
SSUKey: A CPU-Based Solution
Protecting Private Keys on Untrusted OS

Huorong Li1,2,3, Wuqiong Pan1,2(B), Jingqiang Lin1,2, Wangzhao Cheng1,2,3,
and Bingyu Li1,2,3

1 Data Assurance and Communication Security Research Center, Beijing, China
2 State Key Laboratory of Information Security,

Institute of Information Engineering, CAS, Beijing, China
panwuqiong@iie.ac.cn

3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. With more and more websites adopt private keys to authen-
ticate users or sign digital payments in e-commerce, various solutions
have been proposed to secure private keys – some of them employ extra
specific hardware devices while most of them adopt security features
provided by general OS. However, users are reluctant to extra devices
and general OS is too complicated to protect itself, let alone the private
keys on it. This paper proposes a software solution, SSUKey, adopting
CPU security features to protect private keys against the vulnerabilities
of OS. Firstly, threshold cryptography (TC) is employed to partition the
private key into two shares and two Intel SGX enclaves on local client
and remote server are used to secure the key shares respectively. Sec-
ondly, the two enclaves are carefully designed and configured to mitigate
the vulnerabilities of Intel SGX, including side channel and rollback.
Thirdly, an overall central private key management is designed to help
users globally monitor the usage of private keys and detect abnormal
behaviors. Finally, we implement SSUKey as a cryptography provider,
apply it to file encryption and Transport Layer Security (TLS) down-
load, and evaluate their performance. The experiment results show that
the performance decline due to SSUKey is acceptable.

Keywords: Trusted Execution Environment (TEE) · Intel SGX
Trusted computing · Threshold cryptography · Key protection

1 Introduction

Digital signature is widely used in authentication, digital payment and online
banking. According to Stratistics MRC, the Global Digital Signature Market is
accounted for $662.4 million in 2016 [1]. Digital signature is based on asymmetric
cryptography which has a pair of public key and private key. The private key
represents the identity of an entity and is used to create digital signatures while

c© Springer International Publishing AG, part of Springer Nature 2018
S. Qing et al. (Eds.): ICICS 2017, LNCS 10631, pp. 51–62, 2018.
https://doi.org/10.1007/978-3-319-89500-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_4&domain=pdf

52 H. Li et al.

the public key is known to public and is used to verify the digital signatures.
The private key should be kept secret.

At present the most effective way to protect private keys is using specific
hardware devices, which have their own processors and storage isolated from host
PC. This is adopted by Facebook, Google, GitHub, and Dropbox [2]. But users
are reluctant to use specified hardware devices because they are inconvenient
to carry and easy to lose. According to SafeNet Inc., the use of hardware-based
authentication dropped from 60% in 2013 to 41% in 2014; conversely, the use of
software-based authentication rose from 27% in 2013 to 40% in 2014 [3].

The security of software-based methods protecting private key relies on the
security of privileged code, such as OS kernel and VMM (Virtual Machine Mon-
itor). For example, [4,5] use hypervisor to provide isolation environment to
protect sensitive data. However, privileged code had been found many serious
vulnerabilities, for example, CVE-2015-2291, CVE-2017-0077, CVE-2016-0180
and CVE-2017-8468 for Windows kernel, CVE-2017-13715, CVE-2017-12146,
CVE-2017-10663 and CVE-2016-10150 for Linux kernel, CVE-2009-1542, CVE-
2016-7457 and CVE-2017-10918 for VMM, CVE-2016-8103, CVE-2016-5729 and
CVE-2006-6730 for SMM, and may still have vulnerabilities.1

Intel Software Guard Extensions (SGX) [6–9] enables execution of security-
critical application code, called enclaves, in isolation from the untrusted system
software. It also provides enclaves processor-specific keys, such as the sealing
key or the attestation key, which can be accessed by the enclaves. SGX is con-
sidered as a remarkable way to protect private keys when first proposed [7].
However, SGX has been found several vulnerabilities, such as cache-based side
channel attack [10,11], page-based side channel attack [12], and rollback attack
[9]. Although Intel has recently added support for monotonic counters (SGX
counters) [13] that an enclave developer may use for rollback attack protection,
this mechanism is likely vulnerable to bus tapping and flash mirroring attacks
[14] since the non-volatile memory used to store the counters resides outside the
processor package.

