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Abstract. In 2011, Stehlé and Steinfeld modified the original NTRU to
get a provably IND-CPA secure NTRU under the hardness assumption of
standard worst-case problems over ideal lattices. In 2012, López-Alt et al.
proposed the first multikey fully homomorphic encryption scheme based
on the IND-CPA secure NTRU. Interestingly, this homomorphic NTRU
and subsequent homomorphic variants of NTRU removed the condition
‘invertible public key’ of the underlying IND-CPA secure NTRU. In this
paper, we investigate the security influence of using non-invertible public
key in the homomorphic NTRU. As a result, we present how to mount
a lattice attack to message recovery for the homomorphic NTRU when
the public key is non-invertible. Our result suggests that using invertible
public keys in the homomorphic NTRU is necessary for its security.
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1 Introduction

The NTRU encryption scheme designed by Hoffstein et al. [6] is considered as
a reasonable alternative to the public key encryption schemes based on either
integer factorization or discrete logarithm. Since its first introduction, minor
changes of the parameter to avoid known attacks have been added. Even with
its computational efficiency and standardization of the NTRU [11], a provably
secure version was not known until Stehlé et al. proposed a modification of the
original NTRU in the year 2011 [10]. The IND-CPA security of their modifica-
tion is proven in the standard model under the hardness assumption of standard
worst-case problems over ideal lattices [10]. Reflecting the continued progress
in the research on quantum computing, researches on transitioning to quantum
resistant algorithms become very active. Moreover, NIST has initiated a stan-
dardization process in post-quantum cryptography. The IND-CPA secure version
of NTRU could be a strong candidate for the standardization of post-quantum
public key encryption. The security proof of the IND-CPA secure NTRU was
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given in [10] under the assumption that the public key is an invertible polyno-
mial in Rq = Z[x]/〈q, xn+1〉, however, no such result is known for ‘non-invertible’
public key. López-Alt et al. observed that the IND-CPA secure NTRU can be
made fully homomorphic and proposed the first multikey homomorphic encryp-
tion scheme for a bounded number of users [8]. Notably, the homomorphic NTRU
[8] and its subsequent versions [3,9] do not assume invertible public keys. If q is
a prime number and n is a power of 2 with q = 1 mod 2n, then there is a ring
isomorphism between Rq and Z

n
q and the number of non-invertible elements in

Rq is qn − (q − 1)n.
In this paper, we investigate the security influence of using non-invertible

public key in the homomorphic NTRU. We present a very effective lattice attack
for message recovery on the homomorphic NTRU when the public key is not
invertible. The message space of the homomorphic NTRU is {0, 1} which implies
that the IND-CPA security is equivalent to the security against the message
recovery attack. We interpret the message recovery attack as solving a system
of linear equations under some condition over a finite field Zq using β(x) =

xn+1
gcd (h(x),xn+1) ∈ Zq[x] for any non-invertible public key pk = h(x). For a proof
of successful message recovery in general, we used a sequence of sublattices of
the target lattice and showed that there is an optimal sublattice which gives the
desired short vector by the LLL algorithm if the degree of deg β(x) ≤ log q

4 in
the homomorphic NTRU. Moreover, it is known that the actual shortest output
vector of the LLL algorithm could be much shorter than its theoretical bound.
In fact, our experiments using MLLL(Modified LLL) in [4] give much shorter
vector than the theoretical bound and this suggests that avoiding β(x) to have
small degree is not enough to guarantee the security of the homomorphic NTRU
under message recovery attack. Therefore we conclude that setting the public
key of the homomorphic NTRU as an invertible polynomial in Rq is desirable
since the security against message recovery attack is a minimal requirement for
encryption scheme. We note that some lattice attacks called by the subfield
attacks on NTRU cryptosystem were proposed by Cheon et al. [5] and Albrecht
et al. [1] and the goal of the subfield attack is to recover private key which can
be understood as a short vector of the NTRU lattice. Their subfield attacks are
based on the fact that there exist subfields that allow to reduce the dimension
of the NTRU lattice and successful when the modulus q is exponential in n.
Contrary to [1,5], the goal of our lattice attack is the message recovery when the
public key is non-invertible.

The rest of the paper is organized as follows. In Sect. 2, we review some basics
of this paper. In Sect. 3, we show that how to mount the message recovery attack
to be successful if the public key is not invertible. In Sect. 4, we conclude our
paper.

