
A Security-Enhanced vTPM 2.0 for Cloud
Computing

Juan Wang1,2, Feng Xiao1, Jianwei Huang1, Daochen Zha1,
Chengyang Fan1,2(&), Wei Hu1,2, and Huanguo Zhang1,2

1 School of Computer, Wuhan University, Wuhan 430072, China
{jwang,f3i,jw.huang,daochenzha,cyfan,

liss}@whu.edu.cn, 564545297@qq.com
2 Key Laboratory of Aerospace Information Security and Trusted Computing

Ministry of Education, Wuhan 430072, China

Abstract. Virtual Trusted Platform Module is required in cloud due to the
scalability and migration of virtual machine. Through allocating a vTPM
(Virtual Trusted Platform Module) to a VM (Virtual Machine), users of VM can
use the vTPM’s crypto and measurement function, like using the physical TPM.
However, current vTPM still faces some key challenges, such as lacking runtime
protection for the vTPM keys and code, lacking the mechanism of vTPM keys
management, and lacking the support for the new TPM 2.0 specification. To
address these limitations, we design vTPM 2.0 system and then propose a
runtime protection approach for vTPM 2.0 based on SGX. Furthermore, we
present vTPM key distribution and protection mechanism. We have imple-
mented vTPM 2.0 system and the security-enhanced protection mechanism. As
far as we know, the vTPM 2.0 system based on KVM and its security-enhanced
mechanism are designed and implemented for the first time.

Keywords: vTPM � Trusted computing � Intel SGX � KMC � Cloud security

1 Introduction

Security is currently the key factor of restricting the development of cloud computing.
In the cloud computing environment, how to protect the integrity of cloud infras-
tructure is a basic requirement of cloud security. Trusted computing has been con-
sidered as a feasible way to protect the integrity of cloud infrastructure.

However, in cloud computing environment, a lot of virtual machines may be
running in a physical machine. It is difficult to use hardware TPM (Trusted Platform
Module) to build trusted virtual execution environment. Therefore, vTPM has been put
forward and used in cloud [13, 14].

IBM designed and implemented vTPM system on a virtualized hardware platform
[11]. They virtualized the Trusted Platform Module by extending the standard TPM
command set to support vTPM lifecycle management and enable trust establishment in
the virtualized environment. Hence, each virtual machine instance gets its own unique
and virtual TPM. However, vTPM still faces some key challenges in cloud.

© Springer International Publishing AG, part of Springer Nature 2018
S. Qing et al. (Eds.): ICICS 2017, LNCS 10631, pp. 557–569, 2018.
https://doi.org/10.1007/978-3-319-89500-0_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_48&domain=pdf

Firstly, current vTPM lacks the mechanism to ensure the security vTPM itself.
vTPM is an emulated software TPM. Due to lacking the physical hardware protection,
it is subject to greater security threats compared with entity TPM. Furthermore,
physical TPM may not provide runtime protection for vTPM because its NVRAM is
usually very small and cannot support multiple virtual machines. In addition, entity
TPM incurs a large overhead in performance when multiple vTPMs run at the same
time.

Secondly, current vTPM cannot support TPM 2.0 specification. The architecture of
TPM 2.0 is different with TPM 1.2, for example the keys of TPM 2.0 are generated by
three persistent hierarchies and also it can support all kinds of cryptographic algorithms
through incorporating an algorithm identifier. Hence we need to design vTPM based on
TPM 2.0 architecture so as to improve vTPM 1.2.

Aiming at these problems, we propose security-enhanced vTPM 2.0 system which
can support TCG TPM 2.0 specification and the keys and private data can be protected
using SGX keys and enclave. To the best of our knowledge, it is the first time that
vTPM 2.0 based on KVM (Kernel-based Virtual Machine) has been proposed and
implemented. In our system, we also propose a vTPM 2.0 key distribution and pro-
tection mechanism based on KMC (Key Management Center) [20, 21]. Our approach
can achieve the key hierarchy, which is same as the physical TPM. In addition, it can
avoid the problem that new physical platform always regenerates the certificate for
vTPM and rebuilds the trust binding during the migration for each time. Moreover, the
basic seeds of vTPM can be backed up by KMC. When the vTPM is damaged, the keys
and data of vTPM can be easily recovered. We also implement our system on KVM
and Skylake CPU and evaluate vTPM 2.0 performance. The result shows that the
SGX-enhanced vTPM brings about 20% additional overhead compared with the vTPM
2.0 which lacks security protection.