We propose a software solution, SSUKey, adopting Intel SGX to protect pri-
vate keys against the vulnerabilities of OS. Especially, SSUKey employs ECC-
based threshold cryptography (ECC-TC) to mitigate the vulnerabilities of SGX
and enhance the security of SGX. Each private key is partitioned into two shares
using ECC-TC, and the two key shares are protected using two Intel SGX
enclaves on local client and remote server respectively. Since the two enclaves
are carefully designed and the remote server can be carefully configured and
well protected by additional mechanisms, such as advanced firewall, it is very
difficult for an attacker to successfully perform side channel and rollback attacks
on both the local client and the remote server enclaves. If the attacker only com-
promises one of them, threshold cryptography (TC) ensures that the attacker
knows nothing about the private key. SSUKey also provides a central private key
management. A user may use the same private key on different websites for con-

1 All these vulnerabilities are published in Nation Vulnerability Database (NVD,
https://nvd.nist.gov/).

https://nvd.nist.gov/

SSUKey: A CPU-Based Solution Protecting Private Keys on Untrusted OS 53

venience. When the private key is compromised, our SSUKey can directly revoke
the private key by the remote server immediately without having to inform all
the websites respectively. The overall central private key management also help
users globally monitor the usage of private keys and detect abnormal behaviors.

Windows CNG (Cryptography API: Next Generation), proposed by
Microsoft, sets a standard interface for both cryptography provider and appli-
cation. All Windows built-in applications (e.g., TLS, certificate tools, IE, Edge,
IIS, etc.) use CNG to protect cryptographic keys and Microsoft recommends
all Windows applications should use CNG to protect cryptographic keys. We
implement our SSUKey complying with CNG, supporting SM2 (ECC algorithm)
[15], SM3 (hash algorithm) [16], SM4 (symmetric algorithm) [17], PRF (pseudo
random function) [18], and NIST hash-based DRBG (random number genera-
tion algorithm) [19]. As a proof-of-concept, we evaluate the single-thread per-
formance of SSUKey on Intel NUC6 with i3-6100U CPU, which is designed low
power (15 W). We first evaluate SSUKey by testing cryptographic operations.
Compared to the software solution without any protection, the performance of
verifying signatures, symmetric operations and hash operations almost does not
change, while that of signing signatures declines from 481 Operations per second
(Ops) to 110 Ops. Second, we evaluate SSUKey by testing it in real applications,
file encryption and TLS download. Compared to the one without any protection,
the performance of file encryption declines less than 3%, while that of TLS down-
load (with 4 KB message) declines less than 1%. As the result, the performance
decline due to SSUKey is acceptable.

In summary, we claim following main contributions:

– We propose and implement SSUKey, a CPU-based software solution protect-
ing private keys against the vulnerabilities of OS, VMM, SMM, etc.

– Our SSUKey can mitigate the vulnerabilities of SGX, including side channel
and rollback attacks, and add a useful function, an overall central private key
management.

– We implement our SSUKey on Windows CNG, apply it to file encryption and
TLS download, and evaluate the performance.

Intel CPU supports SGX starting with the Skylake microarchitecture, so our
SSUKey can work on any new CPUs afterwards.

2 Assumptions

We consider a powerful adversary who controls all software except SSUKey on
the target platform, including the OS. The adversary’s aim is to compromise
private keys. The adversary can block, delay, replay, read and modify all messages
sent by SSUKey. Especially, the adversary can revert the sealed secrets in file
system to previous state, i.e., rollback attack. The adversary can learn some
information about the private keys by performing side channel attack [10,11].

