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Abstract. In geometry, a hypercube is a regular polytype – a generalisa-
tion of a 3-dimensional cube to λ-dimensions, with mutually perpendicu-
lar sides of equal lengths. For λ = 0, 1, 2, 3, and4, a hypercube is a point,
a straight line segment, a square, a cube and a tesseract respectively.
In this paper, we apply the concept of hypercubes in computationally
private information retrieval (CPIR) based on additively homomorphic
cryptosystems and optimise it further at the cost of a measurable privacy
loss.
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1 Introduction

A computationally private information retrieval (CPIR) lets a receiver retrieve
an l-bit element from the sender’s database of n elements without revealing
the retrieved element to the sender. This is a weaker version of the 1-out-of-
n oblivious transfer, which ensures that the receiver is unable to obtain any
information about the other elements in the sender’s database.

CPIR is useful in many real world scenarios. For example, in an opinion
poll, the identity of the person submitting the opinion should be decoupled from
the opinion itself to facilitate unbiased polls, and yet ensure that only a set of
authorised entities are allowed to submit the opinions. One way of doing this is
to let every authorised person pick a valid token using CPIR, and then submit
opinions where every opinion is tied to a previously picked valid token. Even if the
identity of the submitter is not concealed (unless using anonymous networking)
the submitter can plausibly deny that the submitted opinion is hers because
the poll administrator cannot prove, due to CPIR, that a particular token was
picked by her.

In geometry, a hypercube is a generalisation of a 3-dimensional cube
to λ-dimensions, with mutually perpendicular sides of equal length, d.
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For λ = 0, 1, 2, 3, and 4, a hypercube is a point, a straight line segment, a square,
a cube and a tesseract respectively.

In this paper, we describe how the concept of hypercubes could be utilised
in computationally private information retrieval (CPIR), which is very similar
to the scheme described by Chan [1]. We propose a method to improve the
performance of the hypercube-backed CPIR at the cost of a measurable loss in
privacy.

The rest of the paper is structured as follows. We present a brief overview
of the state-of-the-art in private information retrieval in Sect. 2. This is followed
by some background in homomorphic encryption in Sect. 3 before we delve into
describing our CPIR protocol based on λ-dimensional hypercubes in Sect. 4 with
an optimised version in Sect. 4.2. We present technical feasibility through evalu-
ations of cryptographic primitives in Sect. 5 before concluding in Sect. 6.

2 Related Work

The problem of hiding the index of a retrieval operation on a database from the
server which actually holds the database was investigated by Rivest et al. [2],
Blakely and Meadows [3], Abadi et al. [4,5], Beaver and Feigenbaum [6].
The current known seminar work on private information retrieval by Chor et
al. [7,8] builds upon the above. PIR can be roughly grouped into two categories,
information-theoretic PIR and computationally PIR. The initial proposals of
Chor et al. [7,8] assume k non-communicating servers to store the database and
can resist computationally unbounded malicious servers. Later on the weaker
notion of computational PIR [9], which aims only at providing privacy against
computationally bounded adversary, emerges so as to relieve the critical assump-
tion on more than one non-communicating servers.

The work very close to our scheme is by Chan [1], which uses 2-D hyper-
cube and its generalisations into higher dimensions for a single server private
information retrieval with O(n) communication complexity. The work is more
computationally efficient on the server side than ours but has more computa-
tions (than ours) on the client-side. Chan’s work uses the Damgärd-Jurik cryp-
tosystem, reducing the need for a larger homomorphic cryptosystems for every
hypercube dimension reduction than the previous reduction. The main difference
between our work and [1] is that we propose a version of PIR, in which we can
reduce a lot of the computational complexity at the cost of a measurable privacy
loss, which is explained in Sect. 4.2.

3 Background – Homomorphic Encryption

Homomorphic encryption allows computing over encrypted data without requir-
ing the knowledge of either the actual data or any results produced through the
computation. Depending on the type of computational operations supported,
homomorphic cryptosystems are classified as: (1) additive, (2) multiplicative,
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(3) somewhat homomorphic (e.g., allowing a number of additions and one mul-
tiplication), and (4) fully homomorphic.

