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Abstract. The learning with errors (LWE) problem is considered as
one of the most compelling candidates as the security base for the post-
quantum cryptosystems. For the application of LWE based cryptographic
schemes, the concrete parameters are necessary: the length n of secret
vector, the moduli q and the deviation σ. In the middle of 2016, Germany
TU Darmstadt group initiated the LWE Challenge in order to assess the
hardness of LWE problems. There are several approaches to solve the
LWE problem via reducing LWE to other lattice problems. Xu et al.’s
group solved some LWE Challenge instances using Liu and Nguyen’s
adapted enumeration technique (reducing LWE to BDD problem) [14]
and they published this result at ACNS 2017 [23]. In this paper, we study
Kannan’s embedding technique (reducing LWE to unique SVP problem)
to solve the LWE problem in the aspect of practice. The lattice reduction
algorithm we use is the progressive BKZ [2,3]. At first, from our experi-
mental results we can intuitively observe that the embedding technique is
more efficient with the embedding factor M closer to 1. Then especially
for the cases of σ/q = 0.005, we will give an preliminary analysis for the
runtime and give an estimation for the proper size of parameters. More-
over, our experimental results show that for n ≥ 55 and the fixed σ/q =
0.005, the embedding technique with progressive BKZ is more efficient
than Xu et al.’s implementation of the enumeration algorithm in [21,23].
Finally, by our parameter setting, we succeeded in solving the LWE Chal-
lenge over (n, σ/q) = (70, 0.005) using 216.8 s (32.73 single core hours).

Keywords: Lattice · LWE Challenge · BDD · Unique SVP
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1 Introduction

Nowadays many post-quantum cryptographic schemes as fully homomorphic
encryption and lattice-based signature schemes base their security on some
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lattice hard problems as the learning with errors (LWE) problem, short inte-
ger solution (SIS) and so on [9,16,18]. LWE problem was introduced by Regev
in 2005, which comes from “learning parity with noise” by lifting the moduli
value, and concreting the probability distribution of “error” [18]. As an average-
case lattice problem, LWE problem is proved as hard as certain worst-case lattice
problems such as GapSVP and SIVP [18], which allows to build many provably
secure lattice-based cryptographic schemes. The hardness of LWE problem is
related to three critical parameters: the length n of secret vector, the moduli q
and the deviation σ of error vectors. Some theoretical analysis for the hardness
of LWE are given as lattice-based attack [14,15], and BKW type attack [11], but
rarely concrete parameters based on experiments were published. However, for
the practical application, it is indispensable to estimate the concrete parameters
of LWE from sufficient experiments. In this work, we focus on the more practi-
cal lattice-based attack. At first, the LWE problem can be seen as a particular
bounded distance decoding (BDD) instance on a q-ary lattice. For a given lattice
and a target vector close to the lattice points in a reasonable bound, BDD is to
find the closest lattice vector to the target.

There are two main methods to process the BDD instance. One is reducing
the lattice basis first and search the secret vector by Babai’s NearestPlane [4]
algorithm or its variants [14,15]. Especially in [14], Liu and Nguyen intermingle
the short error vector into an enumeration searching tree, which makes the attack
more efficient. Another procedure is to reduce BDD to the unique-shortest vector
problem (unique-SVP) by Kannan’s embedding technique [10]. This procedure
increase one more lattice dimension by adding the target vector and a so-called
embedding factor M into the new basis. By a proper parameter setting, the short
error vector is usually a component of the shortest vector in the new lattice. So
there is a big gap between the shortest vector and the second shortest vector
in the new lattice, which makes a lattice reduction algorithm or a searching
algorithm find the shortest one more efficiently. Since both methods call the SVP
solver as subroutine, their complexity grow exponentially with the dimension
increasing.

In order to assess the hardness of the LWE problem in practice, TU Darm-
stadt, in alliance with UC San Diego and TU published, a new platform “Darm-
stadt LWE Challenge” [5,21]. LWE Challenge provides LWE samples by increas-
ing hardness for researcher to test their solving algorithms.

