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Abstract. As the network services are gradually complex and impor-
tant, the security problems of their protocols become more and more seri-
ous. Vulnerabilities in network protocol implementations can expose sen-
sitive user data to attackers or execute arbitrary malicious code deployed
by attackers. Fuzzing is an effective way to find security vulnerabilities
for network protocols. But it is difficult to fuzz network protocols if the
specification and implementation code of the protocol are both unavail-
able. In this paper, we propose a method to automatically generate test
cases for black-box fuzzing of proprietary network protocols. Our method
uses neural-network-based machine learning techniques to learn a gener-
ative input model of proprietary network protocols by processing their
traffic, and generating new messages using the learnt model. These new
messages can be used as test cases to fuzz the implementations of corre-
sponding protocols.

Keywords: Black-box fuzzing - Proprietary network protocol
Machine learning

1 Introduction

Fuzzing is one of the most effective techniques to find security vulnerabilities
in application by repeatedly testing it with modified or fuzzed inputs. State-of-
the-art Fuzzing techniques can be divided into two main types: (1) black-box
fuzzing [1], and (2) white-box fuzzing [2]. Black-box fuzzing is used to find secu-
rity vulnerabilities in closed-source applications and white-box fuzzing is for
open source applications. In terms of proprietary protocols, whose specification
and implementation code are unavailable, black-box fuzzing is the only method
can be conducted. There are two kinds of black-box fuzzing: (1) mutation-based
fuzzing, and (2) generation-based fuzzing. Mutation-based fuzzing requires no
knowledge of the protocol under test, it modifies an existing corpus of seed
inputs to generate test cases. In contrast, generation-based fuzzing requires the
input model to specify the message format of the protocol, in order to generate
test cases. It has been proved that generation-based fuzzing performs much bet-
ter, when compared to mutation-based fuzzing [3]. However, the input model of
generation-based fuzzing can not be provided if neither the specification nor the
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implementation code of the protocol are available. Therefore, it requires protocol
reverse engineering to figure out the message format of the protocol.

There have been many approaches to find security vulnerabilities in proto-
col implementations. For example, static code analysis [4,5], white-box fuzzing
[2,6], symbolic execution [7,8], and dynamic taint analysis [9] can help spotting
vulnerabilities of the protocol, if the source code of the protocol is available. And
if the specification of the protocol is already known, there are several modern
fuzzers such as Sulley [10], Peach [11] and SPIKE [12] can be used. However, if
the specification and implementation code of the protocol are both unavailable,
things have become completely different. In this situation, only a few methods
[13,14] can be applied for protocol vulnerability discovery. These methods pro-
vided first solution for automatically fuzzing proprietary protocols if a program
analysis is not possible or hard to carry out. But they have used variants of
traditional clustering algorithm and n-gram based approaches that are limited
by contents of finite length.

In contrast with previous work, we make the first attempt at applying neural-
network-based machine-learning techniques for black-box fuzzing of proprietary
network protocol. Our method combine the concepts from fuzzing with the tech-
niques from natural language processing. In specifically, we capture sufficient
network traffic of an unknown protocol, then use seq2seq model with LSTM
cells to learn a generative input model that can be used to generate test cases.
Finally, we use the generative model to communicate with the implementation
of unknown protocol.

The rest of the paper is organized as follows: Sect. 2 gives a brief introduction
to neural-network-based machine-learning techniques. We introduce our method
for black-box fuzzing of proprietary protocols in Sect. 3. Section 4 presents results
of fuzzing experiments with our method. Related work is discussed in Sect. 5.
We conclude in Sect. 6.

2 Preliminaries

We now give a brief introduction to neural-network-based machine-learning
techniques.

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) address the issue of information persistence,
which traditional neural networks can’t do. They are networks with loops in
them, operating on a variable length input sequence (z1, 2, ..., z7) and consist
of a hidden state h; and an output y.

As Fig. 1 shows, a block of neural network, A, looks at some input x; and
outputs a value h;. A loop is able to pass information from one step of the
network to the next. A RNN can be thought of as multiple copies of the same
network, each passing a message to a successor as Fig. 2.
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Fig. 1. Recurrent neural network with loops
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Fig. 2. Unrolled recurrent neural network

The RNN processes the input sequence in a series of time stamps. For a
particular time stamp ¢, the hidden state h; and the output y; at that time
stamp has equations as Eqgs. 1 and 2 show.

hi = f(hi—1,2t) (1)
Y = ¢(ht) (2)

In Eq.1, f is a non-linear activation function such as sigmoid, tanh etc.,
which is used to introduce non-linearity into the network. And ¢ in Eq.2 is a
function such as softmax that computes the output probability distribution over
a given vocabulary conditioned on the current hidden state. RNNs can learn a
probability distribution over a character sequence (x1,x3,...,24—1) by training
to predict the next character x; in the sequence.