The Paillier public-key cryptosystem [10], satisfying semantic security against
chosen plaintext attacks (IND-CPA requirement), and its variant, the Damg̊ard-
Jurik cryptosystem [11], have practical implementations and both exhibit only
additively homomorphic properties: (a) the encryption of the sum of two plain-
text messages m1 and m2 is the modular product of their individual cipher-
texts, i.e., E(m1 + m2) = E(m1) · E(m2) and (b) the encryption of the prod-
uct of one plaintext message m1 and another plaintext multiplicand π is the
modular exponentiation of the ciphertext of m1 with π as the exponent, i.e.,
E(m1 · π) = E(m1)π.

4 Computationally Private Information Retrieval (CPIR)
Using λ-Dimensional Hypercubes

In private information retrieval, given a database of elements T = t1t2t3 . . . tn,
the aim is to retrieve a tx such that the database owner cannot learn which tx was
retrieved. Since n can be very large, T is folded into a λ-dimensional hypercube.
This means that each edge of the hypercube will contain d = λ

√
n elements.

Finding a tx is essentially locating a point on the λ-dimensional coordinate
space.

Essentially, the responder sends λ vectors of encrypted 0s and encrypted 1s,
each of length d = λ

√
n and each having exactly one encrypted 1 while the rest

are encrypted 0s. Each encrypted vector multiplied with a multi-dimensional
hypercube helps reducing the hypercube by one dimension until it reduces to a
single point. This process, depending on the way it is done, may require fully
homomorphic encryption.

Let us see how this works for λ = 2 i.e., a 2-D hypercube or a square matrix.
Assume that all the tokens in T are arranged in the square matrix of size d × d,
as:

T =

⎛
⎜⎜⎜⎜⎝

t1,1 t1,2 t1,3 . . . t1,d

t2,1 t2,2 t2,3 . . . t2,d

t3,1 t3,2 t3,3 . . . t3,d

. . . . . . . . . . . . . . .
td,1 td,2 td,3 . . . td,d

⎞
⎟⎟⎟⎟⎠

(1)

We can reduce this with two encrypted vectors of zeros and ones, each
of size n: Va = {Ea(va,1), Ea(va,2), Ea(va,3), . . . , Ea(va,m)} and Vb =
{Eb(vb,1), Eb(vb,2), Eb(vb,3), . . . , Eb(vb,d)} where any of va,k or vb,k is either a
zero or one. Exactly one component in each vector is an encrypted one. The
encryption function Eb() is such that its plaintext space is same as or more
than the ciphertext space of Ea(), for example Eb() could be a 512 bits Paillier
cryptosystem while Ea() is a 256 bits Paillier cryptosystem.

Homomorphically multiplying the first row of T with Va and homomorphi-
cally summing the components, we will produce: T1,a = Ea(va,1)t1,1Ea(va,2)t1,2

Ea(va,3)t1,3 . . . Ea(va,m)t1,d but only one of these components is non-zero because
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remember that only one component amongst va,k is one. Let us suppose, va,3 = 1,
which means Ea(va,3)t1,3 is non-zero from the first row of T . Therefore, the
homomorphic sum of the homomorphic products for the first row will produce
T1,a = Ea(va,3)t1,3 , which when decrypted will result in t1,3. However, decryption
is not done at this stage. If we repeat this for every row in T (with Va assuming
that va,3 = 1) and obtain the homomorphic sums per row, we generate a column
vector as follows:

Ta =

⎛
⎜⎜⎜⎜⎝

T1,a = Ea(va,3)t1,3

T2,a = Ea(va,3)t2,3

T3,a = Ea(va,3)t3,3

. . .
Td,a = Ea(va,3)td,3

⎞
⎟⎟⎟⎟⎠

(2)

If we homomorphically multiply each element in Ta with Vb and homo-
morphically add the resulting components, we get: Tb = Eb(vb,1)T1,aEb(vb,2)T2,a