The adversary cannot break through CPU and compromise SGX enclaves
from inside. Specially the adversary cannot read or modify the enclave runtime

54 H. Li et al.

memory and has no access to processor-specific keys, such as the sealing key
or the attestation key. We also assume that it is very difficult to perform side
channel or rollback attacks on both local client and remote server successfully,
since the remote server is carefully configured and well protected by additional
mechanisms, such as advanced firewall.

SSUKey ensures that the integrity, confidentiality and freshness of private
keys. SSUKey does not aim to provide availability since the adversary controls
the OS and denial-of-service (DoS) is always possible. SSUKey authenticates a
user using the password entered by the user. But SSUKey does not protect the
path between the input device like keyboard and the enclave. This function can
be provided by SGXIO [20] which employs hypervisor to enhance the security
of I/O path. Our SSUKey is compatible with SGXIO.

3 SSUKey Design

3.1 Architecture

Figure 1 shows our system overview. Our system consists of a remote server and
some users’ local platforms. Each local platform may run multiple user appli-
cations that host local client enclaves (CEs) which have an access to the user’s
cryptographic keys. The remote server runs a service that hosts a remote server
enclave (SE) which assists CE to perform cryptographic operations coopera-
tively. The remote server is carefully configured and well protected by addi-
tional mechanisms, such as advanced firewall, intrusion detection system, and
latest malware detection or anti-virus software. Both CE and SE run a share
of ECC-TC algorithms and hold a share of corresponding cryptographic keys
respectively.

Figure 2 gives the key components of our SSUKey architecture. Authentica-
tion and session management modules authenticate CE/SE to its counterpart
and establish a trusted channel between CE and SE; sign/decrypt modules oper-
ate the cooperative ECC-TC algorithm shares and key management modules
manage the key shares on CE/SE; authentication module authenticates user
to CE; policy engine module checks while activity monitor module monitors
the operation requests from CE overall; persistent storage stores the sealed key
shares.

Platform
 A

OS

Remote Server

OS

App 1
Service

SE

App i

CE CE

Fig. 1. System overview

SSUKey: A CPU-Based Solution Protecting Private Keys on Untrusted OS 55

Client Enclave (CE)

Authentication
Module

Key Mgmt Sign/Decrypt

Authentication
Session Mgmt

Sealed
Key Shares

Server Enclave (SE)

Authentication
Session Mgmt

Activity MonitorPolicy Engine

Key MgmtSign/Decrypt
Key
Shares

Fig. 2. SSUKey architecture

3.2 Trusted Channel Between CE and SE Establishment

A simple but effective protocol is proposed to establish a trusted channel between
CE and SE with CE and SE authenticating each other. This protocol takes a
few one-off steps to setup two asymmetric authentication key pairs. The one-off
procedure proceeds as follows:

(1) During the first execution, SE generates an asymmetric authentication key
pair SKSE/PKSE , and exports the public key. The public key is hard-coded
to CE implementation.

(2) When a CE connects to SE for the first time, it generates an asymmetric
authentication key pair SKCE/PKCE . The CE generates a SGX remote
attestation report on the hash value of PKCE . The report also includes the
code measurement of the CE. After that, the CE encrypts PKCE with SE’s
public key PKSE and sends the ciphertext and the report to SE.

(3) Upon receiving the ciphertext and the report, SE verifies the report through
attestation verification server typically provided by Intel, extracts the CE’s
public key PKCE , and verifies whether the hash value of PKCE matches
that in the report.

On success, SE obtains the CE’s public key (the CE has SE’s public key
hard-coded in its implementation). Specifically, SE is bounded with PKSE and
the CE is bounded with PKCE since the key pairs can only be accessed from
CE or SE respectively.

When a CE wants to connect to SE for the first time of current execution,
the CE and SE use the raw public keys PKCE/PKSE , following the procedure
specified in RFC 7250: Using Raw Public Keys in Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS) and TLS 1.3 [21], to
establish a session key and use the established session key to protect all the
subsequent messages between the CE and SE.

