
Statically Defend Network Consumption
Against Acker Failure Vulnerability

in Storm

Wenjun Qian1,2, Qingni Shen1,2(B), Yizhe Yang2,3, Yahui Yang1,2,
and Zhonghai Wu1,2

1 School of Software and Microelectronics, Peking University, Beijing, China
wenjunqian@pku.edu.cn, {qingnishen,yhyang,wuzh}@ss.pku.edu.cn

2 National Engineering Research Center for Software Engineering,
Peking University, Beijing, China

yangyizhe1003@pku.edu.cn
3 School of Electronics and Computer Engineering,

Peking University, Shenzhen, China

Abstract. Storm has been a popular distributed real-time computa-
tion system for stream data processing, which currently provides an acker
mechanism to enable all topologies to be processed reliably. In this paper,
via the source code analysis, we point out that the acker failure and mes-
sage retransmission result in the consumption of network resources. Even
worse, adversary conducts a malicious topology to consume over uncon-
strained network resources, which seriously affects the average processing
time of topology for normal users. Aiming at defending the vulnerabil-
ity, we design an offline static detection against acker failure in Storm,
mainly including the code decompile, the function call relationship and
the judgement rules in offline module. Meanwhile, we validate the pro-
tection scheme in Storm 0.10.0 cluster, and experimental results show
that our mentioned judgement rules can achieve well precision.

Keywords: Stream data · Storm · Acker failure
Message retransmission · Network consumption

1 Introduction

Before the development of the streaming computing platform, many Internet
companies, in the face of real-time big data processing problems, usually set up
network channels and multiple work nodes by themselves to deal with messages
in real time. However, the approach could no longer meet the requirement for
data processing, such as no losing data, scaling up the cluster, and manipulating
easily. The appearance of Storm [2] solved the above problems, and Storm can
deal with real-time massive data which is generated on social platforms. At
present, there are many stream data computing systems, such as Storm, S4 [12],
Spark Streaming [3], TimeStream [4] and Kafka [1]. S4 and Kafka implement
c© Springer International Publishing AG, part of Springer Nature 2018
S. Qing et al. (Eds.): ICICS 2017, LNCS 10631, pp. 661–673, 2018.
https://doi.org/10.1007/978-3-319-89500-0_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_56&domain=pdf


662 W. Qian et al.

high availability through passive waiting strategy, while Storm, Spark Streaming
and TimeStream achieve high availability via upstream backup strategy [6,11].
Compared with other stream processing platforms, Storm is the most widely-
used platform in the industry from the aspects of system architecture, application
interface, support language and high availability. Storm has advantages in terms
of performance, but it raises some security problems.

At present, the academic and industry mainly focus on the security and pri-
vacy issues of batch processing platforms, such as information stealing, decision
interference and denial of service attack [5,7,16]. And many solutions have been
proposed for Hadoop, such as authentication, authorization, differential privacy
technology and trusted computing base TCG (Trusted Computing Group), etc.
These solutions are complete for secure hardware environment, trusted data pro-
cessing platform, data encryption and secure computing process [8,13–15]. How-
ever, it is inevitable that the complete solutions are not optimal, and need to be
improved and tested in practice. Moreover, security issues in big data environ-
ments are complex and diverse, and different computing frameworks may require
different solutions. Compared with batch processing platforms, stream process-
ing platforms mainly focus on the real-time and reliability. Unfortunately, there
are few concern about such security vulnerability issues.

Typically, reliable mechanism in Storm is designed simply and there are secu-
rity vulnerabilities in reliable mechanism. In this paper, we mainly focus on
the security vulnerability of Storm platform. We verify that there are problems
of network consumption caused by Acker failure and message retransmission
through analyzing source codes and experimental results. Furthermore, we pro-
pose a protection scheme to examine malicious code statically and design the
experiment in Storm. Our contributions can be summarized as follows:

– We show the problems of reliable mechanism in Storm, and the vulnerability
of over network consumption, which is caused by Acker failure and message
retransmission. If the XOR value of message traced by Acker Bolt is not zero,
which means failing to process message, Spout will resend message and occupy
the cluster’s resources. Evenly, over network consumption affect processing
efficiency for the normal users’ topology in real time.

