
SDAC: A New Software-Defined Access
Control Paradigm for Cloud-Based

Systems

Ruan He1, Montida Pattaranantakul2,3, Zonghua Zhang2,3(B),
and Thomas Duval1

1 Orange labs, Châtillon, France
{ruan.he,thomas.duval}@orange.com

2 IMT Lille Douai, Institut Mines-Télécom, Paris, France
{montida.pattaranantakul,zonghua.zhang}@imt-lille-douai.fr

3 CNRS UMR 5157 SAMOVAR, Paris, France

Abstract. A cloud-based system usually runs in multiple geographically
distributed datacenters, making the deployment of effective access con-
trol models extremely challenging. This paper presents a novel software-
defined paradigm, called SDAC, to achieve scoped, flexible and dynamic
access control. In particular, SDAC enables the tenant-specific genera-
tion of access control model and policy (SMPolicy in short), as well as
their dynamic configuration by the cloud-hosting applications. To achieve
that, SDAC uses an access control meta-model to initiate and customize
different SMPolicies. Also, SDAC is decoupled into control plane and pol-
icy plane, allowing the global SMPolicy generated at the control plane
to be efficiently propagated to the policy plane and enforced locally in
different datacenters. As such, the local SMPolicy of a tenant can be syn-
chronized with its global SMPolicy only when it’s necessary, e.g., a user
or a role cannot be identified. To validate the feasibility and effectiveness
of SDAC, we implement a prototype in a carrier grade datacenter. The
experimental results demonstrate that SDAC can achieve the desirable
properties, maintain the throughput at a reasonable level regardless of
the varying number of tenants, users, and datacenters, highly preserving
scalability and adaptability.

1 Introduction

In the distributed cloud systems, one tenant can provision the resources from dif-
ferent cloud infrastructures. Considering the multi-tenancy, extremely dynamic
and heterogeneous cloud environments, each tenant is expected to protect
its users and resources with an effective access control model. However, the
best practice of access control for cloud-based systems usually relies on the
pre-definition of the access control models, e.g., Mandatory Access Control
(MAC), Role Based Access Control (RBAC), while the tenant-specific and user-
customized access control model remains unavailable.

c© Springer International Publishing AG, part of Springer Nature 2018
S. Qing et al. (Eds.): ICICS 2017, LNCS 10631, pp. 570–581, 2018.
https://doi.org/10.1007/978-3-319-89500-0_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_49&domain=pdf


SDAC: A New Software-Defined Access Control Paradigm 571

Ideally, an access control paradigm for cloud-based systems should provide a
mechanism for defining access control model on demand, as well as the dynamic
specification of its policies at large scale. More importantly, the scope of an
access control model and associated policies should be limited to an individual
tenant instead of the whole system, while the tenant user is given the privilege
to customize the most appropriate access control model and specify the corre-
sponding policies. Then the policy of the tenant can be enforced at the multiple
cloud infrastructures through a distributed access control framework.

To achieve these objectives, we propose a Software-Defined Access Control
paradigm, called SDAC, which consists of an access control meta-model and
a distributed framework: the meta-model is used for dynamically creating the
access control model and policy (SMPolicy), while the distributed framework is
used to enforce the policies in multiple datacenters. Thanks to the meta-model,
SDAC is enabled with programmability, flexibility, and adaptability, allowing a
tenant owner to define and customize his own access control model and specify
the policies that are enforced inside the tenant. Also, the distributed frame-
work makes SDAC scalable, enabling the access control policies to be effectively
enforced at the tenant-level which is deployed across multiple datacenters.

To evaluate the feasibility and effectiveness of SDAC, we implement and
deploy a prototype in a carrier grade cloud datacenter and conduct a set of
experiments to validate its performance in terms of the desirable metrics, which
is reported in Sect. 4. The design details of SDAC is presented in Sect. 3, covering
the access control meta-model and the distributed framework. In Sect. 2, we
briefly investigate the related work.

