðgÞ
i ; i ¼ 0; 1; 2; . . .; starting from the given

g0. Let d0 = 0, di+1 = di + f(gi), i = 0, 1, 2, …. Then, di is the sum of distances of first
i jumps of kangaroo and gi ¼ g0gdi ; i ¼ 0; 1; 2; The algorithm requires 2

ffiffiffiffi
N

p
group

operations and a small amount of additional storage space.
For each jump, we need to compute a complete integer multiplication between two

group elements, which costs about pj jj j2 bit operations. When the product belongs to
the distinguished set D, the values related to this jump will be stored for collision
detection; otherwise, the related values will not be stored. Thus, storage operations are
not carried out every time, so it is not necessary to do a full product for each jump.

76 J. Liu and K. Lv

3 The Improved Pollard’s Kangaroos Algorithm

In Pollard’s kangaroos algorithm, the cost of each jump is complete multiplication
operation of ||p||2 bits. We improve computational cost of jumpsusing pre-computation
and periodic iterative functions, so that the total cost is reduced. Let p be a prime, n be
an integer, and G ¼ \g[be a cyclic subgroup of order q of F�

p . Given the generator
g of G, element h and positive integer N, suppose there exists an unknown integer n in
the interval [0, N] such that h = gn holds, the algorithm to compute n is given in the
following.

Let g denotes a small integer, we set C ¼ t1; t2; . . .; tg
� �

, which is also considered as
the set of the distances of jump steps and the mean value of the elements of C is aboutffiffiffiffi
N

p
. Let the index set be S ¼ f1; 2; . . .; gg and set Ms = gts jts 2 Cf g. Fix a small

positive integer l and precompute Ml ¼ M [1f gf gl. Initially, both tables Lt and Lw are
null. We choose small integers d and e such that d ¼ loge pd e. In order to facilitate the
calculation of the discrete logarithm, we pre-calculate the Ml before the algorithm runs

and store it in the appropriate table. The size of the set Ml does not exceed
lþ g
g

� 	
.

Next, we define label function s : G ! S such that sðgÞ ¼ gmod p
p � gþ 1.

Given x; y 2 G, for each 0 � i � d−1, write

x ¼
Xd�1

i¼0
xiei; where 0 � xi \ e ð1Þ

and

ti ¼ eiymod 360; then 0 � ti \ 360: ð2Þ

Define the auxiliary label function �s : G�Ml ! S

�s x; yð Þ ¼
Xd�1

i¼0
xi usin tið Þj jb cmod gþ 1 ð3Þ

where u� g2, for the convenience of computation, u is taken as g2. For any given
g 2 G and M 2 Ml, the time computing �s g;Mð Þ is much less than the cost of com-
puting g �M.

We define index function and auxiliary index function �s : G�Ml ! S, such that
s : G ! S is a surjective and pre-image is approximately uniform,, and
�s g;Mð Þ ¼ sðgMÞ. Let �s ¼ �s. The pre-defined distinguished point condition is defined
as the interval [η − k, η], where k ¼ loggb cþ m; 0� m\g� loggb c. Generally, the
value of m is a small integer.

The jumping process of a kangaroo is a sequence table ofG,G; giþ 1 ¼ gi �MsðgiÞ for
i� 0. The algorithm starts at an initial value g0 2 G, and the initial s0 ¼ sðg0Þ) is
randomly selected from the set S. Since g1¼g0 �Msðg0Þ, we can get the next index s1 ¼
sðg1Þ ¼ sðg0Ms g0ð ÞÞ ¼ �sðg0; Ms g0ð ÞÞ by calculating �sðg0; Ms g0ð ÞÞ without computing
g0 �Msðg0Þ. If the computed index value s1 satisfies distinguished point condition, we can

Solving Discrete Logarithm Problem in an Interval Using Periodic Iterates 77

calculate g2 ¼ g0 �Ms0Ms1 ; Ms0Ms1 2 Ml has been pre-computed without computing
g1 ¼ g0 �Ms0 . In the next process, for each iteration to complete a jump, the index value
s2; s3; etc; can be calculated in the same way, and we do not compute the complete
multiplication until that the pre-defined distinguished point condition is met, that is, the
value of the function �s falls in the interval [η − k, η]. At same time, we get the corre-
sponding point gi ¼ g0Ms0 . . .Msi�1 , where Ms0 . . .Msi�1 2 Ml has been basically pre-
computed and can be obtained through look-up the table. If the collision has not occurred
for l iterations, i.e., glþ 1 = g0Ms0 . . .Msl , the computed value of glþ 1 will be stored in the
table and the algorithm can be re-executed with glþ 1 as a new starting point.