The remainder of this paper is organized as follows. Section 2 provides related
work. Section 3 introduces the background of TPM 2.0 and SGX. Section 4 describes
the design of security-enhanced vTPM 2.0. Section 5 proposes the vTPM key distri-
bution and protection mechanism. The security-enhanced vTPM 2.0 implementation is
described in Sect. 6. Section 7 presents the evaluation of vTPM 2.0. Section 8 provides
the conclusion.

2 Related Work

Trusted computing technology is usually used to building trusted computing base of a
computer system and protects the system integrity and confidentiality. Microsoft has
leveraged trusted computing technology to implement trusted boot and its BitLocker has
been used to disk encryption. Google chrome book [24] also has integrated TPM [23]
chip to implement trusted boot and device anti-theft. Chen et al. [7] proposed cTPM
which is practical, versatile, and easily applicable to cross-device trusted mobile appli-
cations. Santos et al. [6] provided a new trusted computing abstraction for designing
trusted cloud services. Bates et al. [8] defined a provenance trusted computing base and
created a trusted provenance-aware execution environment, collecting complete whole-
system provenance. With the development of trusted computing, the limitations of

558 J. Wang et al.

TCGTPM1.2 architecture [25] are found, for example, cipher algorithms are not flexible.
Hence TCG has proposed TPM 2.0 specification [1–5] and has published as ISO standard
in 2015 [22]. Scarlata et al. [18] present a support for a variety of TPMmodel and different
security properties of system framework based on Xen virtual machine hypervisor.

vTPM is a virtualized TPM which is generally used in virtualized environment,
such as cloud computing platform, to build trust computing base. The most important
work about virtualized TPM is that Berger et al. [9] from IBM designed and imple-
mented a vTPM system on a virtualized hardware platform. They virtualized the
Trusted Platform Module by extending the standard TPM command set to support
vTPM lifecycle management and enable trust establishment in the virtualized envi-
ronment. England and Loeser [15] extended hypervisor to add the vPCR (virtual PCR)
and TPM context manager resource virtualization which allows guests operating sys-
tems to share hardware TPM. But the number of virtual machines on a physical
machine is uncertain, their approach must meet performance bottleneck due to the
limited memory space of TPM. In addition, Yang et al. [16] designed an Ng-vTPM
framework. In Ng-vTPM framework, the EK and SRK are produced by physical TPM.
The approach can protect the keys’ security to some extent, but once the physical TPM
is damaged, the keys of vTPM will not be used and recovered forever. Yan et al. [17]
propose a secure enhancement named vTSE. The scheme utilizes the physical memory
isolation feature of SGX to protect the code and data of vTPM instances, but they do
not consider the vTPM keys recovery and cannot support TPM 2.0.

Current work is just support TPM 1.2. In our work, we design and implement the
vTPM 2.0 on KVM. In addition, we provide runtime protection for code and private
data of vTPM 2.0 using SGX. Furthermore, the vEK (virtual EK) and vSRK (virtual
SRK) of vTPM 2.0 will be generated by a trusted party, KMC, and they are bound with
VM UUID. Therefore, the keys are easy to be recovered once damaged.

3 Background

3.1 TPM 2.0

Trusted computing is a technology mainly used to protect the integrity and confiden-
tiality of a system. It relies on TPM, which is a cryptographic coprocessor integrated in
most commercial PCs and servers. TCG released TPM 1.2 specification in 2003.
Currently, TCG has released TPM 2.0 specification [1–4] which has overcome some of
the drawbacks of TPM 1.2. Compared with TPM 1.2, TPM 2.0 has many advantages.