2 Related Work

Multi-tenancy is one of the salient features of cloud computing, which refers
to the fact that the cloud infrastructure and its applications can be divided
into the isolated sets of resources called tenants, according to different owner-
ships and requirements. As resources are distributed among several datacenters,
their appropriate isolation and access control are key issues for both providers
and users. However, as pointed out in [1,2], the conventional access control
approaches are not suitable for the cloud, in which the resources are dynam-
ically pooled and provisioned, the entities are heterogeneous, and the attributes
are context-specific, resulting in sophisticated and fine-grained authorization
requests.

It is well recognized that the access control policies needs to be created, con-
figured or removed by the authorized users, so both DAC (Discretionary access
control) and MAC allow to be specified the constrains on the assignment or the
use of permissions [3]. For example, DAC allows the owner of an object to set up
its access control list, while MAC supports the clearance and classification con-
figuration by the administrator. However, these properties can not sufficiently
meet all the requirements in the cloud, especially on the dynamic customiza-
tion of access control models and the specification of policies. By leveraging the



572 R. He et al.

software-defined approach, our SDAC provides a generic and independent pol-
icy customization approach that can dynamically create a specific access control
model, together with its policy, for a group of objects.

The notion of scope in access control was firstly introduced in MAC as cat-
egory [4], which refers to the validity of security lattice and provides a finer
grained security classification. Also, OrBAC (Organisation-based access control)
defines one security policy for one organization [5], while attribute-based access
control encapsulates policy definition and decision-making algorithms into an
independent unit [6]. Then in [7], the authors extend the notion of scope for
multi-tenancy with RBAC and establishes trust relationship between the scopes.
However, in the cloud, each tenant needs an access control policy to define the
rules that authorize the users to access the appropriate resources. If we treat
a tenant as a scope, a generic data model is expected to customize the access
control model for handling the dynamically created scopes. Unfortunately, to
the best of our knowledge, few of the available access control paradigms can
achieve such an objective. For example, IBM [8] proposed Tivoli Access Man-
ager to provide best practice of web-based access control solution for protecting
tenant’s cloud resources and supporting multi-tenant architectures. In [9,10], the
authors presented distributed access control architectures for cloud computing,
in which XML and XACML respectively, are used to formulate the access control
policies. However, all of them have limited capability to generate different tenant-
specific access control models and support distributed access control framework.
In SDAC, we propose a meta-model to generate different access control mod-
els and policies, and present a four-layered framework to specify and enforce the
tenant-specific access control policies in a distributed way, significantly improving
the flexibility and dynamicity. In [16], a generic NFV based security management
framework has been proposed, with an objective to orchestrating various secu-
rity functions such as access control. However, the actual implementations have
not been extensively discussed.

We have also seen tremendous efforts on designing access control schemes
using cryptographic approaches [11], which mainly handle the access to the
storage systems, while the protection scope of SDAC is all the computing
resources (e.g., compute, storage, network) associated with the tenant. In [1], the
authors pointed out that the user-role and role-permission assignments should
be separately constructed using policies applied on the attributes of users, roles,
the objects and the environment. Also, the attribute-based user-role and role-
permission assignment rules should be applied in real-time in order to enforce
access control decisions. Our SDAC successfully fulfills such requirements and
provides a flexible way for the tenant owners to specify, configure, and manage
access control model and policies on the fly according to the particular needs.

3 SDAC: Software-Defined Access Control Paradigm

In this section, we firstly identify the requirements on developing SDAC. We then
specifically present the paradigm, which consists of a distributed framework and
an access control meta-model.



SDAC: A New Software-Defined Access Control Paradigm 573

3.1 Design Requirements

– Tenant-specific and model generation on demand. The protection
scope should be limited to the tenants, so that the entities of the access
control model (e.g., subject, object, role, and related information) need to be
specified based on particular tenant domain. As a tenant can be dynamically
created or removed, the access control model and associated policies (Scoped
Model and Policy (SMPolicy)) need to be generated or removed in real time.