In this work, we apply the embedding technique on LWE problem, using
state-of-the-art progressive BKZ algorithm [2]. The LWE instances used in our
experiments are sampled from Darmstadt LWE Challenge. From our experi-
ments, we find that the algorithm can derive a better efficiency if the embedding
factor M is closer to 1. We also give an preliminary analysis for the proper
parameter as the dimension m of LWE samples should be used in the attack
associate to the secret length n. Especially for n ≥ 55 and the fixed σ/q = 0.005,
our implemented embedding technique with progressive BKZ is more efficient
than Xu et al.’s implementation of the enumeration algorithm in [21,23]. Finally,
we got the records of case (70, 0.005) in Darmstadt LWE Challenge, using our
extrapolated setting of m, which took 32.73 single core hours.
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Roadmap. Section 2 recalls the notations and background on lattice, LWE prob-
lem and BKZ reduction algorithms. We introduce Kannan’s embedding tech-
nique in Sect. 3. Our experimental results and preliminary analysis on the rele-
vant parameters settings in Kannan’s embedding technique are shown in Sect. 4.
Finally we give some conclusions in Sect. 5.

2 Preliminaries

2.1 Lattice Theory

A lattice L is an infinite regular space expanded by a basis B = {b1, . . . ,bn},
where bi (i = 1, . . . , n) are a set of linearly independent row vectors in R

m and n
is the dimension of L. Note that even B is matrix with row vectors, in this paper
we use integral lattice for convenience we write the basis in a matrix form as
B = (b1, . . . ,bn) ∈ Z

n×m, where we will declare the matrix with column vectors
if it appears, as the matrix A in LWE problem. The n-dimensional volume of L
is denoted by vol(L), which is computed by the determinant of the basis B, i.e.
vol(L) = det(B). The Euclidean norm of a vector v ∈ R

m is ‖v‖. We denote by
Vn(R) = Rn · πn/2

Γ (n/2+1) the volume of n-dim Euclidean ball of radius R.

Shortest Vector. There are at least two non-zero vectors with same minimal
Euclidean norm but contrary sign in a lattice L: this norm is called the first
minimum λ1(L) of L. The shortest vector of L refers to one of the vectors whose
norms are both λ1(L). Similarly we denote by λ2(L) the length of the second
shortest vector, which is linearly independent of the first shortest vectors.

Orthogonalization. We denote by B∗ = (b∗
1, . . . ,b

∗
n) the associated Gram-

Schmidt orthogonalization of the given basis B = (b1, . . . ,bn). Here b∗
1 = b1

and b∗
i = bi − ∑i−1

j=1 μijb∗
j for all 2 ≤ i ≤ n while μij = 〈bi,b

∗
j 〉

‖b∗
j ‖2 (1 ≤ j < i ≤ n).

Hermite Factor. To estimate the performance of the algorithm on solving SVP,
we usually use the Hermite factor which is defined in [8] as:

HF(b1, . . . ,bn) = ‖b1‖/vol(L)1/n.

So for a lattice of dimension n, we say the algorithm performs better if the
Hermite factor of output is smaller. Also we usually use root Hermite factor
convenient for analysis, which is denoted by:

δ = rHF(b1, . . . ,bn) = (‖b1‖/vol(L)1/n)1/n

Note that our definition of rHF depending on the given bases and the output
(b1, . . . ,bn) of the short vector from lattice algorithms.

Gaussian Heuristic. Given a n-dimensional lattice L and a continuous (and
usually convex) set S ⊂ R

n, Then the Gaussian heuristic estimates that the
number of points in S ∩ L is approximately vol(S)/vol(L).
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Particularly, taking S as the origin-centered ball of radius R, the number of
lattice point is Vn(R)/vol(L), which derives the length of shortest vector λ1 so
that the volume of ball is equal to that of lattice:

λ1(L) ≈ (Γ (n/2 + 1)vol(L))1/n

√
π

This is the so-called Gaussian heuristic of a lattice, and we denote it by GH(L).
Here the gamma function Γ (s) is defined for s > 0 by the integral Γ (s) =∫ ∞
0

ts−1 · e−tdt.

γ-unique SVP. It is called unique SVP problem, if for a given lattice L which
satisfies λ1(L) 
 λ2(L), to find the shortest vector in L. And the γ-unique
SVP problem is scaling the bound by a positive multiple as γλ1(L) < λ2(L).
The auxiliary condition can be seen as a promised gap between the lengths of
the first shortest vector and the second shortest vector. It is known that if the
gap is bigger, it is easier to find the shortest vector by a certain algorithm. We
abbreviate the γ-unique SVP to γ-uSVP in this paper.

