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Abstract. Attribute-set based encryption is a promising branch of
attribute-based encryption which deals with the case when many
attributes are only meaningful in groups or in sets and helps to avoid
the exponential growth of attributes. We propose a feasible and effi-
cient attribute-set based encryption scheme which is large universe,
unbounded and supports composite attributes, using linear secret shar-
ing schemes as the underlying tool. Additionally, our construction has
been proved to be selectively secure in the standard model while previous
ones could only be proved to be secure in the generic group model.
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1 Introduction

In cloud computing system, the cloud service providers may be honest but curi-
ous about the customer data for the analysis of user behavior or advertising. A
feasible solution is that owners encrypt sensitive data before uploading them.
Compared with the traditional one-to-one encryption, Attribute-Based Encryp-
tion (ABE), as an excellent cryptographic access control mechanism, is quite
preferable for data encryption and sharing based on the recipients’ ability to
satisfy a policy. ABE is an excellent cryptographic access control mechanism
achieving the sharing of encrypted data. However, in many scenarios, separate
attributes cannot give a good satisfaction for the various requirements, they are
only meaningful when they are organized as the groups or sets.

There are mainly two types of ABE schemes: Ciphertext-Policy ABE (CP-
ABE), where ciphertexts are associated with access policies and keys are asso-
ciated with sets of attributes, and Key-Policy ABE (KP-ABE), where keys
are associated with access policies and ciphertexts are associated with sets of
attributes. In this work, we focus on the challenge how to organize attributes
efficiently.
c© Springer International Publishing AG, part of Springer Nature 2018
S. Qing et al. (Eds.): ICICS 2017, LNCS 10631, pp. 180–191, 2018.
https://doi.org/10.1007/978-3-319-89500-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_16&domain=pdf


Practical Large Universe Attribute-Set Based Encryption 181

1. Attributes are often related with each other. Many attributes are only mean-
ingful in groups or in sets.

2. Separate attributes cannot give a great satisfaction for various requirements
in practice, which will lead to the consequence of a large number of repeated
attributes in the access policy.

The concept of Attribute-set based encryption (ASBE) was first proposed
by Bobba, et al. [5] in 2009. However, their construction is based on the access
tree and proved secure in generic group model. The scheme [18] is constructed
based on the [5] and also could only be proved secure in the generic model. In
this work, we propose a new scheme which is more practical. Compared with
the scheme of Bobba et al. [5], our scheme can achieve the properties of large
universe and unbounded, and is constructed based on the Linear Secret Sharing
Schemes (LSSS). Using the prime order groups and partition techniques [16], it
is efficient and selectively secure in the standard model. In order to achieve the
collusion attacks resistant ability, we use a different randomness to mask each
component for each individual attribute and composite attribute set.

1.1 Related Work

Sahai and Waters first proposed the concept of Attribute-based Encryption [17]
in 2005, as a generalization of Fuzzy Identity-based Encryption by using thresh-
old gates as the access structure. Then ABE comes into two flavors, Key-Policy
ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). Goyal et al. proposed
the first KP-ABE scheme [7], which supports monotonic Boolean encryption
policies. The first construction of CP-ABE was given by Bethencourt et al. [4],
whose security proof was based on the generic group model. Okamoto et al. first
gave a bounded fully secure construction in the standard model [9]. Until now
many works have been presented to achieve the unbounded or large universe
properties in ABE [8,13]. But most of them were somewhat limited such as
restricting the expressiveness of policies or using random oracle model. In 2013,
Rouselakis and Waters proposed a large universe and unbounded ABE scheme
[16] and proved it to be selectively secure using the partitioning style techniques.
Later in 2014, Wang and Feng proposed a large universe ABE scheme for lat-
tices [20]. In 2016, Li et al. proposed a practical construction for large universe
hierarchical ABE scheme [10] and Zhang et al. proposed an accountable large
universe ABE scheme supporting monotone access structures [21].

There are many other schemes focus on the problem of how to organize
attributes in ABE to make it practical and efficient. One study is hierarchical
ABE (HABE) [6,11,12,19]. Another is ASBE. Note that ASBE is quite differ-
ent from many existing HABE schemes in organizing attributes. Attributes in
former is composite such as {University A, Master}, while in the latter they are
hierarchical, that is, there is a relation between the superior and the subordi-
nate. ASBE was first proposed by Bobba et al. [5] in 2009. In ASBE, attributes
are organized into a recursive family of sets. In Bobba’s work, access policy was
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based on binary access tree. A hierarchical attribute-set based encryption con-
struction was proposed in 2012 [18]. Then in the following years between 2013
and 2015, many applications based on ASBE were proposed [1,2,14,15].