– Programmability of SMPolicy. To facilitate the dynamic generation of
SMPolicy, a meta-model needs to be developed through which each tenant
can customize its access control model and policy set according to its specific
security needs. As a tenant can be across multiple cloud infrastructures, the
SMPolicy allows arbitrary update of any parts of the access control model
instead of duplicating one complete access control model for each cloud.

– Integration of diverse features. The emerging access control models usu-
ally integrate diverse features to include more semantic information. For
example, session in RBAC [12] can temporally activate or deactivate a user-
role assignment, while the hierarchy role enables privilege inheritance from
one role to another, and the delegation sets up a temporal trust relation
between two users. UCON [13] provides continuous control through obliga-
tions and conditions, and it also enables attribute mutability as a supplemen-
tary instruction before or after an access decision [14].

– Centralized control yet distributed enforcement. To ensure the consis-
tency and efficiency, a user should be able to create or configure a SMPolicy
in a centralized way by describing all its datasets, while the policies need to
be enforced in a distributed manner, covering all the datacenters that the
tenant is deployed. More importantly, the policy updates should be delivered
to the related enforcement components in the distributed infrastructure.

To meet the above requirements, we develop Software-Defined Access Con-
trol Paradigm (SDAC), which contains an access control meta-model and a dis-
tributed framework. In particular, the meta-model is used to initiate different
access control models and policies (SMPolicy) for a scope, and the distributed
framework is used to enforce the generated scoped policies. Specifically, the major
operations of SDAC include: (1) creating a scope and identity entities involved
in this scope; (2) generating an access control model; (3) specifying an access
control policy based on the model, and; (4) enforcing the policies.

3.2 SDAC Framework

We propose SDAC framework to abstract and centralize policies into a control
plane instead of distributing them to the local datacenters. As shown in Fig. 1,
SDAC framework is composed of four planes, which are described as follows,

– Application plane, which hosts the applications that invoke PAP (Policy
Administration Point) to customize SMPolicy. In [15], the feasibility of this
access control framework has been demonstrated through a NFV orchestrator,
which can be treated as an application.



574 R. He et al.

Fig. 1. Design architecture of SDAC

– Controller plane: an Access Control Controller containing multiple Access
Control Managers, each of which is in charge of one tenant and has a global
view about all the authorization related information and rules for that tenant.
In another word, the Access Control Manager defines SMPolicies for each
tenant. As in XACML [17], a PAP and a PDP (Policy Decision Point) are
used for authorization.

– Policy plane: Access Control Agents are deployed in each local datacen-
ter, serving as the agent of Access Control Controller. Each Access Control
Agent holds a set of Access Control Daemons, which contain all the related
information about the local usage of one tenant. The global SMPolicies are
defined in the control plane, while the local SMPolicies are stored in the local
PDP of each access control daemon. Thus, the users only need to customize
the SMPolicies in the control plane, eventually leading to the automated
customization of SMPolicies in the policy plane.

– Enforcement plane: the PEPs (Policy Enforcement Points) are installed
into cloud-based systems for sending authorization requests to the corre-
sponding local PDP running in the Access Control Daemon and finally
enforces the decision from that distributed PDP.

3.3 Access Control Meta-model

The purpose of access control meta-model is to instantiate an access control
model, e.g., DAC, MAC, RBAC for a specific scope (one tenant in the cloud).
To do that, we use attribute-based specification, which has potential to cover
various access control models [18]. In particular, the attributes are those security-
related properties such as role, domain, group, and type. Then a policy can define
a set of rules based on the values of these attributes. To develop the meta-model,
two notations are given as follows,



SDAC: A New Software-Defined Access Control Paradigm 575

– Entity E = {ei}, which can be used as subjects or objects in the access control
model, and they can be either users or cloud resources.

– Information I: the related security properties of each entity, e.g., user roles,
file types. One entity can be assigned with several types of properties, called
categories, and each of which has a set of values, e.g., I= InfoCategory ×
CatScope, where InfoCategory is a set of the types of security properties, and
CatScope is a set of potential values for each category.

We suppose that each SMPolicy (Meta-model based Access Control Model
and Policy) specified by the SDAC meta-model consists of an access control
model (ACM) and an access control policy (ACP), which are described as follows.