2.2 The Learning With Errors Problem [18]

There are four parameters in LWE problem: the number of samples m ∈ Z, the
length n ∈ Z of secret vector, modulo q ∈ Z and the standard deviation σ ∈ R>0

for the discrete Gaussian distribution (denoted by Dσ) on Z. Uniformly sample a
matrix A ∈ Z

m×n
q and a secret vector s ∈ Z

n
q , and randomly sample a relatively

small perturbation vector e ∈ Z
m
q from Gaussian distribution Dσ. The LWE

distribution Ψ is constructed by pairs (A,b ≡ As + e (mod q)) ∈ (Zm×n
q ,Zm

q )
sampled as above. The search LWE problem is for a given pair (A,b) sampled
from LWE distribution Ψ , to compute the pair (s, e).

2.2.1 Darmstadt LWE Challenge
In 2016, TU Darmstadt, in alliance with UC San Diego and TU Eindhoven
published a platform for the concrete parameter analysis of LWE problem [5,21].
In Darmstadt LWE Challenge, the organizers merge the two parameters σ and
q into the relative error size α, such that α = σ/q. n is the length of secret
vector and q is the minimum prime number bigger than n2. For each case of
length n, they offer the sampled n column vectors in basis A′ ∈ Z

n2×n
q , and

one column target vector b′ ∈ Z
n2

q . The length n and the relative error size α
are arithmetic sequences from 40 and 0.005, with common differences of 5 and
0.005 respectively. To adapt the current lattice algorithms used in the attack
algorithm, we should randomly sample m 
 n2 entries of the column vectors
in the original basis A′ ∈ Z

n2×n
q and ample from the target vector b′ ∈ Z

n2

q

respectively, as from (A′,b′) ∈ (Zn2×n
q ,Zn2

q ) in Darmstadt LWE Challenge to
our instance (A,b) ∈ (Zm×n

q ,Zm
q ). This is called sublattice attack, and we will

discuss how to choose a suitable m in Sect. 3.4.
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2.2.2 Bounded Distance Decoding
In a Euclidean space spanned by a lattice L, there is a target vector w ∈ R

m

which is guaranteed to be within a distance r ≤ αλ1(L) where α > 0. The
bounded distance decoding (BDD) output a vector b ∈ L such that ‖w − b‖ ≤ r.

2.2.3 q-ary Lattice
A lattice L ⊂ Z

m is a q-ary lattice if qZm ⊂ L for an integer q. Let A ∈ Z
m×n
q

(m > n) be a matrix with column vectors, we define the following m-dimensional
q-ary lattice.

L(A,q) = {y ∈ Z
m
q |y ≡ Ax (mod q) for some x ∈ Z

n}

It is the linear code generated by the columns of A mod q with vol(L(A,q)) ≥
qm−n. vol(L(A,q)) = qm−n when the columns of A are linearly independent over
Zq. We can construct the basis B of q-ary L(A,q) as follows. L = {y ∈ Z

m
q |y ≡

Ax (mod q), x ∈ Z
n} as

B =
(

AT

qIm

)

∈ Z
(m+n)×m,

Then eliminate the linearly dependent vectors by an elementary transforma-
tion. In this work, we reduce this basis to a square matrix with Hermite Normal
Form, see next paragraph.

2.2.4 Hermite Normal Form
The Hermite Normal Form (HNF) of a basis B satisfies: (1) B is lower triangular;
(2) the diagonal entries are positive; (3) any entry below the diagonal is a non-
negative number strictly less than the diagonal entry in its column. In this
work, we use the HNF module in Victor Shoup’s NTL library [17], which uses
the Domich et al.’s algorithm [7]. Particularly, a q-ary lattice L(A,q) has this
form for some matrix A′

n×(m−n) ∈ Z
n×(m−n)
q .

BHNF =
(

qIm−n 0
A′

n×(m−n) In

)

∈ Z
(m+n)×m.