– We run eight Storm benchmarks, and the number of worker and executor
are the same in each topology. According to the relative consumption of
resources, we classify all benchmarks as memory-dependency topology, CPU-
dependency topology and network-dependency topology. Finally, we select
the network-dependency topology as the normal user’s topology.

– In addition, we also compare the resource consumption dependency with dif-
ferent stream grouping methods for the same topology, and find that global
grouping will consume more network resource than other stream grouping
methods in the same topology. We design a malicious topology using global
grouping to verify the over network consumption.

– We design a protection scheme based on malicious code static detection tech-
nology, which decompiles the topology offline, and then analyzes statically the
source code according to some judgement rules. If the topology is malicious,
it would be killed.



Statically Defend Network Consumption Against Acker Failure Vulnerability 663

The rest of this paper is organized as follows. We introduce the background
in Sect. 2, and discuss problems and challenges of current acker mechanism in
Sect. 3. In Sect. 4, we implement and evaluate the effects of malicious attack. We
then present the protection scheme and performance of static detection against
acker failure in Sect. 5. We conclude the paper in Sect. 6.

2 Background

Our work is related to the fields of Acker in Storm as well as Stream Grouping.
In this section, we succinctly introduce the background in these fields.

2.1 Acker in Storm

The reliable mechanism traces each message emitted by Spout relying on Acker
Bolt in Storm. Tuple tree can be understood as a directed acyclic logic structure,
which is formed by source tuples emitted by Spout and new tuples emitted
by Bolts. Within timeout limit, Acker Bolt tasks conducted the simple XOR
operation on each tupleId in a tuple tree (uniquely identified by msgId), and
then judged whether the result of XOR operation was zero or not. If the XOR
result was zero, the tuple tree would be processed successfully. Otherwise, the
tuple tree was considered to fail. More specifically, the implementation of reliable
mechanism is as follows:

– When sending a source tuple, Spout specifies an msgId (as the unique RootId
to identify a tuple tree) and a tupleId for the source tuple. Then Spout
acknowledges the source tuple and sends 〈RootId, tupleId〉 to Acker Bolt.

– After processing a received tuple successfully, Bolt sends one or more new
tuples anchored to the received tuple (uniquely identified by tupleIdrec), and
specifies a random tupleIdnew for each new tuple. Then it acknowledges the
received tuple and sends 〈RootId, tupleIdrec ∧ tupleIdnew〉 to Acker Bolt.

– Acker Bolt executes the XOR operation on all received acknowledgement
messages, which belong to the same RootId. If the XOR result is zero, Acker
Bolt acknowledges that the source tuple tagged with RootId is processed
completely, and then sends ack to Spout. Otherwise, after timeout, Acker
Bolt sends fail to Spout and the source tuple is judges as failed.

2.2 Stream Grouping

Stream grouping mechanism in Storm provides eight kinds of message grouping
method for topology, and determines how the messages emitted by Spout or Bolt
will be received by the downstream Bolt. In this paper, we mainly focus on three
kinds of commonly used methods, including shuffle grouping, field grouping and
global grouping.



664 W. Qian et al.

– ShuffleGrouping. The shuffle grouping method determines that tuples are
assigned between Spout and Bolt randomly. And the random assignment
result causes the same number of tuples to be allocated on each Bolt.

– FieldGrouping. In a topology, the field grouping method can specify that
all tuples emitted by the upstream Spout or Bolt, are grouped by one or more
fields, and then distributed to multiple downstream Bolt tasks. That is to say,
each downstream Bolt receives tuples in same group.

– GlobalGrouping. In a topology, the global grouping method assigns all
tuples emitted by the upstream Spout and Bolt to one downstream Bolt
task, specifically, the Bolt task with the smallest taskId.

3 Problems and Challenges

In this section, we point out the problems and challenges of current reliable
mechanism in Storm, and present an attack model with the existed vulnerability.

3.1 Vulnerability Analysis

Through analyzing the source code of reliable mechanism, we detect that both
reliable and unreliable topologies can be run in Storm. Besides, Storm developer
provides programmer with flexible API. However, it is vital to deal with some
business scenarios with message consistency, such as bank deposit, transforma-
tion and remittance business.