2 Preliminaries

2.1 The Basic Scheme of Homomorphic NTRU

The homomorphic NTRU is defined on the ring Rq = Z[x]/〈q, xn + 1〉 for q is a
prime number and n is a power of two. Any element k(x) ∈ Rq is represented
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as k(x) =
∑n−1

i=0 kix
i, where − q

2 < ki < q
2 . For the ring R = Z[x]/〈xn + 1〉,

we denote k(x) ← χε for an appropriate distribution χε and each coefficient
|ki| ≤ ε of k(x) if k(x) ← χε. In the homomorphic version in [8], it is assumed
that q = 2nδ

with 0 < δ < 1 and the message space is {0, 1} while it was
considered that q = poly(n) with the message space {0, 1}n in the proven IND-
CPA secure version [10]. The basic scheme of the homomorphic NTRU consists
of three polynomial time algorithms KeyGen,Enc,Dec).

KeyGen(1κ): Sample polynomials f̃(x), g(x) ← χε, repeat sampling f̃(x) until
f(x) := 2f̃(x) + 1 is invertible in Rq and denote the inverse of f(x) in
Rq as (f(x))−1. Output pk = h(x) := 2g(x)(f(x))−1 (mod q, xn + 1) and
sk = f(x).

Enc(pk,m ∈ {0, 1}): Sample polynomials s(x), e(x) ← χε, and output
c(x) := h(x)s(x) + 2e(x) + m (mod q, xn + 1).

Dec(sk, c): Compute μ(x) = f(x)c(x) (mod q, xn + 1), and output
m′ = μ(x) (mod 2).

2.2 Lattices and LLL Algorithm

The lattice L is an additive subgroup of Rm that is Z-generated by a set of n
linearly independent vectors {b1, ...,bn} in R

m. We say n as the dimension of the
lattice L which is denoted by dim(L). For a given lattice L, there is a geometric
invariant called the minimum of the lattice and there are several computational
problems related to the minimum.

Definition 1 (Minimum). The (first) minimum of a lattice L is the norm of
a shortest non-zero vector in L and denoted as λ1(L) = minv∈L\{0}‖v‖2 where
‖ · ‖2 is the Euclidean norm of the vector.

In [2], Ajtai proved that for a given lattice L, the problem of finding a vector
of the minimum norm, which is called as the Shortest Vector Problem(SVP), is
NP-hard. A relaxed SVP is a problem of finding a vector which is no longer than
a factor of γ to the first minimum and these problems are often refer to as the
approximate SVPγ . Note that if γ increases, the problem gets easier. There is no
known efficient algorithm solving the SVPγ for small γ in a lattice in arbitrary
dimension even in quantum computer. The LLL algorithm is a polynomial time
algorithm for SVPγ with γ = 2

n−1
2 [7]. Moreover, in theoretical view, the shortest

vector v of the output vector of LLL algorithm for n dimensional lattice L

satisfies that ||v||2 ≤ 2
n−1
4 det(L)1/n. We note that the input of LLL algorithm

should be a basis of the lattice. The MLLL is modified from LLL so that it works
on any set of generating set of vectors of integer lattices [4].

3 Message Recovery of Homomorphic NTRU
with Non-invertible Public Keys

The IND-CPA security of homomorphic NTRU was proven when the public key
h(x) = 2g(x)

f(x) ∈ Rq is invertible in [10]. In this section, we consider the case
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that the public key h(x) is not invertible in Rq. Because q is prime, we see
that Zq[x] is a unique factorization domain. If h(x) is not invertible in Rq, then
gcd (h(x), xn + 1) = d(x) �= 1 in Zq[x]. Therefore, we see that xn +1 = β(x)d(x)
and gcd (β(x), h(x)) = 1 in Zq[x]. Since xn + 1 divides β(x)h(x), we see that
β(x)h(x) = 0 in Rq. For a given ciphertext c(x) = h(x)s(x) + 2e(x) + m, we
see that w(x) = β(x)c(x) mod (q, xn + 1) = β(x)(2e(x) + m) mod (q, xn + 1).
In the homomorphic NTRU, the plaintext is chosen from {0, 1}, and therefore,
its IND-CPA security is equivalent to the security in message recovery attack.
Therefore, the IND-CPA adversarial goal is to recover m ∈ {0, 1} from

w(x) = β(x)(2e(x) + m) mod (q, xn + 1), (1)

while m and e(x) are unknown and w(x) and β(x) are known.