TPM 1.2 can only support SHA1 and RSA, but TPM 2.0 can support all kinds of
cryptographic algorithms, such as ECC, SHA256 and AES. Additionally, TPM 1.2 has
only one key hierarchy: the storage hierarchy. TPM 2.0 has three persistent hierarchies:
platform, storage, and endorsement, each with at least one root, such as EPS
(Endorsement Primary Seed), SPS (Storage Primary Seed), and PPS (Platform Primary
Seed). Furthermore, TPM 2.0 incorporates an algorithm identifier that would permit
design of a TPM using any algorithm without changing the specification. Hence all
kinds of cipher algorithms, such as Chinese commercial cipher algorithms SM2, SM3
and SM4 can be integrated easily. In addition, TPM 2.0 unifies the way all entities in a

A Security-Enhanced vTPM 2.0 for Cloud Computing 559

TPM that are authorized. Besides the traditional password and HMAC authentication
methods, the authentication method based on policy authorization has been added. It
allows one or more authorization policies are used, which can enhance key’s security.
Last but not least, TPM 2.0 enhances the robustness. In the TPM 2.0 specification,
some important things can be sealed to a PCR (platform configuration register) value
approved by a particular signer instead of to a particular PCR value. Additionally,
platform hierarchy allows OEM (Original Equipment Manufacturer) directly to use the
function of TPM in BIOS without considering the OS’ s support.

3.2 SGX

The Software Guard Extension (SGX) [26, 27] was introduced in 2013 by Intel Cor-
poration. It protects a portion of the application’s memory space and places code and
data in this container that Intel calls enclave [12, 28]. Once the protected part of the
application is loaded into the enclave, SGX will protect them from external process
such as OS, drivers, BIOS, hypervisor and System Management Mode (SMM).
Moreover, when the process terminates, its enclaves will be destroyed and the runtime
data and code that are protected in the enclave will disappear. SGX also provides the
seal function to encrypt the data and store it on the permanent media and then we can
restore it in enclave when we need to use it again.

In addition to providing security attributes of memory isolation and protection.
SGX architecture also supports attestation function. In SGX, attestation [30] is to prove
the identity of the platform, and supports two attestations, local attestation between
enclaves and remote attestation by a third party.

4 Design of Security-Enhanced vTPM 2.0

In this section, we design security-enhanced vTPM 2.0 architecture. Specifically, each
VM can get its unique vTPM 2.0 devices with TPM 2.0 functionality.

As shown in Fig. 1, our security-enhanced vTPM 2.0 architecture includes the
following basic components: vTPM 2.0 management, Libtpms 2.0, NVRAM files,
tpm2driver, tpm_tis and SeaBIOS. The vTPM 2.0 management module implements
vTPM management, such as vTPM creating, command processing interface etc.
Libtpms 2.0 is the main module which can provide emulated TPM function in hyper-
visor. NVRAM files save the seeds, keys, PCRs and other private data. The module
tpm2driver provides the interfaces to access TPM 2.0 hardware device. Tpm_tis emu-
lates the hardware interface of TPM interface specification. SeaBIOS is a virtual

BIOS served for guest OS. In our system, the key modules of vTPM 2.0 including
Libtpms 2.0, NVRAM, are sealed by SGX keys and isolated in a SGX enclave.

Libtpms 2.0 a TPM emulator, is the key module of vTPM 2.0 which is able to
provide all the TPM 2.0 functions and command sets. Due to supporting multiple
virtual machines on the same physical platform to access TPM 2.0 resources inde-
pendently without impacting each other, we design Libtpms 2.0 as a shared software
library located in host operating system. Libtpms 2.0 consists of tpm module, platform
module, Crypto Engine module, and include module. TPM module implements the

560 J. Wang et al.

reset of NVRAM, the initialization of TPM components and the process of command.
Platform module implements the creation of NVRAM file, the set of locality and the
management of power state of TPM. The Crypto Engine module packages the real-
ization of crypto algorithms provided by TPM and implements them through calling
interfaces provided by OpenSSL.