3.3 Key Setup

SSUKey adopts a 2-out-of-2 sharing scheme TC, Mediated SM2 [15,22], which
partitions a private key into two shares. CE holds one share (denoted as dCE)
of the private key while SE holds the other share (denoted as dSE). TC ensures
that knowledge of one of the two key shares cannot not be used to derive the
private key.

56 H. Li et al.

After successfully establishing a trusted channel between a CE and SE, the
CE and SE setup a new key pair cooperatively follow the procedure as follows:

(1) The CE sends a setup opcode to SE.
(2) Upon receiving the opcode, SE generates a key share dSE , allocates a unique

key identifier ID and initializes key status STS for the key share. The key
status can be one of three possible values, valid, suspended, and revoked,
indicating the private key is available, suspended, and revoked respectively.
A suspended key is not available until it is resumed while a revoked key is
permanently not available. The key status is initialized valid when the key
is created. After that, SE computes the public key share PSE of dSE .

(3) SE sends the ID and PSE to the CE.
(4) Upon receiving the ID and PSE , the CE generates the other key share dCE ,

computes the public key P using PSE and dCE , and exports the public key.

The CE now has the public key P and a share of the private key dCE while
SE has the other share dSE of the private key as well as the key identifier ID
and the key status STS. The CE seals all the secrets (dCE , P , and ID) two-
fold – firstly, the secrets are sealed using user specific secret, such as password,
and secondly, they are sealed using the CE’s sealing key, which is derived from
the code measurement of CE and the processor-specific secrets. The purpose
of user specific secret is to authenticate the untrusted application that employs
the CE and the application will be rejected to access the secrets if it fails to
authenticate itself. After two-fold sealing the secrets, the CE saves the sealed
secrets to persistent storage. The secrets on SE (ID, STS and dSE) are saved
in memory. When SE wants to store the secrets to non-volatile memory, SE
seals them first and keeps the state of them in memory. The sealed secrets
are protected from rollback attack as long as SE does not shut down since SE
can maintain the state of the secrets itself. We explains more about rollback
protection in Sect. 4.

3.4 Signature and Decryption

When a CE is starting, it firstly executes following steps in sequence. First, it
loads the two-fold sealed secrets from persistent storage and extracts the key
share dCE and key identifier ID. Second, it establishes a trusted channel with
SE. Once the trusted channel is established, the CE can trigger a signature
or decryption operation by sending SE an opcode, decrypt or sign, as well as
the message to be signed or decrypted. Upon receiving the opcode, SE signs or
decrypts the message for the CE. The procedure proceeds as follows:

(1) The CE sends SE the key identifier ID, a sign or decrypt opcode, and the
message.

(2) Upon receiving the ID and the opcode, SE checks the key policy, i.e., key
status STS associated with the ID. If the key is available, SE signs or
decrypts the message using dSE .

SSUKey: A CPU-Based Solution Protecting Private Keys on Untrusted OS 57

(3) SE sends the result to the CE.
(4) Upon receiving the result, the CE continues signing or decrypting the result

from SE using dCE and obtains the final result, i.e., a signature or cleartext.

3.5 Key Management

SSUKey manages all private keys on SE. It globally monitors and analyzes the
usage of private keys. For example, how frequent a private key is used, where
a private key request is from, what a private key is typically used for (signing
or decrypting), etc. Based on the private keys usage patterns, SE can detect
abnormal behaviors. For example, the requested private key is far more frequent
used in a short period. For another example, a signing operation requests a
decrypting private key. If such abnormal behaviors are detected, SE suspends the
associated private keys by setting key status to suspended. The private key owner
will be informed next time when the CE requests to the suspended private key.
This makes the owner aware of potential private key abusing. It is the owner’s
responsibility to confirm whether the suspended private key is still sound secure.

The private key owner can trigger a resume operation to resume a suspended
private key, a revoke operation to revoke a suspended or unneeded private key,
or a sync operation to synchronize current status of a private key. The procedure
proceeds much like requesting a signature or decryption operation, except that it
sends a key management opcode (resume, revoke, or sync) to SE. Upon receiving
the opcode, SE updates the key status STS.