1.2 Our Contribution

We propose a practical Attribute-set based encryption scheme which is large uni-
verse, unbounded and supports composite attributes, we also prove our scheme
to be selectively secure in the standard model.

We overcame the following difficulties to construct the CP-ASBE scheme.

– We used a different randomness to mask each component for each individual
attribute and composite attribute set to achieve the collusion attacks resistant
ability.

– To achieve an efficient ASBE construction, we improved the linear secret
sharing schemes to support the composite attributes.

– We defined the formal security model, then by borrowing the idea of partition
technique, we overcame the challenges appeared in security proof process and
proved our scheme to be selective security in the standard model.

1.3 Organization

The remainder of the paper is organized as follows. Section 2 gives necessary
background on bilinear maps, access structure, linear secret sharing schemes,
algorithms and complexity assumptions. Then we formalize our CP-ASBE
scheme and define its security model. We propose a construction of CP-ASBE
with a formal security proof in Sects. 3 and 4. We give a belief conclusion in
Sect. 5.

2 Preliminaries

Bilinear maps. Let G0 and G1 be two multiplicative cyclic groups of prime
order p. Let g be a generator of G0 and e be a bilinear map, e : G0 × G0 → G1.
The bilinear map e has the following properties:

1. Bilinearity: For all u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

Linear Secret Sharing Schemes (LSSS) [3]. Some modifications will be
made in LSSS to support composite attribute sets. First, a secret sharing scheme
II over a set of parties P realizing access structure is linear over Zp if

1. The share of a secret s ∈ Zp for each attribute form a vector over Zp.
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2. For each access structure A on U which is the attribute universe, there exists
a matrix M ∈ Zl×n

p with l rows and n columns, which is called the share-
generating matrix and a function ρ, which is defined as the mapping from
rows of M to attributes in U , i.e. ρ : [l] → U . For all i = 1, · · · , l, the ith

row of M is associated with an attribute ρ(i). Let the function ρ define the
party labeling row i as ρ(i). To share the secret s ∈ Zp, we first consider the
column vector y = (s, y2, · · · , yn)T , where s is the secret to be shared, and
y2, · · · , yn ∈ Zp are randomly chosen. Then My is the vector of l shares of
the secret s according to II. The share (My)i belongs to party ρ(i), that is,
the attribute of ρ(i).

According to [6], every LSSS enjoys the linear reconstruction property. Sup-
pose II is an LSSS for the access structure A. Let S be any authorized set if
A(S) = 1, and let I ⊂ {1, 2, · · · , l} be defined as I = {i : ρ(i) ∈ S}. Then there
exist constants {di ∈ Zp}i∈I such that, if {λi}(i ∈ I) are valid shares of any
secret s according to II, then

∑
i∈I di · λi = s.

Furthermore, to support composite attribute sets, that is only attributes in
the same set can be used to satisfy the access policy, one natural idea is to re-
share the shares obtained from the outer set. Take the depth of key structure
being 2, that is, d = 2 as an example, we will first generate a share di(1 ≤ i ≤ k)
of the secret for each attribute subset: A0, A1, A2, · · · , Ak. And then for each
attribute subset Ai, it takes the share di as a new secret to share with the
attributes (ai1, · · · , aini

) in it where ni is the number of attributes in set Ai.
When the depth of key structure is greater than d, iterate the process discussed
above several times until there is no composite attribute subsets.

Algorithms. Our LU-CP-ASBE scheme consists of the following five algo-
rithms:

– Setup(1λ) → (PK,MK): This is a randomized algorithm that takes a secu-
rity parameter λ ∈ N encoded in unary, it generates the public parameters
PK and master key MK.

– KeyGen(PK,MK,S) → SK: The private key generation algorithm is a
randomized algorithm that takes as input the public parameters PK, the
master key MK, and attribute set S. It outputs a user’s secret key SK.

– Encrypt(PK,M,A) → CT : This is a randomized algorithm that takes as
input the public parameters PK, a plaintext message M , and an access struc-
ture A. It outputs ciphertext CT .