In theory, RNNs are absolutely capable of handling long-term dependen-
cies, where the predictions need more context. Unfortunately, in practice, RNNs
become unable to learn to connect the information in cases shown in Fig. 3,
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Fig. 3. RNN long-term dependencies
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where the distance between the relevant information and the place that it is
needed becomes very large.

2.2 Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) are a special kind of RNN; explicitly
designed to avoid the long-term dependency problem. They also have the form of
a chain, which has repeating modules of neural networks. But instead of having
a single neural network layer, the repeating module has a different structure as
Fig. 4 shows.
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Fig. 4. LSTM repeating module with four interacting layers

The horizontal line crossing through the top of Fig. 4 is the cell state, which
is the key of LSTMs. LSTMs are able to remove or add information to cell state
with structures called gates, which composed out of a sigmoid neural net layer
and a point wise multiplication operation.

2.3 Sequence to Sequence

A basic sequence-to-sequence (seq2seq) model, as introduced by Cho et al. [15],
consists of two recurrent neural networks, an encoder RNN that processes a
variable dimensional input sequence to a fixed-size state vector, and a decoder
RNN that takes the fixed-size state vector and generates the variable dimensional
output sequence. The basic architecture is depicted as Fig. 5.
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Fig. 5. Basic sequence to sequence
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Each box in Fig. 5 represents a cell of the RNN, in our method an LSTM cell.
Encoder and decoder can share weights or, as is more common, use a different set
of parameters. We train the seq2seq model using a corpus of network recordings,
treating each one of the message as a sequence of characters. Before training, we
concatenate all the messages into a single file.

3 Methodology

The main idea of our method is to learn a generative input model over the set of
network protocol messages. We use a seq2seq model that has been historically
proved to be very successful at many automatic tasks such as speech recognition
and machine translation. Traditional n-gram based approaches are limited by
contexts of finite length, while the seq2seq model is able to learn arbitrary length
contexts to predict next sequence of characters. The seq2seq model can be trained
in an unsupervised mode to learn a generative input model, which can be used
to generate test cases.

3.1 Training the Model

Before training the seq2seq model, we need to preprocess the corpus. Firstly,
we count the non-repeating characters in the corpus, and sort them in a list
according to their frequency of occurrence. Then, take each character as key and
its order in list as value, storing in a dictionary. Finally, create a tensor file which
replace all characters with its value in list. The main purpose of preprocessing
is to calculate the number of batches Ny,

St

N:
b Sb*Ls

3)

where S; is the size of tensor file, Sy is the size of one batch, which is set to 50
by default. And L, is the length of each sequence in batches.

After the preprocessing, we train the seq2seq model in an unsupervised learn-
ing mode. Due to the absent of training dataset labels, we are not able to accu-
rately determine how well the trained models are performing. We instead train
several models with different epochs, which is the number of learning algorithm
execution. Therefore, an epoch is defined as an iteration of the learning algo-
rithm to go over the complete training dataset. We train the seq2seq models M
as shown in Algorithm 1 with five different numbers of epochs N.: 10, 20, 30, 40
and 50. We use an LSTM model with 2 hidden layers, and each layer consists of
128 hidden states.

I, is the initial path, where the checkpoints file stored in. N, is the number
of training steps to save intermediate result and the default setting is 1000.
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Algorithm 1. Pseudocode for training
Input: I,,, Ny, Ne, Ns.

Output: M;

1. if I, is not None then

2. restore checkpoints from file

3. end if

4. new M

5. for e = 0,1,...,N. do

6. initialize training session

7. for b = 0,1,...,N;, do

8. run training session with M,

9. if (e*Ny+b) % Ns == 0 or

10. e == Ne-1 and b == N,-1 then
11. Output M;

12. end if

13. end for

14.end for

3.2 Test Case Generation

We use the trained seq2seq model to generate new protocol messages. At the
beginning of the fuzzing, we always connect to the server, and take the received
message for initial sequence I;. Then request the seq2seq model to generate a
sequence until it outputs one protocol message terminator like CRLF in ftp.
Based on sampling strategy, there are three different strategies for message gen-
eration. Now, we give the details of these three different sampling strategies we
make experiments with.

Max at Each Step: In this sampling strategy, we pick the best character in the
predicted probability distribution. This strategy will generate protocol messages
which are most likely to be well-formed. But this feature just makes the strategy
unsuitable for fuzzing. Because we need test cases which are not quite the same
as well-formed messages for fuzzing.