4 Security Analysis

The theoretical security of SSUKey is based on the security of ECC-TC [15,22]
and the enclaves provided by Intel SGX. The adversary is allowed to attack
from the very beginning of the private key being setup. The adversary has to
compromise both two key shares on CE and SE separately to recover the private
key. In this section, we mainly illustrate that the adversary cannot successfully
compromise a private key by performing the most promising attacks on SSUKey,
including tampering system memory, eavesdropping channels between CE and
SE, performing side channel and rollback attacks on CE and SE.

Tamper-Proofing. The adversary cannot modify the code of CE and SE with-
out being detected since any modification to the code will change the measure-
ment of the code. A modified CE or SE will have a different code measurement
comparing with the original one. CPU judges it as a different enclave. Thus,
the modified CE or SE cannot access the secrets kept by the original one. The
adversary cannot read or modify the runtime memory of CE and SE since the
memory resides within the isolation region provided by SGX.

During the establishment of a session key between CE and SE, SE can authen-
ticate the CE by verifying the signature of the session key signed by the CE’s
private key and the CE can confirm that only SE can decrypt the session key.

58 H. Li et al.

The adversary cannot masquerade as either CE or SE to establish a channel with
the counterpart. Thus, a man-in-the-middle attack on SSUKey is not applicable.
In addition, session hijack attack is disabled since the session key is immediately
adopted once SE successfully authenticates the CE. The subsequent communi-
cation messages are transferred within the established trusted channel between
CE and SE and the adversary cannot replay, read and modify the message.

Side Channel Protection. Intel SGX enclaves are vulnerable to side channel
attack, for example, cached-based side channel attack [10,11] and page-based
side channel attack [12]. CE and SE of our SSUKey are also threated by such
attacks. A successful side channel attack on SSUKey has to extract the key
shares from both the CE and SE. This is very difficult and almost impossible
since the remote server that hosts SE is carefully configured and well protected by
additional mechanisms. Compared with SE, the CE is more likely being attacked.
If the key share dCE on the CE is compromised due to side channel attack, TC
ensures that the compromise of dCE cannot be used to derive the private key.

SE verifies the CE’s identity during the establishment of the trusted channel
between the CE and SE. Thus, even though the adversary has compromised the
dCE on the CE, it cannot masquerade as the CE to request SE to help sign or
decrypt a message. This makes SSUKey tolerant to the compromise of the key
share dCE on the CE.

Rollback Protection. Intel SGX enclaves are also vulnerable to rollback attack
[9]. The adversary can exploit this vulnerability to break the freshness of the
private key. A successful rollback attack on SSUKey has to revert the state of
the two key shares from both the CE and SE. On the one hand, SE can be kept
online almost all the time by a lot of ways (e.g., [23]), and the adversary cannot
perform a rollback attack on SE successfully as long as SE does not shut down
since SE can maintain the state of the secrets itself. On the other hand, when
occasionally being restarted, for example, due to service update, SE can protect
the secrets from rollback attack using SGX counters [13] or other useful solutions
such as ROTE [24].

5 Evaluation

In this section, we describe our performance evaluation. We implemented our
system consisting of two enclave libraries for CE and SE respectively, a remote
service, and applications. The cryptographic library supports SM2 (Mediated
SM2), SM3, SM4, KDF, and NIST hash-based DRBG. The enclave library for
CE is implemented as a cryptography provider complying with Windows CNG.
The internal distributed architecture of SSUKey is transparent to the applica-
tions. Both the applications and the remote service are running separately within
a single thread atop Windows 10 on Intel NUC6 with i3-6100U CPU, which is
designed low power (15 W). The applications connect to the remote service via
local network (ping about 1.1 ms).

SSUKey: A CPU-Based Solution Protecting Private Keys on Untrusted OS 59

5.1 Cryptographic Operations Throughputs

The main performance metrics to measure are the throughputs of cryptographic
operations including encryption, decryption, and signatures. A hash operation
is included in a SM2 signature operation so we do not measure it alone.