Access Control Model: ACM = (MD,MR), which includes a meta-data
(MD) and a meta-rule (MR). In particular, MD defines a schema to instanti-
ate an access control model, i.e., MD = (SubjectMD,ObjectMD,ActionMD),
where SubjectMD,ObjectMD,ActionMD ⊆ InfoCategory. The MR defines
the schema to create the rules, which involve information categories based on
which an authorization-related instruction can be executed, i.e.,

SubjectCategory × ObjectCategory × ActionCategory → Instruction;
where

SubjectCategory ⊆ SubjectMD, ObjectCategory ⊆ ObjectMD, Action
Category ⊆ ActionMD, Instruction : {AuthzDecision, PolicyUpdate, Policy
Chain}

For instance, the rule can be a decision to grant or deny an authorization
request, update the policy itself, or redirect to another policy in the policy
chaining. Thus, by extending the conventional access control policy with generic
instructions, the meta-model is able to instantiate different access control models
and advanced control features, and integrate them within one policy chain.

Access Control Policy: ACP = (D,R,P,EDAss), which creates an access
control policy for the access control model that is applied to a particular scope
e.g., one tenant in the cloud. The policy specifies potential values called data
(D) for each category, establishes rules (R), identifies perimeter (P ) and assigns
values to each entities (EDAss) of this policy. Specifically,

– Data (D) is a complete set of values for each category for subjects,
objects, actions, i.e., D = (SubjectD,ObjectD,ActionD, Instruction), where
SubjectD ⊆ SubjectMD × CatScope, ObjectD ⊆ ObjectMD × CatScope,
ActionD ⊆ ActionMD × CatScope

– Rule (R) specifies user privileges by using category values of subjects, objects,
and actions to determine the instructions to be triggered, i.e., R : SubjectD ×
ObjectD ×ActionD → Instruction. As aforesaid, three types of instruction
are identified, (1) authorization decision (grant or deny); (2) policy update to
modify the category values of an entity; (3) policy chain to route the request
to another policy.

– Perimeter (P ) is a set of entities (subjects, objects, actions) to be protected.
As each SMPolicy is applied to one particular scope, we need to define its



576 R. He et al.

perimeter by identifying the entities that are involved in this scope, i.e., P =
(S,O,A), where S,O,A ⊆ E.

– Entity-Data Assignment (EDAss) is used to establish many-to-many rela-
tionship between related data and entities by assigning category value
to each entity. Formally, EDAss = (SubjectDataAss,ObjectDataAss,
ActionDataAss), where SubjectDataAss ⊆ S × SubjectD, ObjectDataAss
⊆ O × ObjectD ActionDataAss ⊆ A × ActionD.

Policy Decision Algorithm, which is based on the values of categories. When
an access request arrives, the algorithm fetches category values of subject, object
and action to interpret the request through the value assignment of each entity.
Then the algorithm checks whether these values match some rules in the policy.
That says, access request (si, oj , ak) may trigger an instruction instl if:

({si} × SubjectDataAss, {oj} × ObjectDataAss, {ak} × ActionDataAss, instl) ⊆ R

where {e}×DataAss means fetching all attributes of the entity e from its entity-
data assignment.

3.4 SMPolicy Programmability

To generate an access control model, we use object-oriented approach. In par-
ticular, in access control model, an object is usually the resource that can be
manipulated by a subject. If we model the subjects, objects, attributes, and the
relations between them as objects, the authorized users then can manipulate
them through a customization interface, e.g., creating, modifying, and removing
any parts of an access control model. As relations are also treated as objects that
can be manipulated, users can modify attribute assignment as well. As shown
in Fig. 2, SDAC meta-model enables dynamic creation of access control model
and policy through a policy customization interface, which allow any SMPolicy
defined by meta-model to be programmed and configured.