Because Libtpms 2.0 module undertakes the core function of vTPM 2.0, its code
and process need to be protected. We isolated the module into a SGX enclave. When
Libtpms 2.0 is loaded, the SGX enclave is created and then Libtpms 2.0 program is
measured to validate its integrity. Once the integrity is not tampered with, Libtpms 2.0
code will be executed in the enclave EPC (enclave page cache). Hence the program is
protected in runtime and only itself can access the code in the enclave. The untrusted
part of vTPM 2.0, such as vTPM 2.0 management module, just can call the function of
Libtpms 2.0 through enclave call (ecall) and out call (ocall).

NVRAM is like TPM memory. Due to lacking the isolated physical NVRAM of
TPM, it is designed as a separated file which saves the keys, PCR values, seeds and
other private data. When a vTPM 2.0 device is created, a NVRAM file will be also
created. Because the important data of vTPM is saved in NVRAM file, it is vital for
vTPM security. Hence, we leverage SGX sealing to protect NVRAM. To preserve
some secret data in an enclave for future use, SGX offers a sealing function. Sealing
can encrypt the data inside an enclave and store them on a permanent medium such as a
hard disk drive, so the data can be used the next time. When sealing data, there are two
options available: sealing to the current enclave using the current version of the enclave
measurement (MRENCLAVE) or sealing to the enclave author uses the identity of the
enclave author (MRSIGNER). In this work, we use both mechanisms. The private data
of NVRAM is sealed by the seal key which is generated in the corresponding enclave.
When the NVRAM file is loaded into RAM, it will be unsealed and isolated in an
enclave. Therefore the software except for Libtpms 2.0, including OS, drivers, BIOS
and hypervisor cannot access the data of NVRAM.

Fig. 1. Security-enhanced vTPM2.0 architecture

A Security-Enhanced vTPM 2.0 for Cloud Computing 561

Tpm2driver is generally used to provide the interfaces to access TPM 2.0 hardware
device. Tpm_tis emulates the hardware interface of TIS (TPM Interface Specification)
in QEMU and implements the interfaces to call Libtpms 2.0. SeaBIOS also plays an
important part in the process of creating a VM on KVM platform. Apart from
implementing the whole standard calling interfaces as a typical x86 hardware BIOS,
SeaBIOS is extended to support TPM by initializing the vTPM 2.0 when creating a
VM. This includes allocating a fixed virtual memory address in which the vTPM
communicates with the lower operating system and resetting all the registers of vTPM.

When a VM sends a TPM command, tpm2driver of the VM will firstly talk to the
tpm_tis frontend emulated by QEMU to deliver the TPM request. Then the tpm_tis
frontend in QEMU delivers the request to Libtpms 2.0 driver, the driver will call the
Libtpms 2.0 shared library to process the TPM command and return the results. This
method does not have any limit of the numbers of VM (as long as the hardware
resources permit). All that a user needs to do is to configure an exclusive NVRAM used
to save all the persistent state and data for the vTPM 2.0 in each VM. During the VM
migration, the corresponding NVRAM is migrated along with the VM and then the VM
can continue to use vTPM 2.0 resources on the new platform.

5 TheKeyDistribution and ProtectionMechanism of vTPM2.0

When vTPM 2.0 is protected using SGX enclave, its keys and PCRs are encrypted by
the CPU supported SGX. Once a virtual machine with vTPM 2.0 device is migrated,
the vTPM 2.0 device also need to be migrated. However, the SGX keys cannot be
migrated. Hence, the trust chain between vTPM and physical CPU will be broken
during the vTPM migration. In addition, the current method cannot support key
recovery. Once vTPM is damaged, the keys of vTPM will be lost. To solve the
problems, we propose a vTPM 2.0 key distribution and protection mechanism based on
KMC and Intel SGX.