We implemented several test cases for the cryptographic operations. We
tested the test cases using (1) pure software implementation with neither enclaves
nor Mediated SM2 and (2) our SSUKey implementation. For the symmetric
encryption test case, it encrypted/decrypted the data repeatedly (data size
varied from 0.5 KB to 256 KB). For the asymmetric encryption test case, it
encrypted/decrypted the data repeatedly (data size varied from 16 B to 8 KB).
For the signature test case, it signed/verified the data repeatedly (the data size
varies from 16 B to 8 KB). We used data processed per second (MB/s) and oper-
ations per second (Ops) as the measuring unit to measure the throughputs of
encryption and signatures respectively.

Figure 3a shows the performance of symmetric encryption/decryption. The
throughputs are almost the same when data size is greater than 4 KB, while
they are about 5–18% lower in SSUKey than that in the pure one when the data
size is less than or equal to 4 KB. This is due to that data of small size weakens
the throughput rate of a single operation and amplifies the influence from the
overhead of enclave context switching.

The throughputs of asymmetric encryption and signature verification are
almost the same. But the throughputs of asymmetric decryption and signature
signing in SSUKey are about a quarter of that in the pure one, as shown in
Figs. 3b and c (right figure is the logarithms of the throughputs to show the dif-
ference more clearly). This is as expected, since SSUKey adopts ECC-TC (i.e.,
Mediated SM2), and the procedure of using public keys (i.e., encrypting or verify-
ing) is identical in both SSUKey and the pure one, while the procedure of using

Th
ro

ug
hp

ut
 (O

ps
)

Size of data (Byte)

(b) signatures

0

100

200

300

400

500

600

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8 4 0 9 6 8 1 9 2

SSUKey Sign SSUKey Verify Pure Sign Pure Verify

Th
ro

ug
hp

ut
 (M

B/
s)

Size of data (Kilobyte)

(a) symmetric encryption/decryption

20

25

30

35

40

45

0 . 5 1 2 4 8 1 6 3 2 6 3 1 2 8 2 5 6

SSUKey Enc/Dec

Pure Enc/Dec

(c) asymmetric encryption/decryption

Th
ro

ug
hp

ut
 (M

B
/s

)

Size of data (Byte)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8 4 0 9 6 8 1 9 2

SSUKey Enc

SSUKey Dec

Pure Enc

Pure Dec

-2

0

2

4

6

8

10

12

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8 4 0 9 6 8 1 9 2

SSUKey Enc SSUKey Dec Pure Enc Pure Dec

Size of data (Byte)

Fig. 3. The performance of cryptographic operations

60 H. Li et al.

private keys (i.e., signing or decrypting) in SSUKey adopts a sharing scheme
but the pure one does not. The sharing scheme brings SSUKey much more time-
consuming operations, e.g., point multiplication and large integer multiplication.
Additionally, an asymmetric operation is generally considered much more time-
consuming than that a symmetric operation and thus the overhead of enclave
context switching is weakened in an asymmetric operation.

5.2 Applications Throughputs

Additionally, we evaluated our SSUKey in real-world scenarios, file encryption
and TLS download. We implemented a file encryption application, a TLS server,
and a TLS client that connected to and downloaded data (4 KB) from the TLS
sever repeatedly. The TLS server acted as a download center and waited for the
TLS client to connect.

We tested the file encryption application and the TLS client using (1) pure
software implementation with neither enclaves nor Mediated SM2 and (2) our
SSUKey implementation. The file encryption application encrypted/decrypted
files repeatedly (file size varied from 0.5 MB to 256 MB). The TLS client con-
nected to and downloaded data (4 KB) from the TLS sever repeatedly. We used
the number of successful downloads per second (Ops) as the measuring unit to
measure the throughput of TLS download.

Figure 4 shows the performance of file encryption. For file size greater than
8 MB, the throughput of file encryption in SSUKey is almost the same with
that in the pure one, while it is 7–19% decline in SSUKey than that in the
pure one when file size is less than or equal to 8 MB. As for TLS download,
the performance is 72.04 Ops in SSUKey while 72.15 Ops in the pure one. The
performance decline is less than 1%.