2.3 BKZ Reduction Algorithms

The lattice reduction algorithms can make the given basis vectors “better”: rel-
atively more orthogonal to each other with relatively smaller lengths than the
given ones. Schnorr and Euchner [20] proposed the BKZ reduction algorithm,
which processes the LLL reduction [12] and the enumeration algorithm itera-
tively with a fixed blocksize. Here the enumeration algorithm is an exhaustive
point search algorithm. Refer to [20] for more details about enumeration. The
root Hermite Factor of Schnorr and Euchner’s BKZ was considered limited by
1.01 according to Gama and Nguyen [8]. Chen and Nguyen improved the BKZ
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algorithm called BKZ 2.0, by inviting “extreme pruning” enumeration in subrou-
tine [6]. The root Hermite Factor of BKZ 2.0 break through the 1.01 limit with
a reasonably big blocksize. In 2016, Aono et al. proposed a practical progres-
sive BKZ algorithm [2]. The progressive BKZ algorithm invites some technique
from BKZ 2.0. While the significant improvement is that they propose a sharp
simulator based on the Geometric Series Assumption (GSA) [19], to estimate
the runtime for a fixed blocksize β. Then the current local BKZ-β reduction is
terminated after this runtime, and increase the blocksize to a simulated optimal
larger one or just increase the blocksize step by step, until deriving the expected
reduced basis. This progressive BKZ algorithm is shown about 50 times faster
than BKZ 2.0 in [2]. Moreover, they also published their progressive BKZ source
code in [3]. In this work, we will use the progressive BKZ algorithm to reduce
the q-ary lattice bases in solving the LWE problem.

3 Overview of Embedding Technique for Solving LWE
Problem

In this section, we recall Kannan’s embedding technique [10], and introduce the
parameter settings in our experiments.

3.1 From LWE to BDD

The LWE problem can be reduced to BDD case as follows.

Input: a lattice L = {v ∈ Z
m
q |v ≡ As (mod q), s ∈ Zn} and a target vector t

with bounded distance ‖e‖.

Output: a vector v ∈ L close to t, and get s from v ≡ As if succeeded.
In 2016, Xu et al.’s group solved some instances of LWE Challenge by reduc-

ing LWE to BDD and using Liu-Nguyen’s adapted enumeration algorithm, which
can solve BDD directly with a considerable success probability. In this work we
focus on solving BDD by embedding technique: further reduce BDD to unique-
SVP [10]. The embedding attack is shown in Algorithm1. We will elaborate on
the algorithm as follows.

3.2 Solving LWE via the Embedding Technique

Preprocessing. To solve a given LWE instance, it does not need to use all
given samples. For instance, the Darmstadt LWE Challenge supplies the original
basis A′ ∈ Z

n2×n
q for each problem case, thus, a naive construction of matrices

in Algorithm 1 requires a lattice reduction of a large number of matrices even
for small LWE dimensions. Hence, we can choose m (m 
 n2) vectors as a
parameter to optimize the computational time, as from (A′,b′) ∈ (Zn2×n

q ,Zn2

q )
to (A,b) ∈ (Zm×n

q ,Zm
q ). We will discuss the way to compute the optimal m in

Sect. 3.4. Also during the random sampling, we should check the independency
of vectors to make sure: (1) the correctness of the attack algorithm; (2) the
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Algorithm 1. Kannan’s embedding technique to solve LWE problem. [10]
Input: An LWE instance (A,b ≡ As + e (mod q)) ∈ (Zm×n

q ,Zm
q ).

Output: The secret vector s ∈ Z
n
q and the short error vector e ∈ Z

m
q , s.t. b = As + e.

Step 1. Construct the basis B of q-ary lattice
L(A,q) = {v ∈ Z

m
q | v ≡ Ax (mod q),x ∈ Z

n}
as B =

(
AT

qIm

)
∈ Z

(m+n)×m; and compute the HNF of B as

BHNF =

(
qIm−n 0

A′
n×(m−n) In

)
∈ Z

m×m;

Step 2. Reduce BDD to unique-SVP by rescaling BHNF

to B′ =

(
BHNF 0
b M

)
∈ Z

(m+1)×(m+1);

Step 3. Process B′ using lattice algorithm to derive a
short vector w including the error vector e;

Step 4. Use e to compute the secret vector s by
Gauss elimination in (b − e) = As.

volume of derived q-ary lattice is qm−n, which will be used in Sect. 3.4. We give
explanations for each step in Algorithm1.

Step 1. We follow the method in Sect. 2.2.3 to construct and compute the
HNF basis BHNF of q-ary lattice L(A,q) = {v ∈ Z

m | v ≡ Ax (mod q),x∈Z
n}.