Sample at Each Step: In this sampling strategy, we don’t pick the best pre-
dicted next characters in the probability distribution. As a result, this strategy
is able to generate multifarious new protocol messages, which combines various
templates the seq2seq model has learnt from the protocol messages. Due to sam-
pling, the generated protocol messages will not always be well-formed, which is
of great use for fuzzing.

Sample on Spaces: This sampling strategy combines the two strategies
described above. It uses the best predicted character in the probability dis-
tribution when the last character of the input sequence is not a space. And it
samples distribution to generate next character when the input sequence ends
with a space, similar to the second strategy. More well-formed protocol messages
compared to the second strategy can be generated by this strategy.
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Algorithm 2. Pseudocode for sampling
Input: I, M, N, strategy type T
Output: generated sequence S

1. put I into M

2. ¢ = last character in I,

3. for n = 0,1,...,N do

4 use M, to predict the D),

5. if T == 0 then

6. pick the best character in D,
7

8

else if T'==1 then
weighted pick character in D,

9. else

10. if ¢ is space then

11. weighted pick character in D),
12. else

13. pick the best character in D,
14. end if

15. end if

16. append picked character to S
17. ¢ = picked character

18.end for

19.0utput S

N is the number of characters in the generated sequence, and we set it ran-
domly to generate messages of arbitrary length.

4 Experimental Evaluation

4.1 Experiment Setup

In this section, we present results of fuzzing experiments with two ftp applica-
tions WarFTPD 1.65 and Serv-U build 4.0.0.4. We establish these two ftp appli-
cations on two servers, which run Windows Server 2003. The seq2seq models is
trained on a personal computer, which has a Ubuntu 16.04 operating system.
We implement a client program to communicate with ftp server, using the test
cases generated by trained seq2seq model as input. If the program detects any
error reports from ftp server, it records error messages in an error log. And we
can validate whether the recorded error messages are indeed able to trigger vul-
nerabilities. Moreover, it is also feasible to implement a server program of the
protocol to fuzz the client applications.
We use three working standards to evaluate fuzzing effectiveness:

Coverage: A basic demand shared by random and more advanced grammar-
based fuzzers is that the instruction coverage should be as high as possible. In
the case of our method, the fuzzer is able to fuzz the communication both ends
but its coverage is highly depend on the network recordings.
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Bugs: During the fuzzing process, we take the advantage of tool AppVerifier to
monitor the running of ftp server. AppVerifier is a free runtime monitoring tool
which can catch memory corruption bugs like buffer overflows, and it is widely
used for fuzzing on Windows.

Performance Comparison: We record the statistical data when our fuzzer
and existing fuzzer Sulley and SPIKE running with Serv-U build 4.0.0.4 for
performance comparison. The statistical data include Times, Time and Speed.
Times is the number of test cases sent, and T'ime means how many minutes was
taken to find the bug. Speed indicates the number of test cases sent per second.

4.2 Corpus

We extracted about 10,000 messages for WarF'TPD and 36,000 messages for
Serv-U from network recordings. Most of the network recordings are generated
by normal access to ftp server. And part of the traffic is generated by Sulley.
Using Sulley is to improve the instruction coverage, because normal access may
not include some less commonly used commands like MDTM, which is used to
get the modification time of the remote file.

These 10,000 messages for WarF'TPD and 36,000 messages for Serv-U which
have both client and server side data are the training corpus for the seq2seq
model we used in this work. We generate protocol messages using the trained
seq2seq model, but the input data for ftp server should be transfered from net-
work. Therefore we implement a client program to send the generated messages
to ftp server.

4.3 Result

In order to obtain a reasonable explanation of coverage results, we select the
network recordings of normal access to ftp server, and measure their coverage
of the ftp application, to be used as a baseline for following experiments. When
training the seq2seq model, an important parameter is the number of epochs.
The results of experiments obtained after training the seq2seq model with 10,
20, 30, 40 and 50 epochs is reported here.

Coverage. Figure6(a) and (b) show the instruction coverage obtained with
sample at each step and sample at spaces from 10 to 50 epochs for
WarFTPD and Serv-U. The figures also show the coverage obtained with the
corresponding baseline.

We observe the following:

— The coverage for sample at each step and sample on spaces are above
the baseline coverage for most epoch results.

— The trend for the coverage of WarF'TPD and Serv-U from 10 to 50 epochs is
quite unstable and unpredictable.

— The best coverage obtained with sample at each step and sample on
spaces are both with 40-epochs.
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Fig. 6. Coverage for WarFTPD and Serv-U from 10 to 50 epochs.