When programmer design their topology, Storm provides Spout and Bolt
components with some basic interfaces and abstract classes, including Icompo-
nent, ISpout, IBolt, IRichSpout, IRichBolt, IBasicBolt and some other kinds of
basic interfaces, as well as BaseComponent, BaseRichSpout, BaseRichBolt and
BaseBasicBolt and some other kinds of basic abstract classes. BaseBasicBolt
class implements IBasicBolt interface, which acknowledges the received tuple
automatically. Programmer requires for inheriting BaseBasicBolt abstract class
when designing reliable Bolt, and BaseRichBolt abstract class when designing
unreliable Bolt. Through analyzing the source code of acker mechanism, we point
out some existed vulnerabilities in Storm as follows:

– Q1: In a reliable topology, it is necessary to execute the ack or fail operation
for each processed message, which enables the reliability of message in Storm.
Correspondingly, tracing message consumes memory resources.

At the beginning of designing Storm, in order to give users a better experience,
Storm provides reliable and unreliable interface and abstract class. However,
it indicates that user can render Bolt tasks more reliable by means of calling
ack() function in unreliable abstract class. Although this way is more flexible,
it cannot avoid the danger of attackers.

– Q2: If some Bolts (called unreliable Bolt) don’t execute the ack or fail opera-
tion for its received messages, it will result in the value of ack in Acker Bolt is



Statically Defend Network Consumption Against Acker Failure Vulnerability 665

not equal to zero in the extended time. Spout cannot trigger the ack() function
to evacuate the messages, so it will result in resources waste.

When users design a reliable Bolt by inheriting BasicRichBolt abstract
classes, every Bolt task will process the received tuple, emit new tuple, and
call the ack() function after completing tuple anchoring. Although the tuple
tree has been processed completely actually within timeout limit, the tuple
tree will always be traced and cannot be released. Over timeout, Bolt will be
not able to send tupleIdrec and tupleIdnew to Acker Bolt, and the tuple tree
will be judged as failure.

– Q3: When reaching extended time, Acker Bolt send fail to Spout about source
tuple. If user triggers fail() function and implement resend tuple function
from Spout, this will lead to source tuple resending over and over again, which
consume CPU and network resources.

In practice, it is not been implemented to re-transmit tuple in the fail()
function of Spout component by system developer. If user implements fail()
function, Spout will call it to re-transmit a source tuple. Similarly, the source
tuple will also be judged as failure in the end. There are two ways of designing
reliable Bolt as follows:

– Reliable Bolt can be implemented by calling IRichBolt interface. Firstly, it
needs anchor each new tuple to the received tuple while sending new tuples,
and then call ack() method to acknowledge the received tuple. If no anchoring
or calling, the new tuple emitted by Bolt will not be traced.

– Reliable Bolt can be implemented by inheriting BaseBasicBolt abstract class,
which automatically implement the emitting, anchoring and acknowledge-
ment operations for each new tuple in executor() method.

3.2 Attack Model

Attack Target. If Acker Bolt do not receive the acknowledgment message from
Bolt, Acker failure and message retransmission will result in the vulnerability of
over network consumption. Once the vulnerability is used by bad attacker, who
faked as a legal user in cluster, and submitted a malicious topology, it not only
consumes network resource in cluster, but also affects the efficiency of topology
for a normal user.

The attack model of malicious topology is designed as Fig. 1. The malicious
topology implements a reliable Spout, a reliable Bolt1 and an unreliable Bolt2 by
inheriting IRichBolt. However, Bolt2 tasks are anchored to the received tuples
and not acknowledged. The adversary runs a malicious topology as follows:

1. By running test.py script to write contents into /tmp/fluem/test.log, Flume
monitors the log file, and transfers the input data to test topic in Kafka.

2. Spout assigns msgId to each source tuple, and sends a key-value pair
〈RootId, tupleId〉 to Acker Bolt after acknowledging the source tuple.



666 W. Qian et al.

Fig. 1. The attack model of malicious topology

3. Bolt1 emits new tuples and anchors these tuples to the received tuple.
Then, Bolt calls ack() function to acknowledge all received tuples, and sends
tupleIdrec and tupleIdnew to Acker Bolt.

4. Bolt2 pulls every tuple from Bolt1 using global grouping method, and does
not call ack() function to acknowledge all received tuples.

5. After timeout limit, it is not zero that the XOR value of RootId in Acker
Bolt. The source tuple is processed failed.

6. Spout will call fail() function itself, and re-transmit the failed message from
Kafka message queue. By repeating the previous steps, the failed message is
still processed failed all the time.