In our method, the primary seeds of vTPM 2.0 including EPS (Endorsement Pri-
mary Seeds), SPS (Storage Primary Seeds) and PPS (Platform Primary Seeds) will be
generated by KMC and then distributed to vTPM 2.0 by encrypted and secure channel.
The primary seeds will be encrypted and saved in KMC and this process is carried out
in the Enclave safe. Meanwhile, the primary seeds in a virtual machine will be
encrypted by SGX key on host. Once physical CPU or vTPM is damaged, KMC can
recover the primary seeds and then recover vTPM keys. The key distribution and
protection process of vTPM 2.0 is described as shown Fig. 2. The encrypted com-
munication channel is established using the SGX remote authentication feature. In
order to achieve encrypted communication channel, it needs to introduce a special
quoting enclave which is used to generate the credential that reflects enclave and
platform status. When the KMC wants to authenticate a VM, the VM first executes the
EREPORT instruction to generate the REPORT structure and then use the report key of
quoting enclave to generate a MAC, along with the REPORT send to quoting enclave.
Then the quoting enclave packs them into a quote structure QUOTE and signs it with
EPID. Finally the quoting enclave sends QUOTE and signature to KMC.

562 J. Wang et al.

1. A virtual machine communicates with TSS (Trusted Software Stack) and calls API
(Application Programming Interface) to request getting primary seeds at startup
process. Its UUID (Universally Unique Identifier) is as a parameter of the request.

2. In order to get the primary seeds, TSS sends a message to KMC according to the
KMC address in configuration.

3. KMC selects an asymmetric key pair (e.g. RSA) from key protection system as a
protected key, gets its public key and returns the protected public key to TSS.

4. TSS calls TPM2_Load to load the protected public key to vTPM, then calls
TPM2_RSA_Encrypt to encrypt them and sends the cipher text to KMC, requests
KMC to send basic seeds.

5. After KMC gets the encrypted request, it will use TPM interface to decrypt the
cipher text to get the request with the private key. Then KMC will generate a
symmetric key. Furthermore, the symmetric key and UUID will be used as the
parameters of the random number generator to generate basic seeds for the virtual
machine.

Fig. 2. The key distribution and protection process

A Security-Enhanced vTPM 2.0 for Cloud Computing 563

6. KMC stores the basic seeds, the symmetric key and UUID in database, and encrypts
basic seeds and other information with protected key, then sends back the cipher
text to vTPM TSS.

7. TSS calls TPM2_RSA_Decrypt to decrypt the cipher text, and returns the basic
seeds to the virtual machine.

Compared with previous method, our approach can achieve the key hierarchy,
which is the same as the physical TPM. In addition, it can avoid the problem that
during the migration for each time new physical platform always regenerates the
certificate for vTPM and rebuilds the trust bindings. Moreover, the basic seeds of
vTPM can be backed up by KMC. When the vTPM is bad, the keys and data of vTPM
can be recovered.

6 Security-Enhanced vTPM 2.0 Implementation

We implement our security-enhanced vTPM 2.0 on QEMU/KVM and Skylake CPU.
Our Libtpms 2.0 module is mainly based on Windows TPM2 emulator from Microsoft.
It only supports Windows operating system, hence we migrate it from Windows to
Linux. During the migration, we rewrite all files.

Furthermore, the TPM 2.0 module is added into QEMU virtual machine. Firstly, we
extract TPM libraries from TPM 2.0 emulator. According to source code analysis for
TPM 2.0 and name it Libtpms 2.0. Secondly, we add TPM 2.0 module in QEMU
virtual machine to call functions in library Libtpms 2.0. Then TPM 2.0 interface
tpm_libtpms2.c is added in TPM module of QEMU. Furthermore we implement the
TPM 2.0 interfaces defined in TPMDriverOps data structure with those functions.

The modules of TPM 2.0 interfaces in QEMU are mainly divided into two parts:
the initialization module and the command process module. The initialization module
includes device initialization, memory initialization, NVRAM initialization and so on.
The command process module is responsible for receiving the TSS commands from
VM, executing them and returning results.