Eb(vb,3)T3,a . . . Eb(vb,d)Td,a but again, only one of vb,k is non-zero. Let us assume
that vb,2 = 1. Therefore, Tb = Eb(vb,2)T2,a because all the other components
are effectively zero in plaintext domain. Thus, our 2-D square matrix has been
reduced to a point in the encrypted domain, i.e., Tb = Eb(vb,2)T2,a . If we now run
the decryption Db(Tb) first, we effectively obtain T2,a since vb,2 = 1. Running
the decryption Da(T2,a), we obtain t2,3, which is exactly the point that can be
located by setting vb,2 = 1 and va,3 = 1. Note that for simplicity, we did not
describe the shuffling of the components of both vectors because it is related
to ensuring randomisation and not the hypercube reduction process. The above
process of hypercube reduction can be easily generalised to dimensions higher
than λ = 2. If the encryption function for reducing dimension i to i−1 is denoted
by Ei then the ciphertext space for Ei must be less than the plaintext space of
Ei−1. In the above example, Ei = Ea and Ei−1 = Eb. This constraint on the cryp-
tosystems illustrates the fact that with higher dimensions, one would require
multiple cryptosystems with large key sizes.

4.1 Computational and Communication Complexities

Assuming that the computational complexity of the combination of a homo-
morphic addition and a homomorphic multiplication with a cryptosystem that
reduces the dimension of the hypercube from i to i−1 is ci. We noticed above that
to obtain the final result, we had a complexity of c1d. Similarly, the complexity
due to the hypercube reduction before that was c2d

2. The total complexity can
be expressed as the series c1d+ c2d

2 + c3d
3 + . . .+ cid

i + . . . cλdλ. Given n as the
total number of elements, we know n = dλ. Thus, the expression for complexity
can be re-written as cλn + cλ−1n

λ−1
λ + cλ−2n

λ−2
λ + . . . + c1n

1
λ , or O(n). Note

that the complexity due to any ci is higher than that due to any cj for i < j.
The requester sends λ vectors, each of size d while the database responds

with a single encrypted value. The sizes of the vectors are different because
each contains d values encrypted with different cryptosystems. If we denote the
size of a ciphertext for a cryptosystem used to reduce the hypercube from i to
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i − 1 dimension as bi (independent of n, hence constant) then the total size of
the request is db1 + db2 + . . . + dbλ. The size of the response is always b1. The
communication complexity is in order of λd, or logd(n) λ

√
n. Thus, for an optimal

size of d, the complexity is dependent on λ, which means it is in O(n).

4.2 Reducing the Number of Homomorphic Computations – Impact
on Privacy

We noted that the cryptosystem with encryption function Ei (responsible for
reducing the dimension of the hypercube from i to i−1) should generate cipher-
texts that fit in the plaintext space of the cryptosystem with encryption function
Ei−1. If Ei is a 1024-bit Paillier then its ciphertexts are 2048-bits. Therefore, Ei−1

must be 2048-bits or above (assuming there is no speciality of the implementa-
tions of those cryptosystems, e.g., supporting negative or fractional numbers
using plaintext space division). If the 1024-bit Paillier is deemed to be the mini-
mum standard for security then with just λ = 4, the cryptosystem for E1 will be
the 8192-bit Paillier, which is significantly slow compared to the 1024-bit Pail-
lier. Thus, with higher values of λ, the reductions to certain lower dimensions of
the hypercube may not be computationally feasible given the implementations
of the cryptosystems.

One way of addressing this challenge is to limit the use of cryptography to
only λ = 4 or λ = 3, while for all other higher values of λ, the CPIR protocol uses
plaintext coordinates to address those dimensions. There is an obvious loss of
privacy. According to the original definition of CPIR, the database owner must
not know which element (out of n elements) was picked by the requester, thus
allowing the requester n-anonymity. If we use the cryptography for reducing only
the lower m dimensions, for example, then for any n = dλ, the requester will have
no privacy in the dλ−m dimensions. Suppose k = dm. Then, the requester will
still have k-anonymity so long as the plaintext coordinates (for λ−m dimensions)
are chosen from a uniform random distribution. In other words, as an example,
if m = 4, and λ = 7, the requester will specify 3 coordinates in plaintext and
use the proposed CPIR protocol for the lower 4 dimensions. Thus, the chosen
element will lie somewhere amongst the points in the tesseract defined by d4. If
we assume d = 100, the requester will have k = 1004-anonymity.