4 Experimental Evaluation

Through the Ganglia monitoring tool, we view the resource occupancy in cluster.
Through the Storm UI, we view the malicious topology and normal user topology
operation, and compare the average processing time of normal user’s topology
whether running malicious programs or not. We design three kinds of topologies,
including general topology (simplified as GT1), malicious topology (simplified as
MT2) and malicious topology (simplified as MT3). GT1 consists of a reliable
Spout, a reliable Bolt1 and a reliable Bolt2, MT2 consists of a reliable Spout,
a reliable Bolt1 and an unreliable Bolt2, and MT3 consists of a reliable Spout,
a reliable Bolt1 and an unreliable Bolt2. The difference between GT1 and MT2

is that whether Bolt2 is a reliable component, and the difference between MT2

and MT3 is that stream grouping method is global grouping in MT3.
Network Consumption. Comparing the network consumption between GT1

and malicious topologies, we respectively submitted three topologies into Storm
0.10.0 cluster. Figure 2 shows the total network and memory consumption when
only running GT1 in Storm cluster. And Fig. 3 shows the network consumption
respectively when only running a malicious topology, namely MT2 or MT3.

There are significant differences between GT1 and malicious topologies. When
GT1 running within one hour in Storm cluster, the input network consumption



Statically Defend Network Consumption Against Acker Failure Vulnerability 667

of GT1 is average of 68.5k, and output network consumption is average of 67.7k.
However, it is significant for two malicious topology on the increased network
consumption. Compared with MT2, especially for MT3 using global grouping,
the input network consumption is average of 195.3k, the output network con-
sumption is average of 196.0k, which has more than 3x in network consumption.
From MT2 and MT3, we can see that it is relatively high in network consumption
for the malicious topology using global grouping topology. From GT1 and MT2,
we can see that it is an obviously growth to consume network resources for the
MT2, and experimental results show that the growth is nearly 10x. However, it
is roughly the same memory consumption for GT1 and two malicious topologies.
We find that the memory resource consumption value depends on the number
of worker that is set in a topology by programmer.

(a) Memory consumption (b) Network consumption

Fig. 2. The network and memory consumption when only running GT1 in Storm

(a) Running MT2 (b) Running MT3

Fig. 3. The network consumption when running MT2 or MT3 respectively in Storm

Resource Dependent Classification. There are eight benchmarks in Storm,
and we only test six benchmarks in Storm cluster, excluding two benchmarks
only run in local mode. We run each benchmark separately for one hour in
Storm cluster. In order to eliminate the interference caused by the number of
worker and executor in different topologies, we set the number of worker to three,



668 W. Qian et al.

and the number of executor to twelve for each benchmark. Besides, six bench-
marks are reliable topologies. By counting and comparing the consumption of
memory, CPU, and network resources for each benchmark at runtime, as shown
in Table 1, we find that Slidwindow consumes the highest amount of network
resources, Multipletogger consumes the lowest amount of network resources. The
in-network consumption of Slidwindow is 1.7x than the in-network overhead of
the Multiplelogger. In the subsequent malicious topology attacks, we will con-
duct a malicious topology to impact the network resource-dependent topology,
namely Slidwindow.

Table 1. Network, CPU and memory consumption statistics about examples in Storm

Average Processing Time. We designs an experiment group and a control
group to verify the influence of malicious topology on the average processing time
for normal topology. In control group, a normal user’s topology (WordCount)
and a general user’s topology (GT1) are run in Storm at the same time. Whereas
in experimental group, WordCount and MT3 are run.

The average running time of topology for normal under experiment group
and that under control group are shown as Fig. 4. The experimental results
show that the average processing time of WordCount topology is about 1.49 ms

Fig. 4. The average processing time of normal topology in Storm



Statically Defend Network Consumption Against Acker Failure Vulnerability 669

under normal circumstances. In experiment group, the average processing time
of WordCount topology for normal users is about 1.79 ms, and the processing
speed is slowed by 19.4%.

5 Protection Against Acker Failure

In this section, we first present an overview of static detection against acker fail-
ure in Storm, mainly including decompile, function call relationship and judge-
ment rules in offline module, and then describe design and implementation of
the judgement rules.