We denote two kangaroos as T andW. T andW jump respectively from the midpoint
of the interval (i.e., g0 ¼ gN=2) and g00 ¼ h to the right side of the interval. The jumping
process of T and W are alternately executed. The branches T and W randomly select the
initial values s0 ¼ sðg0Þ) and s00 ¼ ðg00Þ from the set S respectively and set their own
initial jumping points and initial distances of the jump step of the two branches
be g0 ¼ Ms0 ; g ¼ Ms00 and d0ðT) ¼ 0; d0ðW) ¼ 0. When i > 1, we have diðTÞ ¼Pi�1

i¼0 tsi ; djðWÞ ¼ Pj�1
i¼0 ts0j . Let Ti andWj denote the i and j-th jump of the two branches

respectively. i and j start from 0. T0, W0, T1, W1, T2, W2,…,Ti-1, Wi-1 are alternately
executed. When the distinguished point condition is satisfied, the current jumping
point’s value of branch T or W will be computed. Then we can get the triplets that are
ðgi; diðTÞ; TÞ or g; djðWÞ;W and store it into the corresponding table Lt or Lw at index gi
and gj respectively. A collision occurs when gi is accessed by a different type of branch
kangaroo, so the value of n ¼ N=2þ di Tð Þ � dj Wð Þ can be computed and the algorithm
terminates.

Running Time. From Eq. (3), we can know the time of calculating �s x; yð Þ includes
d multiplications of modulo η, d-1 additions of modulo η, and d sinusoidal operations.
Considering the time of calculating a sine operation as a constant C0 and ignoring the
relatively small cost of addition, time of computing �s is about dMul gj jj jð Þþ
hþ 1=lð ÞMul pj jj jð Þþ dC0, where h is the probability that a point is a distinguished
point, and l is the maximum number of iterations of the pre-process. Notice that the
time of calculating sine function is neglected after processing in (2), the time of a jump
is dMul gj jj jð Þþ hþ 1=lð ÞMul pj jj jð Þ, where h is the probability that a point is a dis-
tinguishable point, and l is the maximum number of iterations in the preprocessing
table. Since the total number of jumps is N= 2mð Þþ 2mþ 2=h, the total time is
dMul gj jj jð Þ þ hþ 1=lð ÞMul pj jj jð Þf g � N= 2mð Þþ 2mþ 2 � 1=hf g. From (1) and (3),

we need about d ej jj j g2
�� �� bit operations required for a complete multiplication, obvi-

ously smaller than the pj jj j2 bit operations required for a complete multiplication of the
original algorithm. Usually we have the comparison results, seeing Table 1.

We can take the pre-defined distinguished point condition as ½g� k; g	, the number
of group operations is about logg=gð2 + O(1))

ffiffiffiffi
N

p
. [10] improves the classic Pollard’s

kangaroos algorithm by increasing the number of kangaroos such that the total number
of jumps is reduced and the probability of collision is increased. When the number of
kangaroos is four, the total number of jumps is optimal and number of group operations
is ð1:714 + O(1))

ffiffiffiffi
N

p
.

78 J. Liu and K. Lv

4 Experiments on Improved Pollard’s Kangaroos Algorithm

Given a 32-bit prime number p = 2147483659, g = 29, and take e ¼ 8;N ¼ 50. Sinceffiffiffiffi
N

p
= 7, here we set g = 13 and C ¼ 1; 2; 3; . . .; 13f g. Then k ¼ loggb c ¼ 3, so the

interval [η − k, η] = [10, 13]. The distinguished point condition is [10, 13].
M ¼ g1; g2; . . .; g13

� �
. Given h = 44895682, then our task is to seek x in the interval

[1, N] such that 29x mod p ¼ 44895682. Here, we set l = 3 and precompute
Ml ¼ ff291; 292; . . .; 2913g[f1gg3. We show some instances of experiment for dif-
ferent size primes p to display advantage of the improved algorithm in Table 2.