In order to support TPM 2.0 device in VM, we update the device driver to TPM 2.0
in guest OS. Apart from modifying tpm.c, tpm.h, the Kconfig and the Makefile, the
updating work is mainly in the new added tpm2_tis.c, which is the core file to realize
TPM2.0 driver.

Firstly, we rewrite the entry function of loading and unloading driver. Then we begin
to write the driver initialization function tpm2_tis_init(). This function will finish the
register of TPM 2.0 device, including allocating its virtual memory address space, setting
the default timeout, waiting delay, locality and all the internal flags of TIS and doing
device self-testing. Besides, we write tpm2_tis_recv() and tpm2_tis_send() functions to
send the TPM commands and receive the results. Finally, we write a couple of TPM 2.0
device attributes such as endorseauth, ownerauth, PCRs, phenable, shenable, ehenable.
Users can access these attributes directly under /sys/class/misc/tpm0/device.

We also implement the protection mechanism of vTPM 2.0 based on SGX and
KMC. When a virtual machine is created, a request seed message will be sent to KMC
through encrypted communication channel. KMC then creates a RSA key pair and

564 J. Wang et al.

sends the public key to QEMU. QEMU furthermore sends VM UUID encrypted by
public key to KMC through security channel. KMC creates an AES key by local crypto
chip. The AES key and UUID are used as the parameters of the random number
generator to generate primary seed for virtual machines. Meanwhile the basic seeds,
UUID and AES key will be encrypted by local crypto chip and then stored in KMC
database. The encrypted seed will be reply to QEMU. The Libtpms 2.0 module in
QEMU, QEMU will create vEK, vSRK, and other root keys for the vTPM.

For a vTPM, QEMU allocates a memory file to save nonvolatile data. The vEK,
vSRK, and other root keys are saved to this file named NVRAM. In order to protect the
keys security, the NVRAM file is sealed and isolated by SGX keys and enclave. The
keys are also backed up to KMC. In addition, the Libtpms 2.0 is compiled into a static
library so as to be loaded and run in the SGX enclave. We also add the ecall and ocall
in the vTPM management module and the Libtpms 2.0 module in order to implement
the communication with them.

7 Evaluation

7.1 Function and Performance

Firstly we conduct function test of the vTPM 2.0. For the test we use a server with an
Intel Skylake processor i7 6700 CPU, 8 G memory and 500 G hard disk. The host OS
is Ubuntu 16.04 and the guest OS is Ubuntu 14.04. Once the virtual machine has
successfully loaded the tpm2_tis.ko module, there will be a device named tpm0 under /
sys/class/misc/, indicating that the TPM device is successfully emulated in the VM.

In vTPM 2.0, we have implemented the support of multiple virtual machines. We
create five VMs in one host and conduct the testing of authorization policies setting,
key derivation, digital signature and verification, encryption and decryption using SM2
algorithm and RSA algorithm respectively. In order to make sure that the vTPM 2.0 in
five VMs have different primary seeds and primary keys, we make a comparison of the
primary keys between two different VMs during the primary key derivation process.
The result is shown in Fig. 3, proving that the vTPM 2.0 state in different VMs is
independent and will not influence each other.

We have measured the runtime performance of the SGX-enhanced vTPM 2.0 and
the vTPM 2.0 which lacks security protection. We calculate the time of calling TPM
interfaces to create RSA and SM2 signature keys, conduct RSA and SM2 signature,
and verify RSA and SM2 signature. These tests have been done for twenty times and
average time is calculated so as to make the results more precise. Figure 4 shows the
comparison results. The result shows SGX-enhanced vTPM brings about 20% addi-
tions overhead.

7.2 Migration

We also carried out the single VM and multiple VMs live migration test. [19]
Migration channel using SSH RSA public key encryption, we record the start time and
end time, and compute the time cost of migration. In addition to the normal time

A Security-Enhanced vTPM 2.0 for Cloud Computing 565

needed for migration, VM with SGX-enhanced vTPM migration time also includes
four parts: (1) unseal NVRAM from enclave; (2) migrate vTPM state; (3) the desti-
nation host decrypts NVRAM; (4) use new SGX to seal NVRAM. VM without vTPM
does not include the four parts.