Loss of Privacy. Following the strategy for quantifying the loss of privacy
in [12], we use Shannon’s entropy to measure how much privacy is lost for
using homomorphic encryption in the m lower dimensions only. The entropy
is a measure of uncertainty in a random variable X, and is defined as H(X) =
−

∑
x pX(x) log pX(x). Let H(V ) denote the uncertainty of the vector V , where

only one element is 1 and the rest are 0. Since the elements in the vector can
either be 0 or 1, and the entire vector can only have one element that is 1, we
can write that for a d-element vector, H(V ) = −

∑d
i

1
d log 1

d = log d. Thus,
for λ such independent vectors, the total entropy is λ log d. If only m such
vectors are encrypted, then we can quantify the loss in privacy in terms of
entropy as Ploss = (λ − m) log d and leaving us with the residual privacy as
Presidual = m log d.
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5 Evaluation

In the performance evaluation of cryptographic primitives shown in Table 1, we
have used an open-source implementation of the Paillier cryptosystem1. The
performance of this implementation on a 64-bit Macbook Pro running macOS
Sierra 10.12.5 and Java 1.8.0 121-b13 on a 2.9 GHz Intel Core i5 with a 16 GB
2133 MHz LPDDR3 RAM are given in Table 1. The plaintext and integer mul-
tiplicands chosen from random integers of bit lengths 256, 512 and 1024 respec-
tively. Notice that these bit lengths are half the size of the public key sizes of the
tested cryptosystems because our implementation supports negative integers by
dividing the plaintext space into half with the upper half reserved for positive
integers and the lower half for negative ones.

Table 1. Comparison of the performances, in terms of time, of a Java implementation
of the Paillier cryptosystem with different bit lengths for the public key (i.e. modulus n).

Paillier cryptosystem (key size) 512-bits 1024-bits 2048-bits

Encryption (ms) 1.606 10.586 71.93

Decryption (ms) 1.605 10.773 70.848

Homomorphic addition (ms) 0.156 0.376 1.314

Homomorphic multiplication (ms) 0.894 5.561 36.588

5.1 Computationally Private Information Retrieval (CPIR)

We evaluate the performance of our proposed PIR scheme by setting, without loss
of generality, λ = 2 and each side of our 2-D hypercube to d = 7, for simplicity.
This involves d2 = 49 homomorphic additions and homomorphic multiplications
in E2() and only d = 7 homomorphic additions and homomorphic multiplications
in E1(). Note that E2() is faster than E1() because its key size, i.e., n is lower.
Setting E2() to 512-bits Paillier and E1() to 2048-bits Paillier, and using the tim-
ings from Table 1 we can compute the time taken for d2 homomorphic additions
and multiplications as (0.156 + 0.894) × 49 = 51.45ms and for d homomorphic
additions and multiplications as (1.314 + 36.588) × 7 = 265.314ms.

Generalising this, if we denote the time taken by a homomorphic multipli-
cation and a homomorphic addition by tEMi

and tEAi
respectively, where EMi

and EAi are applied for hypercube dimension reduction from i to i−1, then for a
λ-dimensional hypercube represented by R with each side measuring d, the total
time taken to extract a single point due to the homomorphic multiplications and
additions is given as:

ttotal = (tEMλ
+ tEAλ

)dλ + (tEMλ−1 + tEAλ−1)d
λ−1 + . . . + (tEM1 + tEA1)d

Note that every tEMi < tEMj and every tEAi < tEAj for i > j. Given the
optimisation on the CPIR protocol described before, which only uses homomor-
phic encryption for a limited number of dimension reductions, the time taken
will be less than this generalised expression.
1 Paillier implementation: https://github.com/anirbanbasu/paillier-crypto.

https://github.com/anirbanbasu/paillier-crypto
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6 Conclusions

In this paper, we have proposed a computationally private information retrieval
method based on the concept of hypercubes. We have also shown that in order
to make our CPIR scheme efficient, we may need to make limited use of homo-
morphic cryptosystems with a quantifiable loss of privacy.

One avenue of future work includes testing the proposed system (both ver-
sions – one without privacy loss and one with measurable privacy loss) for scal-
ability for picking one token from a large number of tokens in a database.
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