3.1 A Sufficient Condition for Message Recovery

For β(x) = xn+1
gcd (h(x),xn+1) =

∑�
i=0 βix

i ∈ Zq[x], we consider the following matrix
[B] ∈ Z

n×n:

[B] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0 · · · · · · β� · · · 0
...

. . . . . .
...

0 · · · β0 · · · · · · β�

−β� · · · 0 β0 · · · β�−1

. . . . . .
−β1 · · · −β� 0 · · · β0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bn−1

...
b�

b�−1

...
b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

Note that the Eq. (1) can be represented by using matrices over Zq for e(x) =
∑n−1

i=0 eix
i and w(x) =

∑n−1
i=0 wix

i:

w = [B] · (2e + m) mod q (3)

with w = [wn−1, . . . , w0]T ; 2e+m = [2en−1, . . . , 2e1, 2e0+m]T . Again, Eq. (3)
of matrices can be written as

wi = 〈bi, 2e + m〉 mod q for all i = 0, ..., n − 1,

where 〈·, ·〉 is the usual inner product of two vectors in Z
n.

Theorem 1. Suppose that bi’s are given as in Eq. (2) and a vector η =
(η0, . . . , ηn−1) ∈ Z

n is known to satisfy the following condition:

Condition(*)

⎧
⎨

⎩

(i) η =
∑n−1

i=0 λibi mod q for λi ∈ Z

(ii) |ηi| < q
4nε+2 for all i = 0, 1, . . . , n − 1

(iii) ηn−1 = 1 mod 2

For any given ciphertext c(x), the plaintext m ∈ {0, 1} can be recovered by
m = (

∑n−1
i=0 λiwi mod q) mod 2, where w(x) = β(x)c(x) mod (q, xn + 1) =

∑n−1
i=0 wix

i.
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Proof. For a given vector η = (η0, . . . , ηn−1) =
∑n−1

i=0 λibi mod q with the
Condition(*) holds, we have

n−1∑

i=0

λiwi mod q = 〈
n−1∑

i=0

λibi, 2e + m〉 mod q = (
n−1∑

i=0

2eiηi) + mηn−1 mod q.

From the assumptions |ηi| < q
4nε+2 , |ei| ≤ ε and m ∈ {0, 1}, we see that

|(
n−1∑

i=0

2eiηi) + mηn−1| < 2nε
q

4nε + 2
+

q

4nε + 2
=

q(2nε + 1)
4nε + 2

= q/2.

Therefore, we have
∑n−1

i=0 λiwi mod q =
(∑n−1

i=0 2eiηi

)
+ mηn−1, which implies

that (
∑n−1

i=0 λiwi mod q) mod 2 = m. �
Note that Theorem 1 works for any solution (λi)0≤i≤n−1 which is easy to

compute from η by a simple linear algebra over Zq. Therefore, for a success-
ful message recovery attack, it is enough to get a vector η ∈ Z

n that satisfies
Condition(*).

3.2 A Lattice Attack for the Message Recovery

Now we present how to apply a lattice reduction algorithm, to find such a short
vector η that is described in Theorem 1.

For the vectors bi’s as given in Eq. (2), we consider the lattice LB = {ζ ∈
Z

n|ζ =
∑n−1

i=0 xibi mod q for some xi ∈ Z}. Now we describe the process of
finding a short vector in LB that satisfies Condition(*) in two ways. Firstly,
we apply a lattice reduction algorithm MLLL [4] for the linearly dependent
generating set of vectors

S = {(q, 0, ..., 0), (0, q, 0, ..., 0), ..., (0, ..., 0, q),bn−1, ...,b0} ⊂ Z
n.

From our experiments, we see that the algorithm MLLL outputs a short vector
with Condition(*) holds if the degree 
 of β(x) is small. However, the only thing
we can prove on the size of the shortest vector of the output of MLLL is that
it is at least smaller than 2

n−1
4 (det LB)

1
n ≤ 2

n−1
4 q

�
n from the LLL reducedness

of the output. This does not give enough reason why a short vector from the
output of MLLL satisfies the Condition(*).