For a single VM migration, the VM image is Ubuntu 14.04 64-bit and the hardware
resources allocated for the VM are 1 VCPU, 1024 MB RAM and 20 G Disk. For
multiple VMs (ten units) concurrent migration, the allocated hardware resources for
each VM are 1 VCPU, 1024 RAM, and 6 G Disk.

Fig. 3. TPM2_CreatePrimary result in two different VMs

Fig. 4. The performance of vTPM with SGX-enhanced

566 J. Wang et al.

Our test is divided into four parts altogether: single_VM, single_VM_no_vtpm,
multi_VM, multi_VM_no_vtpm. We test 100 times respectively and calculate the
average value, the result is shown in Fig. 5.

We can know that the time-consuming of a single VM migration with
SGX-enhanced vTPM is more than 5 s as compared to the single VM migration without
it. When ten VMs migrate, the value is less than 10 s.

8 Conclusion

In the environments of cloud computing and NFV (Network Function Virtualization),
vTPM is more and more used for protecting the security of virtualized machines and
virtualized network function. TCG also presented TPM 2.0 specification to overcome
the shortcomings of TPM 1.2. In this paper, we design a security-enhanced vTPM 2.0
system. Our approach cannot only support TPM 2.0 specification and KVM hypervi-
sor, but also the keys and private data of vTPM 2.0 are statically and dynamically
protected using Intel SGX. In addition, a vTPM key distribution and protection
mechanism base on KMC are proposed, which can more conveniently support vTPM
key recovery and vTPM migration. Moreover, we implement the security-enhanced
vTPM 2.0 system and evaluate its performance.

Acknowledgment. This work is sponsored by the National Basic Research Program of China
(973 Program) granted No. 2014CB340600, National Natural Science Foundation of China
granted No. 61402342, 61173138 and 61103628, and the Huawei Technologies Co., Ltd. col-
laborative research project.

Fig. 5. The average time of VM migration

A Security-Enhanced vTPM 2.0 for Cloud Computing 567

References

1. Trusted Computing Group. TPM Rev 2.0 Part1. Architecture. Family 2.0, Level 00.
Revision 16 Jan 2014

2. Trusted Computing Group. TPM Rev 2.0 Part2. Structures. Family 2.0, Level 00. Revision
16 Jan 2014

3. Trusted Computing Group. TPM Rev 2.0 Part3. Commands. Family 2.0, Level 00. Revision
16 Jan 2014

4. Trusted Computing Group. TPM Rev 2.0 Part4. Supporting. Routines. Family 2.0, Level 00.
Revision 16 Jan 2014

5. Trusted Computing Group. Trusted Platform Module Specification Family 2.0, Level 00.
Revision 00.99 (2014)

6. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-sealed data: a new abstraction
for building trusted cloud services. In: Proceedings of 21th USENIX Security Symposium on
USENIX Security Symposium (2012)

7. Chen, C., Raj, H., Saroiu, S., Wolman, A.: cTPM: a cloud TPM for cross-device trusted
applications. In: Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation (2014)

8. Bates, A., Tian, D., Kevin, R.B.: Trustworthy whole-system provenance for the Linux
Kernel. In: Proceedings of 24th USENIX Security Symposium on USENIX Security
Symposium (2015)

9. Berger, S., Cáceres, R., Goldman, K.A., et al.: vTPM: virtualizing the trusted platform
module. In: Proceedings of the 15th Conference on USENIX Security Symposium, vol. 15,
p. 21. USENIX Association (2006)

10. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU based
attestation and sealing. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, vol. 13 (2013)

11. Sadeghi, A.-R., Stüble, C., Winandy, M.: Property-based TPM virtualization. In: Wu, T.-C.,
Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 1–16. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_1

12. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative
instructions to create trustworthy software solutions. In: HASP@ ISCA, pp. 11–17 (2013)