The results illustrates that our SSUKey imposes a moderate overhead to
file encryption and has little influence on TLS download. We conclude that our
SSUKey is acceptable.

T
hr

ou
gh

pu
t (

M
B

/s
)

Size of data

0
5

10
15
20
25
30
35
40
45

0 . 5 1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6

SSUKey Enc

SSUKey Dec

Pure Enc

Pure Dec

(Megabyte)

Fig. 4. The performance of file encryption

6 Related Work

TrustZone. ARM TrustZone (TZ) combines secure execution with trusted path
support. It provides one secure world isolated against a normal world. The secure

SSUKey: A CPU-Based Solution Protecting Private Keys on Untrusted OS 61

world operates a whole trusted stack, including security kernel, device drivers and
applications. TZ allows device interrupts being directly routed into the secure
world and thus supports generic trusted paths [25]. However, TZ does not dis-
tinguish between different secure application processes in hardware. It requires a
security kernel for secure process isolation, management, attestation and similar.
The prototype of SSUKey is promising to be migrated to TZ. Compared with
SGX, TZ is more competent to offer generic trusted I/O path.

Rollback Protection. SGX counters [13] is a moderate and handy solution. It
employs non-volatile memory to store the counter which is likely vulnerable to
bus tapping and flash mirroring attacks [14]. It is not secure enough in our threat
model since non-volatile memory resides outside the processor package. ROTE
[24] is a more secure and promising solution than SGX counters. It adopts a dis-
tributed architecture and synchronizes the status of counters between distributed
systems. This makes ROTE provide rollback protection counter as long as the
status of the counter is kept on one or more systems. SSUKey is compatible with
ROTE but we do not implement ROTE in this work.

7 Conclusion

In this paper, we have presented SSUKey, a CPU-based solution protecting pri-
vate keys. Our main idea is to adopt Intel SGX to resist the vulnerabilities of
privileged code, including OS kernel, and employ ECC-TC to mitigate the vul-
nerabilities of SGX, including side channel and rollback. We consider a powerful
adversary that controls the OS and has even compromised one share of the pri-
vate key. We provide a central key management function to help users globally
monitor the usage of private keys and detect the abnormal behaviors, minimizing
the risk of private key abusing. Our experiments demonstrate that our SSUKey
is acceptable with a moderate performance decline when compared with the one
without protection from SGX and TC.

Acknowledgments. We thank the anonymous reviewers for their helpful feedback.
The work was partially supported by the National Basic Research 973 Program of
China (No. 2014CB340603) and the National Natural Science Foundation of China
(No. 61772518).

References

1. Stratistics MRC: Digital Signature - Global Market Outlook (2016–2022). http://
www.strategymrc.com/report/digital-signature-market. Accessed Sept 2017

2. Services that Integrate with the YubiKey. https://www.yubico.com/solutions/#
FIDO-U2F. Accessed Sept 2017

3. SafeNet Inc.: 2014 Authentication Survey Executive Summary. https://safenet.
gemalto.com/news/2014/authentication-survey-2014-reveals-more-enterprises-
adopting-multi-factor-authentication/. Accessed Sept 2017

http://www.strategymrc.com/report/digital-signature-market
http://www.strategymrc.com/report/digital-signature-market
https://www.yubico.com/solutions/#FIDO-U2F
https://www.yubico.com/solutions/#FIDO-U2F
https://safenet.gemalto.com/news/2014/authentication-survey-2014-reveals-more-enterprises-adopting-multi-factor-authentication/
https://safenet.gemalto.com/news/2014/authentication-survey-2014-reveals-more-enterprises-adopting-multi-factor-authentication/
https://safenet.gemalto.com/news/2014/authentication-survey-2014-reveals-more-enterprises-adopting-multi-factor-authentication/