Step 2. This step is the key point of embedding technique: expand the q-ary
basis BHNF ∈ Z

m×n by one dimension, and embed the target vector b and
one embedding factor M into the new basis B′ ∈ Z

(m+1)×(m+1).
Step 3. At this step, we process the new basis B′ by lattice algorithms. After
the reduction, we get the error vector e from the output shortest vector w,
since e = b − Bu and w = B′(u1 ) = ( e

M ) for some u ∈ Z
m
q . In our work, we

use the progressive BKZ reduction in this step [2].
Step 4. Simply get the secret vector s by Gauss elimination.

In the following, we explain four discussion points of the algorithm.

(1) In the embedding procedure of Step 3, if the output vector w of the lattice
algorithm satisfies

‖w‖ ≤
√

‖e‖2 + M2 ≈
( √

2mσ

(Mqm−n)1/(m+1)

)1/(m+1)

, (1)

here ‖e‖ ≈ √
mσ, then the answer is correct with high probility.

(2) There is a gap between the shortest vector and the linearly independent
second shortest vector in L′(B′), namely we have to solve a unique-SVP in
this lattice. The size of embedding factor M can affect the gap in some sense
and we will discuss it in Sect. 3.3.

(3) Since we do not know the exact value of ‖e‖, we can not terminate by
condition (1). ‖w‖ ≤ √‖e‖2 + M2 is the condition for a reduction or point
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searching algorithm to terminate in Step 4. However, during the update
of lattice reduction of basis (b1, . . . ,bn) in our progressive BKZ, we found
that the root Hermite factor δ suddenly drop to a very small value from
value around 1. We can set the algorithm to terminate when δ < 0.7 for
convenience.

(4) There is a trade-off between the attack efficiency and success rate, depending
on the dimension m of L(A,q)(A ∈ Z

m×n
q ) and the embedding factor M of

the sampled LWE instances in the embedding algorithm. In this work, our
goal is from experiments to get a preliminary analysis of the affect of m and
M on the runtime for solving Darmstadt LWE Challenge instances.

3.3 How to Choose M at Step 2

The size of ‖e‖ and M intuitively affect the gap of the shortest and the second
shortest vector in the unique-SVP of L(B′) ∈ Z

(m+1)×(m+1), since the reduction
output is w = ( e

M ). For the entries of error vector e are randomly and linearly
independently sampled from the discrete Gaussian distribution Dσ, then ‖e‖2
subject to σ2 × χ2, where χ means chi distribution. So ‖e‖2 has expectation
of mσ2 and we can estimate ‖e‖ ≈ √

mσ. Lyubashevsky and Micciancio [13]
suggest that the choice for the embedding factor M ∈ N is ‖e‖. If M is bigger,
then there is a lower chance to solve LWE problems, since the gap in unique-
SVP will become smaller. However, if M is too small, there may exist a vector
v ∈ L(B′) such that ‖v+c ·( b

M )‖ < ‖w‖ = ‖( e
M )‖ where c ∈ Z, according to [1].

In our experiments we observe the runtime of attack using increasing M from 1.

3.4 How to Choose m

In this part, we follow the analysis proposed by Micciancio and Regev [16]. With
a small Gaussian standard deviation σ, the error vector e is much shorter than
the second shortest vector in the lattice L′, and the latter one can be assumed as
the shortest vector in lattice L. According to the Gaussian heuristic, the length
of the shortest vector in an m dimensional lattice is λ1(L) ≈ (Γ (m/2+1)vol(L))1/m√

π
,

approximately
√

m
2πeq(m−n)/m. So we can get λ2(L′) ≈ λ1(L) ≈ √

m
2πeq(m−n)/m.

In our experiments, we get the result that the attack is more efficient if the
embedding factor M is closer to 1 (see Sect. 4.1). We set M = 1 here and assume
λ1(L′) ≈ ‖ e

M ‖ ≈ √
mσ, for the Gaussian sampled e has length around

√
mσ. So

we want to enlarge the following gap in unique-SVP for an efficient attack:

γ(m) =
λ2(L′)
λ1(L′)

≈
√

m
2πeq(m−n)/m

√
mσ

(2)

We need σ 
 q
m−n
m . What’s more, for a lattice reduction algorithm with a root

Hermite factor δ, the gap should satisfies γ(m) > cδm for a proper value c. The
constant c is unknown, so we can maximize q(m−n)/m/δm, to get the optimal
sub-dimension m of LWE sample instances is

m =
√

n log2(q)/ log2(δ). (3)
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This can properly enlarge the gap in γ-unique SVP transformed from BDD,
within a reduction algorithm’s capability estimated by the root Hermite factor
δ = rHF(b1, . . . ,bn) = (‖b1‖/vol(L)1/n)1/n.