13. Garfinkel, T., Pfaff, B., Chow, J., et al.: Terra: a virtual machine-based platform for trusted
computing. ACM SIGOPS Operating Syst. Rev. 37(5), 193–206 (2003)

14. Krautheim, F.J., Phatak, D.S., Sherman, A.T.: Introducing the trusted virtual environment
module: a new mechanism for rooting trust in cloud computing. In: Acquisti, A., Smith, S.
W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101, pp. 211–227. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13869-0_14

15. England, P., Loeser, J.: Para-virtualized TPM sharing. In: Lipp, P., Sadeghi, A.-R., Koch,
K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 119–132. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68979-9_9

16. Yang, Y., Yan, F., Mao, J.: Ng-vTPM: a next generation virtualized TPM architecture.
J. Wuhan Univ. (Nat. Sci. Ed.) 2, 103–111 (2015)

17. Yan, F., Yu, Z., Zhang, L., et al.: vTSE: a solution of SGX-based vTPM secure
enhancement. Adv. Eng. Sci. 49(2), 133–139 (2017)

18. Scarlata, V., Rozas, C., Wiseman, M., Grawrock, D., Vishik, C.: TPM virtualization:
building a general framework. In: Pohlmann, N., Reimer, H. (eds.) Trusted Computing.
Vieweg+Teubner (2008)

568 J. Wang et al.

http://dx.doi.org/10.1007/978-3-540-85886-7_1
http://dx.doi.org/10.1007/978-3-642-13869-0_14
http://dx.doi.org/10.1007/978-3-540-68979-9_9

19. Danev, B., Masti, R.J., Karame, G.O., et al.: Enabling secure VM-vTPM migration in private
clouds. In: Proceedings of the 27th Annual Computer Security Applications Conference,
pp. 187–196. ACM (2011)

20. Zhang, Q., Zhao, S., Qin, Y., et al.: Formal analysis of TPM 2.0 key management APIs.
Chin. Sci. Bull. 59(32), 4210–4224 (2014)

21. NIST, Recommendation for Key Management–Part 1: General (Revision 3), Special
Publication 800–57

22. http://www.trustedcomputinggroup.org/media_room/news/392
23. http://www.infineon.com/cms/en/product/security-ic/trustedcomputing/channel.html?channel=

db3a30433efacd9a013f10d2a7264daa
24. http://www.chromebookblog.com/tag/tpm-chips-for-chromebook/
25. Arthur, W., Challener, D.: Practical Guide to TPM 2.0 Using the Trusted Platform Module in

the New Age of Security. Willey (2015)
26. Mckeen, F., Alexandrovich, I., Berenzon, A., et al.: Innovative instructions and software

model for isolated execution (2013)
27. Intel Software Guard Extensions, https://software.intel.com/en-us/sgx
28. Sinha, R., Rajamani, S., Seshia, S., Vaswani, K.: Moat: verifying confidentiality of enclave

programs. In: ACM Sigsac Conference on Computer and Communications Security,
pp. 1169–1184 (2015)

A Security-Enhanced vTPM 2.0 for Cloud Computing 569

http://www.trustedcomputinggroup.org/media_room/news/392
http://www.infineon.com/cms/en/product/security-ic/trustedcomputing/channel.html%3fchannel%3ddb3a30433efacd9a013f10d2a7264daa
http://www.infineon.com/cms/en/product/security-ic/trustedcomputing/channel.html%3fchannel%3ddb3a30433efacd9a013f10d2a7264daa
http://www.chromebookblog.com/tag/tpm-chips-for-chromebook/
https://software.intel.com/en-us/sgx

	A Security-Enhanced vTPM 2.0 for Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 TPM 2.0
	3.2 SGX

	4 Design of Security-Enhanced vTPM 2.0
	5 The Key Distribution and Protection Mechanism of vTPM 2.0
	6 Security-Enhanced vTPM 2.0 Implementation
	7 Evaluation
	7.1 Function and Performance
	7.2 Migration

	8 Conclusion
	Acknowledgment
	References