Fig. 2. SDAC data model: key components and customization



SDAC: A New Software-Defined Access Control Paradigm 577

For a particular tenant, a corresponding SMPolicy is created as follows,

1. Through the meta-data interface, the admin creates categories for subjects,
objects and actions, then defines meta-rules, which specify categories to be
used to build rules. The meta-data (MD), together with meta-rule (MR),
constructs a customized access control model.

2. The admin creates an access control policy based on this access control model
by specifying the values for each category, and creating rules (instructions)
based on these values and the meta-rule;

3. The admin identifies subjects, objects and actions that need to be protected
by this SMPolicy, and finally assigns values to each category subjects, objects
and actions.

To illustrate the creation of SMPolicy, an implementation of MLS (Multi-Level
Security) with SMPolicy is given here. In particular, MLS sets up security levels
for subjects and objects, authorization is then granted through their comparison.
By applying SDAC meta-model, we can define the SMPolicy of MLS as follows,

– E = {user0, user1, user2, vm0, vm1, start-vm, stop-vm}
– InfoCategory = (subject-security-level, object-security-level, action-type)
– CatScope = ((subject-security-level, [low, medium, high]), (object-security-

level, [low, medium, high]), (action-type, [vm-action, storage-action]))

Meta-data MD:

– SubjectMD = (subject-security-level)
– ObjectMD = (object-security-level)
– ActionMD = (action-type)

Meta-rule MR:

– SubjectCategory = (subject-security-level)
– ObjectCategory = (object-security-level)
– ActionCategory = (action-type)
– Instruction = (AuthzDecision)

Data D:

– SubjectD = (subject-security-level, [low, medium, high])
– ObjectD = (object-security-level, [low, medium, high])
– ActionD = (action-type, [vm-action, storage-action])

Rule R:

– r = ((subject-security-level, [high]), (object-security-level, [medium]), (action-
type, [vm-action], (instruction, [grant]))

– r = ((subject-security-level, [high, medium]), (object-security-level, [low]),
(action-type, [vm-action], (instruction, [grant]))



578 R. He et al.

Perimeter P :

– S: {user0, user1}
– O: {vm0, vm1}
– A: {start-vm, stop-vm}

Entity-Data Assignment EDAss:

– SubjectDataAss = ((user0, high), (user1, medium))
– ObjectDataAss = ((vm0, medium), (vm1, low))
– ActionDataAss = ((start-vm, vm-action), (stop-vm, vm-action))

In this MLS, a user can start or stop a VM if and only if his or her security
level is higher than that of VM. For example, user0 can manipulate vm0 and
vm1, while user1 can only manipulate vm1.

3.5 SMPolicy Chaining

The basic idea of policy chaining is to combine and route several SMPolicies
together. For example, the authors of [6] have applied this idea to attribute-
based access control for grid computing. For the cloud-based systems, it is well
recognized that developing a generic access control model meeting the diverse
requirements of all the tenants is mission impossible. We therefore propose to
chain several feature-specific SMPolicies together rather than develop a generic
one for implementing the integrated access control semantics. In doing so, an
existing sophisticated access control policy with advanced features can be decom-
posed into a set of atomic SMPolicies, each of which can implement either a basic
access control model or a particular advanced feature, e.g., session, delegation.

Formally, we define policy chain as a set of ordered SMPolicies, each of which
is atomic that contains all the dataset about its model and policy. By introducing
the concept of instruction in the SDAC meta-model, we extend an access control
model to be more sophisticated to specify advanced control features, such as
session in RBAC or continuous control in UCON. That says, a SMPolicy can be
used to realize either a basic access control policy or an advanced feature. When
a request occurs, the SMPolicy firstly fetches all the information related to this
request. Based on their category values, it then decides whether to launch one
or several instructions. For a basic access control policy, an access control policy
makes a decision for triple-request (subject, object and action), where a subject
(user) intends to take an action on an object. The resulting instruction of this
SMPolicy is an authorization decision like grand or deny, based on the available
information. If a SMPolicy specifies a control feature like session, obligation,
the implication of triple-request (subject, object, action) refers to the fact that
modifying (action) an attribute (object) of an entity (subject). The resulting
instruction is then to update the SMPolicy. Similarly, if the instruction involves
forwarding the request to another SMPolicy, then the triple-request (subject,
object, action) means sending (action) the request (subject) to another SMPolicy
(object). The three fields of an instruction allow to modify the SMPolicy and
its dataset, route the request and/or dataset to another SMPolicy and finally
validate the request.