5.1 Design of Static Detection

In order to solve the security vulnerability of Acker failure, we propose a pro-
tection scheme from three angles as follows:

– Improving Acker code through designing a secure Spout or Bolt interface.
– Detecting Spout and Bolt in a reliable topology by static code detection.
– Detecting all abnormal behaviors of resources consumption by ganglia tool.

In the previous analysis of interface, we can see that Storm provides a secure
and reliable anchoring mechanism for Spout and Bolt, and provides a reliable
IBasicBolt interface and BaseBasicBolt abstract class for Bolt. Therefore, we
does not need to design a secure Spout or Bolt interface. In addition, ganglia
monitors the entire Storm cluster from the perspective of the application layer.
Note that, if Ganglia detects the excessive consumption of network resources,
maybe the abnormal behavior is not caused by acker failure and message retrans-
mission in malicious procedures.

Based on the above analysis, we design and present an offline static detection
against failure in Storm as shown in Fig. 5. If the detection result of a topology
is legal, the topology will be processed in real time. The offline static detection
against acker failure in Storm works as follows:

1. Decompile process makes executable topology code to be java source code,
and needs that it is optimized to restore the source code form.

2. The class function call relationship graph can be achieved by using Model-
Goon plugin tool. Specifically, this step needs present the implementation
interface and the call method.

3. The source code will be analyzed according to the specified judgement rules.
If a topology is designed reliably at first, only if all Spout and Bolt have
invoked the ack method, the topology is legal. Otherwise, it is judged as a
malicious topology. If a topology is unreliable, it is directly determined as a
legal topology.



670 W. Qian et al.

Fig. 5. The overview of offline static detection against acker failure in Storm

5.2 Judgement Rules

In the offline environment, the source code of a topology is analyzed based
on the judgement rules. If the result is true, the topology will be submitted
and processed in real time. Otherwise, the topology is rejected. Specifically,
judgement rules are as follows:

– Rule-1 : In a topology, if the developer calls Spout’s nextTuple() method to
send a source tuple that is not specified with a unique msgId, the topology
is determined as an unreliable topology. Storm will not start the Acker Bolt
component to trace the source tuple, and the return value is true. Otherwise,
the topology is a reliable topology and needs to be judged continually by
Rule-2 and Rule-3.

– Rule-2 : If the developer inherits the BaseBasicBolt class that implements
the IBasicBolt interface, this indicates that the Bolt’s execute() method will
automatically implement the anchoring and acknowledgement operations, and
the return value is true.

– Rule-3 : If the developer inherits the BaseRichBolt class that implements
the IRichBolt interface, and emits a new tuple that is anchored to the parent
tuple at the same time, the parent tuple does not explicitly call the ack()
method. Then the Bolt is determined as an unreliable Bolt, and the return
value is false. Otherwise, the Bolt is a reliable Bolt, and the return value is
true.

In particular, if Bolt is implemented by an unreliable interface in a topology,
regardless that whether new tuple is anchored to the parent tuple, the topology
is judged as a malicious topology eventually as long as the call of ack() method
is not explicitly called.

5.3 Performance

After decompiling a topology, the executable .class.jar package is decompiled
into a java source file. Then, through the ModelGoon plug-in, we draw the class



Statically Defend Network Consumption Against Acker Failure Vulnerability 671

function relationship graph. In this section, we just test the decompile result
and achieve a usable relationship graph. We conduct the code detection offline,
which does not effect the real-time performance in Storm.

Fig. 6. The class relationship of decompiled topology

We decompile a topology submitted from client, and get a class relationship
by Eclipse ModelGoon plug-in as shown in Fig. 6. It consists of a KafkaSpout
component and two Bolt components. KafkaSpout implements IRichSpout inter-
face, and WordNormalizer Bolt and WordCounter Bolt implement IRichBolt
interface. Further, through the call hierarchy view function call, it was found
that the ack() method was invoked only when the execute() method was called in
the WordNormalizer class implementation, the message was not statically linked
in the WordCounter class, and the ack() method was not explicitly called. The
topology submitted by user is judged as a malicious topology, and can not be
submitted into Storm cluster.