Table 1. Bugs found by fuzzing

Application Test results Bug type

WarFTPD 1.65 CWD, CDUP, DELE, NLST, LIST | DoS

USER Buffer overflow

Serv-U build 4.0.0.4 | SITE, CHMOD, MDTM, LIST Buffer overflow

XCRC, STOU, DSIZ DoS

629

Bugs. Another working standard is of course the number of bugs found. Our
method has been tested on WarFTPD and Serv-U two ftp applications, and
after a nearly 4-days experiment, we found almost all of the already known
vulnerabilities in these two ftp applications as Table 1 shows.

There is a SM NT buffer overflow vulnerability in Serv-U not found, because

of the incompleteness of network traffic we used to train the seq2seq model.

Table 2. Performance comparison

Command | Sulley SPIKE Our fuzzer
Times | Time | Speed | Times | Time | Speed | Times | Time | Speed

SITE 987 |1 16 3123 |2 26 1307 |3 9
CHMOD |1322 |1 22 1212 |1 20 3426 |5 11
MDTM 1453 |1 24 3127 |2 24 1688 |2 13
LIST 922 |1 15 1562 |1 26 987 |2 8
XCRC 1348 |1 22 2043 |1 34 3366 |5 12
STOU 2897 |2 23 3031 |2 25 1590 |2 14
DSIZ 3188 |2 26 3875 |2 29 3425 |6 10

Performance Comparison. In addition to coverage and bugs, a third working
standard of interest is performance of our method. We compared our fuzzer with
existing fuzzer Sulley [10] and SPIKE [12]. As Table 2 shows, the efficiency of
our method is slightly lower than that of the existing methods. This is because
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that the generation of test cases by seq2seq model takes a lot of time. However,
Sulley and SPIKE can only be used when the specification of the protocol is
available, but our method is able to fuzz proprietary network protocols, whose
specification and implementation code are both unavailable.

5 Related Work

Protocol Reverse Engineering. Over a decade ago, the process of reverse engi-
neering a network protocol was a tedious, time-consuming and manual task.
Nowadays, there are plenty of methods proposed for automating the process of
protocol reverse engineering. The methods can be divided into two branches: On
the one hand, methods that utilize the protocol implementation [16,17], and on
the other hand, those extract protocol specification from network recordings only.
The Protocol Informatics Project [18] uses a bioinformatics method to imple-
ment byte sequence alignment of similar message formats. The Discoverer tool
[19] present a recursive clustering approach of tokenized messages. Biprominer
[20] and ProDecoder [21] presented by Wang et al. focused on binary protocols,
they retrieve statistically relevant keywords and sequencing. Based on data min-
ing techniques, AutoReEngine [22] reveal keywords and their position within
messages. It is particularly difficult to extract protocol specification in case the
protocol implementation code can not be available for network security staff, but
network recordings only. These approaches provide first means for automatically
identify message field boundaries and formats, but unfortunately, they are not
able to relate variable fields over temporal states.

Protocol Fuzzing. Fuzzing is one of the most effective techniques to uncover secu-
rity flaws in application by generating test case in an automated way. Two types
of fuzzing can be discriminated here: (1) black-box fuzzing [1] which a tester
can only seeing what input and output of an application, and white-box fuzzing
[2] that allows the tester to inspect the implementation code (either binary or
source code) and for instance, take advantage of static code analysis and sym-
bolic execution. This classification is obviously applicable to protocol fuzzing
as well. Most well-known black-box random fuzzers today support generation-
based fuzzing, e.g. Peach [11] and SPIKE [12], can be used to fuzz protocol
implementation when the specification of the protocol is available, but can do
no more when the protocol is unknown. Only few approaches can fuzz protocol
in situation where specification and implementation code are both unavailable.
AutoFuzz [13] and PULSAR [14], which both infer the protocol state machine
and message formats from network traffic alone.

6 Conclusion

It is a challenging problem of computer security to find vulnerabilities in the
implementations of proprietary protocols. To the best of our knowledge, this is
the first attempt to do black-box protocol fuzzing using neural network learn-
ing algorithm, which is able to find vulnerabilities in protocol implementations,
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whether or not the code nor specification are available. We presented and evalu-
ated algorithms with different sampling strategies to automatically learn a gen-
erative model of protocol messages.

Although we have applied our method on very common network protocols,

the method is also able to find vulnerabilities in unusual implementations, such
as in embedded devices and industrial control systems. Moreover, we are con-
sidering adding some form of reinforcement learning in our future work to guide
the fuzzing process with coverage feedback from the application.
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