SDAC: A New Software-Defined Access Control Paradigm 579

4 Experiments

Our SDAC prototype is deployed into three HA (High-Availability) OpenStack
clusters, one serves as master platform, while another two run as slave platforms.
Each one is equipped with 5 servers (Intel E5-2680 with 48 cores/251G RAM),
of which 3 are controller nodes and 2 are compute nodes. The 6th server is set
up as a security node running SDAC. Specifically, our SDAC is implemented
based on a micro-service architecture, which means that both Access Control
Manager in the control plane and Access Control Daemon in the policy plane
are implemented through a set of containers.

Throughput of the Policy Engine. One of the key metrics for evaluating the
capability of access control policy engine (PDP) is throughput, e.g., the number
of authorization requests per second that it can handle. In this evaluation, we
set SMPolicy as a basic RBAC, which has 10 users, 5 roles and 10 objects.
We gradually increased the number of requests to observe the throughput of
the policy engine. As shown in Fig. 3, the average throughput arrives its limit
(4.1 requests per second) when the request frequency was adjusted from 1 to
20 requests per second. It is worth nothing that, thanks to the micro-service
architecture, one identical SMPolicy container will be automatically launched
when the number of request is beyond the throughput of the policy engine.

SMPolicy Chaining Overhead. Our SDAC allows several SMPolicies to be
chained together to meet specific policy requirements. This apparently will incur
certain overhead. In this experiment, we configure one tenant (10 users, 5 roles
and 10 objects) with a purpose to comparing the authorization overhead between
(1) RBAC0 implemented by one policy only; and (2) RBAC0 that is realized by
chaining 2 SMPolicies together. The results is shown in Fig. 4. In case (1), the
throughput was around 4 requests per second, while in case (2), the throughput
was 2.9 requests per. It can be concluded that the extra overhead introduced by
policy chaining is around 32%.

Fig. 3. Throughput: # of requests per second Fig. 4. SMPolicy chaining overhead

Scalability with the increasing number of users. We set SMPolicy as a basic
RBAC for one tenant, which has 5 predefined roles and 10 VMs (as objects). We
then increased the number of users and observed that the throughput remained
stable as 5.9 requests per second when there were 50 users. Then the throughput



580 R. He et al.

Fig. 5. # of users varying from 10 to 1500 Fig. 6. # of tenants varying from 1 to 10

decreased dramatically when the number of users got larger than 50, as shown
in Fig. 5. The worst case was 0.5 requests per second when the number of users
reached to 1500.

Scalability with the varying number of tenants. To evaluate its scalability, we con-
figured each tenant which has 10 users, 5 predefined roles and 10 VM objects.
As shown in Fig. 6, the throughput of policy engine varied from 5.7 requests
per second (one tenant) to 4.5 requests per second (10 tenants), showing slight
degradation. The reason is that SDAC is implemented using the micro-service
architecture, in which SMPolicies of each tenant run in a dedicated and inde-
pendent containers, enabling SDAC to scale freely with multiple tenants.

5 Conclusion

This paper proposed a software-defined access control paradigm called SDAC
for cloud-based systems, which requires the access control to be dynamic, adap-
tive, fully distributed and easily managed. Specifically, SDAC is featured with a
distributed framework and a meta model. The distributed framework allows the
access control models and policies to be distributed to the multiple tenants in
different could datacenters, while they can be managed and updated in a cen-
tralized way. The meta-model provides a generic customization interface to gen-
erate different access control models on demand. The meta-model also extends
conventional access control to be more sophisticated by integrating instruction,
through which an access control policy can implement other operations in addi-
tion to grant and deny. More interestingly, some advanced features like session
and delegation can be enabled and integrated through the policy chaining mech-
anisms in PDP. It is worth mentioning, however, that the dynamic access control
model and policy customization can potentially introduce novel security vulner-
abilities, and the policy chaining may cause conflicts. Thus, our future work will
be focused on validating the correctness of access control model generation and
chaining. Trust relationship between different tenants in the cloud will be also
considered in the policy chaining.