6 Conclusion

In this paper, we mainly study two mechanisms in Storm, including reliable
mechanism and stream grouping mechanism. Meanwhile, we analyze and point
out the security vulnerability of current reliable mechanism, in which unreliable
Bolt enables the source tuple to fail, retransmit it continually and bring with
over network consumption. Via experimental results and source code analysis,
we find that malicious topology influent the normal user’s topology, over 19.4%
at the average processing time. Motivated by the vulnerability of acker failure,
we presents a protection scheme using malicious code static detection technology.



672 W. Qian et al.

Our work still need to study and improve a better detection against acker
failure. Firstly, we only consider the static detection. Dromard et al. [9] and Wang
et al. [17] proposed different methods of anomaly detection respectively, which
are worthy of reference to improve the current static detection scheme. Secondly,
during the detection of malicious programs, the selected feature is anchoring and
acknowledgement. Furthermore, our next work is to select different features, and
use the method of SVM (Support Vector Machine) to detect anomaly like [10].

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under Grant No. 61672062, 61232005, and the National High Tech-
nology Research and Development Program (“863” Program) of China under Grant
No. 2015AA016009. Thanks to Lingyun Guo and Liming Zheng for the support of
experimental data collection and stream grouping analysis.

References

1. Apache kafka. http://kafka.apache.org
2. Apache storm. http://storm.apache.org
3. Spark streaming. http://spark.apache.org/streaming
4. TimeStream. https://github.com/TimeStream/timestream
5. Alguliyev, R., Imamverdiyev, Y.: Big data: big promises for information security.

In: IEEE International Conference on Application of Information and Communi-
cation Technologies, pp. 1–4 (2014)

6. Aritsugi, M., Nagano, K.: Recovery processing for high availability stream pro-
cessing systems in local area networks. In: TENCON 2010–2010 IEEE Region 10
Conference, pp. 1036–1041 (2010)

7. Bertino, E., Ferrari, E.: Big data security and privacy. In: IEEE International
Congress on Big Data, pp. 757–761 (2015)

8. Dinh, T.T.A., Saxena, P., Chang, E.C., Ooi, B.C., Zhang, C.: M2R: enabling
stronger privacy in MapReduce computation (2015)

9. Dromard, J., Roudiere, G., Owezarski, P.: Online and scalable unsupervised net-
work anomaly detection method. IEEE Trans. Netw. Serv. Manag. PP(99), 1
(2017)

10. Khaokaew, Y., Anusas-Amornkul, T.: A performance comparison of feature selec-
tion techniques with SVM for network anomaly detection. In: International Sym-
posium on Computational and Business Intelligence, pp. 85–89 (2016)

11. Nagano, K., Itokawa, T., Kitasuka, T., Aritsugi, M.: Exploitation of backup nodes
for reducing recovery cost in high availability stream processing systems. In: Four-
teenth International Database Engineering & Applications Symposium, pp. 61–63
(2010)

12. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: IEEE International Conference on Data Mining Workshops, pp. 170–
177 (2011)

13. Ohrimenko, O., Costa, M., Fournet, C., Gkantsidis, C., Kohlweiss, M., Sharma,
D.: Observing and preventing leakage in MapReduce (2015)

14. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: security and
privacy for MapReduce. In: Usenix Symposium on Networked Systems Design and
Implementation, NSDI 2010, 28–30 April 2010, San Jose, CA, USA, pp. 297–312
(2010)

http://kafka.apache.org
http://storm.apache.org
http://spark.apache.org/streaming
https://github.com/TimeStream/timestream


Statically Defend Network Consumption Against Acker Failure Vulnerability 673

15. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

16. Takabi, H., Joshi, J.B.D., Ahn, G.J.: Security and privacy challenges in cloud
computing environments. IEEE Secur. Priv. 8(6), 24–31 (2010)

17. Wang, Z., Yang, J., Zhang, H., Li, C., Zhang, S., Wang, H.: Towards online anomaly
detection by combining multiple detection methods and storm. In: Network Oper-
ations and Management Symposium, pp. 804–807 (2016)


	Statically Defend Network Consumption Against Acker Failure Vulnerability in Storm
	1 Introduction
	2 Background
	2.1 Acker in Storm
	2.2 Stream Grouping

	3 Problems and Challenges
	3.1 Vulnerability Analysis
	3.2 Attack Model

	4 Experimental Evaluation
	5 Protection Against Acker Failure
	5.1 Design of Static Detection
	5.2 Judgement Rules
	5.3 Performance

	6 Conclusion
	References