– Decrypt(PK,SK,CT ) → M : The decryption algorithm takes as input the
public parameters PK, a secret key SK of a user with a set of attributes S,
and a ciphertext CT that was encrypted under access structure A. It outputs
the message M if S satisfies A. Otherwise, it outputs a symbol of ⊥.

Assumption. Initially the challenger calls the groups generation algorithm with
the security parameter as input and then picks a random group element g ∈ G0,
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q + 2 random exponents a, s, b1, b2, · · · , bq ∈ Zp. Then he sends to the adversary
the group description (p,G0,G1, e) and all of the following terms:

g, gs

gai

, gbj

, gsbj , gaibj , gaib2j ∀(i, j) ∈ [q, q]

gaibj/b2
j′ ∀(i, j, j′) ∈ [2q, q, q] with j �= j′

gai/bj ∀(i, j) ∈ [2q, q] with i �= q + 1

gsaibj/bj′ , gsaibj/b2
j′ ∀(i, j, j′) ∈ [q, q, q] with j �= j′

It is hard for the adversary to distinguish e(g, g)saq+1 ∈ G1 from an element
which is randomly chosen from G1.

We say that the q-type assumption holds if no PPT adversary has a non-
negligible advantage in solving the q-type problem.

Selective security model. We give the definition of the security model for our
large universe CP-ASBE (LU-CP-ASBE) scheme. In our LU-CP-ASBE model,
attributes are divided into simple attributes and composite attributes. Note that
once some component in composite attribute sets satisfies the access structure,
the associated user is said to be authorized. We described the security model by
a game between an adversary A and a challenger B and is parameterized by the
security parameter λ ∈ N. The phases of the game are as follows:

– Init: The adversary A declares the access structure A
∗ which he wants to

attack, and then sends it to the challenger B.
– Setup: The challenger B runs the Setup(1λ) algorithm and gives the public

parameters PK to the adversary A.
– Phase 1: The adversary A is allowed to issue queries for secret keys for users

with sets of attributes (S1), (S2), · · · , (SQ1). For each (Si), the challenger B
calls KeyGen(PK,MK,Si) → SKi and sends SKi to A. The only restriction
is that Si does not satisfy A

∗.
– Challenge: The adversary A submits two equal length messages M0 and M1.

The challenger B flips a random coin b ∈ {0, 1}, and encrypts Mb with A
∗.

The ciphertext is passed to A.
– Phase 2: Phase 1 is repeated.
– Guess: The adversary A outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as |Pr[b′ = b]−1/2|.
A CP-ASBE scheme is selectively secure if all probabilistic polynomial time

(PPT) adversaries have negligible advantage in λ in the security game above.

3 Our Construction

In this section, we present the construction of LU-CP-ASBE scheme where
the attributes are assumed to be divided into simple attributes and composite
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attributes. Composite attributes are expressed in the form of attribute sets. To
prevent users from making the collusion attack, we use a unique random number
to bind the attribute with the attribute set it belongs to. The public parameters
consist of seven group elements (g, u, h, w, v,X, Y ) where X = wβ , Y = e(g, g)α.
These parameters are utilized in two layers, attribute layer (the u, h terms) and
the secret sharing layer (the w term). Attribute layer provides a hash function to
map arbitrary attributes as group elements. And the secret sharing layer is the
main part to be modified for transforming CP-ABE into CP-ASBE. w term, the
secret sharing layer, holds the secret randomness r associated with a user and
the secret randomness rij associated with each attribute during key generation.

Let G0 be a bilinear group of prime order p, and let g be a generator of G0.
In addition, let e : G0 ×G0 → G1 denote the bilinear map. A security parameter
λ will determine the size of the groups. We assume that users’ attributes are
elements in Z

∗
p, however, attributes can be any meaningful unique strings using

a collision resistant hash function H : {0, 1}∗ → Z
∗
p.

Our construction follows.

– Setup(1λ, d = 2) → (PK,MK). The input parameter d is the depth of key
structures, which is decided at setup phase and restricted to be less than d.
For convenience, here we show a scheme with the key structure depth of 2,
although it can be easily extended to arbitrary depth.

The algorithm calls the group generation algorithm G(1λ) and gets the
descriptions of the groups and the bilinear mapping D = (p,G0,G1, e). Then
it picks the random terms g, u, h, w, v ∈ G0 and α, β ∈ Zp. The setup algo-
rithm issues the public parameters PK as: (D, g, u, h, w, v,X, Y ) and keeps
the master key MK(α, β) as secret.