62 H. Li et al.

4. Hofmann, O., et al.: InkTag: secure applications on an untrusted operating system,
vol. 41, pp. 265–278. ACM (2013)

5. McCune, J., et al.: TrustVisor: efficient TCB reduction and attestation. In: 2010
IEEE Symposium on Security and Privacy (SP), pp. 143–158. IEEE (2010)

6. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13 (2013)

7. Hoekstra, M., et al.: Using innovative instructions to create trustworthy software
solutions, p. 11 (2013)

8. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: HASP@ ISCA, p. 10 (2013)

9. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive,
2016:86 (2016)

10. Schwarz, M., et al.: Malware guard extension: using SGX to conceal cache attacks.
arXiv preprint arXiv:1702.08719 (2017)

11. Brasser, F., et al.: Software grand exposure: SGX cache attacks are practical. arXiv
preprint arXiv:1702.07521 (2017)

12. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy (SP), pp. 640–656. IEEE (2015)

13. Intel: SGX documentation: SGX create monotonic counter. https://software.intel.
com/en-us/node/709160. Accessed Sept 2017

14. Skorobogatov, S.: The bumpy road towards iPhone 5c NAND mirroring. arXiv
preprint arXiv:1609.04327 (2016)

15. Shen, S. (ed.): SM2 Digital Signature Algorithm (draft 02) (2014). https://tools.
ietf.org/html/draft-shen-sm2-ecdsa-02

16. Shen, S. (ed.): SM3 Hash function (draft 01) (2014). https://tools.ietf.org/html/
draft-shen-sm3-hash-01

17. Tse, R.: The SM4 Block Cipher Algorithm and Its Modes of Operations (draft 01)
(2014). https://tools.ietf.org/html/draft-ribose-cfrg-sm4-01

18. Dierks, T.: RFC 5246: the transport layer security (TLS) protocol. The Internet
Engineering Task Force (2008)

19. Barker, E., Kelsey, J.: Recommendation of random number generation using deter-
ministic random bit generators. NIST SP800-90A, June 2015

20. Weiser, S., Werner, M.: SGXIO: Generic Trusted I/O Path for Intel SGX. arXiv
preprint arXiv:1701.01061 (2017)

21. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 (draft 21)
(2017). https://tools.ietf.org/pdf/draft-ietf-tls-tls13-21.pdf

22. Lin, J., et al.: Signing and decrypting method and system applied to cloud
computing and based on SM2 algorithm (2014). http://www.soopat.com/Patent/
201410437599. CN Patent CN104243456A

23. Li, D., Morton, P., Li, T., Cole, B.: Cisco hot standby router protocol (HSRP)
(1998)

24. Matetic, S., et al.: ROTE: rollback protection for trusted execution. IACR Cryp-
tology ePrint Archive 2017:48 (2017)

25. Li, W., et al.: Building trusted path on untrusted device drivers for mobile devices.
In: APSys 2014. ACM (2014)

http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.07521
https://software.intel.com/en-us/node/709160
https://software.intel.com/en-us/node/709160
http://arxiv.org/abs/1609.04327
https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
https://tools.ietf.org/html/draft-shen-sm3-hash-01
https://tools.ietf.org/html/draft-shen-sm3-hash-01
https://tools.ietf.org/html/draft-ribose-cfrg-sm4-01
http://arxiv.org/abs/1701.01061
https://tools.ietf.org/pdf/draft-ietf-tls-tls13-21.pdf
http://www.soopat.com/Patent/201410437599
http://www.soopat.com/Patent/201410437599

	SSUKey: A CPU-Based Solution Protecting Private Keys on Untrusted OS
	1 Introduction
	2 Assumptions
	3 SSUKey Design
	3.1 Architecture
	3.2 Trusted Channel Between CE and SE Establishment
	3.3 Key Setup
	3.4 Signature and Decryption
	3.5 Key Management

	4 Security Analysis
	5 Evaluation
	5.1 Cryptographic Operations Throughputs
	5.2 Applications Throughputs

	6 Related Work
	7 Conclusion
	References