4 Experimental Results and Analysis

In this section, we give the details in our experiments on solving LWE problems
using embedding technique (Algorithm1). All the cases are taken from Darm-
stadt LWE Challenge [21]. In our experiments, we just observe the hardness
of small dimensions from 40 to 60, with the same α = 0.005. As a prepar-
ing work, we take δ in the range [1.010, 1.011, . . . , 1.025] and randomly sample
m =

√
n log2(q)/ log2 δ vector entries for A ∈ Z

m×n
q in each LWE case. For each

case with parameters (n, δ), we sample 20 different bases. The progressive BKZ
algorithm and its open source code of version 1.1 are used in the Step 3 of
Algorithm 1. Our implementation using C language and NTL on Intel(R)
Xeon(R) CPU E5-2697 v2 @ 2.70 GHz with 24 cores (over-clocked to 3.5 GHz
and hyper-threaded to 48 threads). Xu et al. were using parallel implementation
technique and the specifications of hardware are 3.60 GHz Intel Core i7 pro-
cessor with eight cores and a cluster consisting of 20 c4.8xlarge instances, each
equipped by 36 cores (hyper-threaded to 72 threads) [23]. The time unit in the
following sections are all single thread seconds.

4.1 Efficiency by Changing M

As we discussed in Sect. 3.3, in the Step 2 of Algorithm 1, the embedding fac-
tor M in basis B′ ∈ Z

(m+1)×(m+1) affect the size of gap in the unique-SVP of
L(B′). In this section we will observe what size of M is better for an efficient

Fig. 1. Runtime for cases (n, α) with fixed bases and increasing embedding factor M .
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embedding technique. The fixed dimension m of L(A,q) is referred to Sect. 4.2,
and the embedding factor M is from 1 to around 55. For each case of parameters
n = 40, 45, 50, 55 with fixed α = 0.005, we sample a same basis A ∈ Z

m×n from
Darmstadt LWE Challenge respectively. Figure 1 shows the runtime of Algo-
rithm1 for each case with increasing sequence of embedding factor M . We can
observe that with growing M , the runtime of Algorithm1 is gradually increasing.
So it is more efficient to solve LWE problem with the embedding factor M closer
to 1.

4.2 Optimal Choice of m for Each (n, α)

According to the Eqs. (2) and (3) in Sect. 3.4, the dimension m of q-ary lattice
L(A,q) in Step 3 also affects the efficiency of Algorithm 1. A larger dimension
m will lead the root Hermite Factor smaller, which makes the lattice algorithm
inefficient. While a smaller m will reduce the gap of unique-SVP and make the
problem harder to solve. In this section, we observe the affect of size m on the
efficiency of Algorithm 1.

At first for each case of (n, α = 0.005), we fix the embedding factor as
M = 1. We take δ in the range [1.010, 1.011, . . . , 1.025] and for each δ calculate
m =

√
n log2(q)/ log2 δ. We did the experiments for n = 40, 45, 50, 55, 60, 65.

Note that for case of (n = 40, α = 0.005), since the runtime are close to each
other, we ignore it here. We calculate the average runtime for each δ by around
20 random samples of A ∈ Z

m×n
q . In Table 1 the “Average BKZ Runtime”

shows the minimum of average runtime for each δ. Further, the “Minimum BKZ
Runtime” is the minimum data for the relevant δ and m.

From now we will analyze the experimental data in Table 1. We extrapolated
the data by curve fitting technique in Fig. 2. The stars are the minimum of
Average Runtime in each (n, α) cases as showed in Table 1. Here we get the
quadratic function of the average runtime and n with three decimal precision:

FittingLog2(Average Runtime) = 0.0153n2 − 1.17n + 27.6, (4)

and plot it in Fig. 2. And the fitting of optimal m and n is the linear function

Optimal(m) = �4.82n − 98.7�. (5)

Table 1. Experimental runtime for each (n, α = 0.005) cases with parameter δ in
range [1.01, 1.011, . . . , 1.025].