5 Conclusion

In this paper, we improve Pollard’s kangaroos algorithm using pre-defined distin-
guished point condition and periodic iterations. We reduce the cost of kangaroos’
jumps by using the sine function to iterate periodically and pre- computation instead of
multiplication between the elements of a group. The related function definition of the
algorithm is not limited to a certain interval, the improved algorithm can be extended
for the calculation of the discrete logarithm problem in the usual case.

Acknowledgements. This work is partially supported by National Key R&D Program of China
(2017YFB0802502) and NSF (No. 61272039).

Table 1. Time contrast in case of Two Kangaroos

Algorithm Number of group
operations

Time cost of a jump Computation cost

Pollard’s 2þOð1Þð Þ ffiffiffiffi
N

p
Mul jjpjjð Þþ fj j pj jj j2 bit operations of a

jump
The
improved

logg=g 2þOð1Þð Þ ffiffiffiffi
N

p
dMulð gk kÞþ ðhþ 1=lÞMul jjpjjð Þ d ej jj j g2

�� �� bit
operations of a jump

Table 2. Experiment cost

||p|| Prime p Total
number of
jumps

Number of
complete
multiplications

64 bits 15509012368832652833 60 37
128 bits 292087288550973971472931860508592710703 73 42
256 bits 92444955114635498485587226229817979873

641018903173310314457635186986679937827
115 62

Solving Discrete Logarithm Problem in an Interval Using Periodic Iterates 79

References

1. McCurley, K.: The discrete logarithm problem. In: Proceedings of the Symposium in
Applied Mathematics, pp. 49–74. AMS (1990)

2. Gennaro, R.: An improved pseudo-random generator based on discrete log. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 469–481. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6_29

3. Patel, S., Sundaram, G.S.: An efficient discrete log pseudo random generator. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055737

4. van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman key agreement with short exponents.
In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_29

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-30576-7_18

6. Gaudry, P., Schost, É.: A low-memory parallel version of Matsuo, Chao, and Tsujii’s
Algorithm. In: Buell, D. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24847-7_15

7. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006). https://doi.
org/10.1007/11761679_1

8. Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving discrete logarithms from partial
knowledge of the key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007.
LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77026-8_17

9. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a prime
order subgroup. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 249–263.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052240

10. Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing discrete logarithm in an interval.
Math. Comput. 82(282), 1181–1195 (2013)

11. Cheon, J.H., Hong, J., Kim, M.: Speeding up the Pollard rho method on prime fields. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89255-7_29

12. Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search? Application to DES. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 429–434.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_43

13. Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. J. Cryptol. 4, 437–447 (2000)

80 J. Liu and K. Lv

http://dx.doi.org/10.1007/3-540-44598-6_29
http://dx.doi.org/10.1007/3-540-44598-6_29
http://dx.doi.org/10.1007/BFb0055737
http://dx.doi.org/10.1007/3-540-68339-9_29
http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/978-3-540-24847-7_15
http://dx.doi.org/10.1007/11761679_1
http://dx.doi.org/10.1007/11761679_1
http://dx.doi.org/10.1007/978-3-540-77026-8_17
http://dx.doi.org/10.1007/978-3-540-77026-8_17
http://dx.doi.org/10.1007/BFb0052240
http://dx.doi.org/10.1007/978-3-540-89255-7_29
http://dx.doi.org/10.1007/3-540-46885-4_43

	Solving Discrete Logarithm Problem in an Interval Using Periodic Iterates
	Abstract
	1 Introduction
	2 Pollard’s Kangaroos Algorithm
	3 The Improved Pollard’s Kangaroos Algorithm
	4 Experiments on Improved Pollard’s Kangaroos Algorithm
	5 Conclusion
	Acknowledgements
	References