Now we present a method of finding a short vector in LB that with Con-
dition(*) holds provably if the degree 
 ≤ log2 q

4 . We consider a sequence of
sublattices L�+1 ⊂ L�+2 ⊂ · · · ⊂ Ln ⊂ LB), where Li(
+1 ≤ i ≤ n) is generated
by the row vectors of Bi ∈ Z

i×n which are defined as follows:

Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 q · · · 0 0 · · · 0
...

...
. . .

...
...

0 · · · 0 0 · · · q 0 · · · 0
0 · · · 0 β0 · · · β�−1 1 · · · 0
...

...
. . . . . . . . . . . .

0 · · · 0 0 · · · β0 · · · β�−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [0i×(n−i)|B′
i,red], B′

i,red ∈ Z
i×i
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Let LB′
i,red

⊂ Z
i be the lattice generated by the row vectors of B′

i,red for
i = 
 + 1, ..., n. If ηred = (η′

n−i, ..., η
′
n−1) ∈ LB′

i,red
is a short vector that sat-

isfies Condition(*) then η = (ηj)0≤j≤(n−1) is a short vector in LB that satisfies
Condition(*), where ηj = 0 if 0 ≤ j ≤ (n− i−1) and ηj = η′

j if n− i ≤ j ≤ n−1.
From [4], we see that the shortest vector v′

i ∈ LB′
i,red

of the output of the LLL
algorithm for the lattice generated by the row vectors of B′

i,red satisfies that

||v′
i|| ≤ ||v′

i||2 ≤ 2
i−1
4 det(B′

i,red)
1/i = 2

i−1
4 q

�
i .

By setting log2 q = τ , we have a sequence of vectors vi ∈ LB with ||vi|| ≤
2

i−1
4 + �τ

i for i = 
+1, ..., n. From a simple calculation over real numbers using the
derivatives, we see that the function f(i) = 2

i−1
4 + �τ

i has its minimum 2−1/4+
√

�τ

at i = 2
√


τ . For simplicity, we assume that κ = 2
√


τ is an integer. Therefore,
the LLL algorithm applied on LB′

κ,red
on the basis consists of the row vectors of

B′
κ,red gives a vector v ∈ LB with ||v|| ≤ 2−1/4+

√
�τ .

Now we want to show that this vector satisfies Condition(*) as long as the last
component is an odd number. For this, it is enough to show that 2−1/4+

√
�τ ≤

q
4nε+2 . From the equality 2−1/4+

√
�τ = 2−1/4q

√
�
τ , it is enough to show that

2−1/4(4nε + 2) ≤ q1−
√

�
τ . In particular, if q is subexponential in n as in the

homomorphic NTRU, one can assume that 2−1/4(4nε + 2) ≤ q1/2. Moreover, if

 ≤ log2 q

4 = τ
4 , we clearly have q1/2 ≤ q1−

√
�
τ and thus 2−1/4(4nε+2) ≤ q1−

√
�
τ .

Therefore, we conclude that 2−1/4+
√

�τ ≤ q
4nε+2 if 
 ≤ log2 q

4 .
Note that the condition 
 ≤ log2 q

4 to guarantee the desired shortness of the
vector v is deduced from the theoretical bound of the shortest vector of the
output of the LLL algorithm. It is known that the actual shortest vector of the
LLL algorithm is shorter than the theoretical bound in general. Moreover, as in
the example of the following section, the method using MLLL gives a shorter
vector than the method using the sublattice. This suggests that the message
recovery attack can be successful for much larger 
’s. Therefore, setting h(x)
as an invertible polynomial in Rq is more appropriate than avoiding β(x) with
successful lattice reduction attack using sublattice as described above.

4 Conclusion

The IND-CPA security of the homomorphic NTRU is proven when the public key
is invertible in Rq [10]. However, no result on the security of the homomorphic
NTRU is known when the public key is not invertible. In this paper, we show that
if the public key is not invertible in the homomorphic NTRU, then one can use a
lattice reduction algorithm effectively to recover the plaintext of any ciphertext.
Therefore, we conclude that the public key of homomorphic NTRU should be
invertible in the ring Rq to guarantee the IND-CPA security of homomorphic
variants of NTRU [3,8,9].
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