SDAC: A New Software-Defined Access Control Paradigm 581

References

1. Meghanathan, N.: Review of access control models for cloud computing. Comput.
Sci. Inf. Technol. 3, 77–85 (2013)

2. Ngo, C., Demchemko, Y., de Laat, C.: Multi-tenant attribute-based access control
for cloud infrastructure services. J. Inf. Secur. Appl. 27, 65–84 (2016)

3. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40–48 (1994)

4. Sandhu, R.S.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
5. Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,

Y., Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In:
POLICY 2013, pp. 120–131 (2003)

6. Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R., Freeman, T.: A flexible
attribute based access control method for grid computing. J. Grid Comput. 7,
169–180 (2009)

7. Calero, J.M., Edwards, N., Kirschnick, J., Wilcock, L., Wray, M.: Toward a multi-
tenancy authorization system for cloud services. IEEE Secur. Priv. 8(6), 48–55
(2010)

8. IBM: Best practices for access control in multi-tenant cloud solutions using Tivoli
Access Manager, May 2011. https://www.ibm.com/developerworks/cloud/library/
cl-cloudTAM/index.html

9. Almutairi, A.A., Sarfraz, M.I.: A distributed access control architecture for cloud
computing. IEEE Softw. 29(2), 36–44 (2012)

10. Decat, M., Lagaisse, B., Van Landuyt, D., Crispo, B., Joosen, W.: Federated
authorization for software-as-a-service applications. In: Meersman, R., Panetto, H.,
Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) OTM
2013. LNCS, vol. 8185, pp. 342–359. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41030-7 25

11. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: IEEE INFOCOM 2010, pp. 1–9 (2010)

12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3),
224–274 (2001)

13. Park, J., Sandhu, R.: The UCONABC usage control model. ACM Trans. Inf. Syst.
Secur. 7(1), 128–174 (2004)

14. Park, J., Zhang, X., Sandhu, R.: Attribute mutability in usage control. In: Farkas,
C., Samarati, P. (eds.) DBSec 2004. IIFIP, vol. 144, pp. 15–29. Springer, Boston,
MA (2004). https://doi.org/10.1007/1-4020-8128-6 2

15. Pattaranantakul, M., Tseng, Y., He, R., Zhang, Z., Meddahi, A.: A first
step towards security extension for NFV orchestrator. In: 2016 IEEE Trust-
com/BigDataSE/ISPA, pp. 598–605 August 2016

16. Pattaranantakul, M., He, R., Meddahi, A., Zhang, Z.: SecMANO: towards network
functions virtualization (NFV) based security management and orchestration. In:
ACM International Workshop on SDN-NFVSec 2017, pp. 25–30, March 2017

17. XACML:3.0: eXtensible access control markup language (XACML) Version 3.0,
OASIS Standard (2013). http://portal.etsi.org/NFV/NFV White Paper.pdf

18. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31540-4 4

https://www.ibm.com/developerworks/cloud/library/cl-cloudTAM/index.html
https://www.ibm.com/developerworks/cloud/library/cl-cloudTAM/index.html
https://doi.org/10.1007/978-3-642-41030-7_25
https://doi.org/10.1007/978-3-642-41030-7_25
https://doi.org/10.1007/1-4020-8128-6_2
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://doi.org/10.1007/978-3-642-31540-4_4

	SDAC: A New Software-Defined Access Control Paradigm for Cloud-Based Systems
	1 Introduction
	2 Related Work
	3 SDAC: Software-Defined Access Control Paradigm
	3.1 Design Requirements
	3.2 SDAC Framework
	3.3 Access Control Meta-model
	3.4 SMPolicy Programmability
	3.5 SMPolicy Chaining

	4 Experiments
	5 Conclusion
	References