(n, α) δ m Average BKZ
(log2 Runtime (sec))

Minimum BKZ
(log2 Runtime (sec))

(45, 0.005) 1.025 118 5.99 4.28

(50, 0.005) 1.019 144 7.51 6.49

(55, 0.005) 1.017 162 9.03 8.08

(60, 0.005) 1.013 195 13.13 10.62

(65, 0.005) 1.012 213 16.04 14.65
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Fig. 2. The runtime for embedding technique on Darmstadt LWE Challenge of (n, α =
0.005) cases: the stars and the full curve denote our average and it fitting of the
experimental runtime for the optimal m respectively; the dot line is fitting of the
smallest runtime for each optimal m case, which is heuristically seen as the lower bound
in our work; the red crosses are Xu et al.’s records at the LWE Challenge website; the
hollow circles are our experimental results for (n, α) = (70, 0.005). (Color figure online)

Here the mark �. . .� means taking a rounding number.
Moreover, we also illustrate the minimum runtime (seen as the lower bound

heuristically) in all (n, α = 0.005) cases with parameter m from Eq. (4).

FittingLog2(Lower Bound) = 0.00584n2 − 0.208n + 2.21 (6)

and we plot the fitting line in Fig. 2. Note that we take the quadratic formulas for
the estimation in 4 and 6 since the state-of-the-art extreme pruning enumeration
runs in 2O(n2)−0.5n as the subroutine of progressive BKZ.

Furthermore, in Table 2, we estimate the necessary dimension m and the
relevant runtime by embedding technique on solving LWE Challenge cases n ≥
75, σ = 0.005,using progressive BKZ algorithm. Our estimation depending on
the fitting function (4) and (5).

Moreover, from Fig. 2 we can see that Xu et al.’s LWE Challenge records of
α = 0.005 stopped at n = 65 for the overwhelming runtime and low success prob-
ability [22]. Our implemented embedding technique with progressive BKZ can
solve the LWE Challenge instances more efficiently than Xu et al.’s enumeration
implementation for n ≥ 55.

For the cases of (n = 70, α = 0.005), we compute the extrapolated m ≈ 239
(relevant δ = 1.010) from function (5). Then we use δ =1.010, 1.011, 1.012, 1.013
and there are just two Darmstadt LWE Challenge cases with δ = 1.011, 1.012
are successfully solved by m = 233, 223 in time 216.8, 218.2 s respectively. and
we plot it in Fig. 2, which are lying between the two fitting curves and close to
the runtime of estimated FittingLog2(Lower Bound).
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Table 2. Estimation of effective m and runtime on solving(n ≥ 75, σ = 0.005) in the
LWE Challenge.

(n, α) q δ m Estimated BKZ
(log2 Runtime (sec))

(75, 0.005) 5639 1.009 263 25.91

(80, 0.005) 6421 1.008 287 31.92

(85, 0.005) 7229 1.008 311 38.69

(90, 0.005) 8101 1.007 335 46.23

(95, 0.005) 9029 1.007 359 54.53

5 Conclusions

In this paper, we studied the algorithm to solve LWE problem using
Kannan’s embedding technique. Especially we randomly sampled LWE instances
from Darmstadt LWE Challenge and applied the progressive BKZ algorithm to
reduce the embedded bases. From our experiments of fixed relative error size
α = σ/q = 0.005, we observed that the algorithm has a more efficient trend if
the embedding factor M is closer to 1. We also illustrated the relation of the
dimension m of the q-ary lattice L(A,q) in LWE instance, the length n of secret
vector s, and the runtime of the algorithm. Furthermore, Xu et al.’s LWE Chal-
lenge records of α = 0.005 stopped at n = 55 for the overwhelming runtime,
while our experimental results show that for n ≥ 55, the embedding technique
with progressive BKZ can solve the LWE Challenge instances more efficiently
than Xu et al.’s implementation of Liu-Nguyen’s enumeration algorithm. Finally
our LWE Challenge record of (n, α) = (70, 0.005) cases succeeded in 216.8 s (32.73
single core hours), which also lies in the bounds of our fitting curves.
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