– KeyGen(PK,MK,S = {A0, · · · , Ak} ⊆ Zp) → SK. As what has been
explained in Sect. 2, A0 is the set of simple attributes in the outer set,
and Ai(i ∈ [1, k]) are composite attribute sets in depth 1. Let Ai =
{ai,1, ai,2, · · · , ai,ni

}, where ai,j denotes the jth attribute appearing in set Ai.
The KeyGen algorithm first picks k + 1 random exponents r, r1, r2, · · · , rk ∈
Zp, r for the user u and r0, r1, r2, · · · , rk for each composite attribute set
Ai ∈ S, 0 ≤ i ≤ k. It also picks random exponent ri,j for each attribute
in S. Then calculate K0 = gαwr and for each θ ∈ [0, k] calculate: K

{θ}
1 =

grθ , L{θ} = g
r+rθ

β ,K
{θ}
i,2 = grθ,i ,K

{θ}
i,3 = (uaθ,ih)rθ,iv−rθ .

It outputs the secret key SK as: (S,K0, {K
{θ}
1 , L{θ},K{θ}

i,2 ,K
{θ}
i,3 }θ∈[0,k],i∈[ni]).

Note that the operations on exponents are module the order p of the group,
which is prime.

– Encrypt(m, (M,ρ)) → CT . The encryption algorithm takes the plaintext
message m and the access policy encoded by LSSS as input, where M ∈ Z

l×q
p

and ρ is a function mapping the row number to the corresponding attribute.
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The encryption algorithm then randomly picks y = (s, y2, · · · , yq) ∈ Z
q×1
p

and s is the random secret to be shared. The vector of shares is denoted as
λ = (λ1, · · · , λl) = (λ01, · · · , λ0n0 , · · · , λγ1, · · · , λγnγ

)T = M · y.

It then chooses θ · τ random values tθτ ∈ Zp and for every θ ∈ [0, γ], τ ∈ [nθ]
computes

C = me(g, g)αs,D0 = gs,

C
{θ}
τ,1 = wλX vtX , C

{θ}
τ,2 = (uρ(X )h)−tX , C

{θ}
τ,3 = gtX , Ĉ{θ}

τ = XλX

Then publishes the ciphertext CT as:

(C, (M,ρ),D0, {C
{θ}
τ,1 , C

{θ}
τ,2 , C

{θ}
τ,3 , Ĉ{θ}

τ }θ∈[0,γ],τ∈[nθ]).

X ∈ [l] is the row number of each attribute where X =
∑

i∈[0,θ) nθ + τ .

– Decrypt(SK,CT ) → m. The decryption algorithm first finds the set I of
the attributes, I = {i : ρ(i) ∈ A}. Then if set I exists, there exists constant
coefficient {di ∈ Zp}i∈I such that

∑
i∈I di · Ml = (1, 0, · · · , 0), where Ml is

the ith row of matrix M . Then we have
∑

i∈I diλi = s.

Function ψ(i) defines subset Ȧ that ρ(i) belongs to and function Φ(i) defines
the position of ρ(i) in Ȧψ(i). Denote the set {i : i ∈ I ∩ ψ(i)} as Iθ. Now the
decryption algorithm calculates

F =
∏

θ∈ψ(i)

∏
i∈Iθ

e((Ĉ{θ}
Φ(i))

di , L{θ})
∏

i∈Iθ
(e(K{θ}

1 , C
{θ}
Φ(i),1)e(K

{θ}
τ,2 , C

{θ}
Φ(i),2)e(K

{θ}
τ,3 , C

{θ}
Φ(i),3))

di

.

where τ is the index of the attribute ρ(i) in subset Aθ. The algorithm outputs
plaintext m as C · F/(D0,K0).

– Correctness.

Fθ =
∏

i∈Iθ

(e(K{θ}
1 , C

{θ}
Φ(i),1)e(K

{θ}
τ,2 , C

{θ}
Φ(i),2)e(K

{θ}
τ,3 , C

{θ}
Φ(i),3))

di =
∏

i∈Iθ

e(g, w)rθdiλi

Translate Fθ to Fθ′ by the following way.

Fθ′ =
e(

∏
i∈Iθ

(Ĉ{θ}
Φ(i))

di , L{θ})

Fθ
=

e(
∏

i∈Iθ
Xdiλi , g

r+rθ
β )

∏
i∈Iθ

e(g, w)rθdiλi
= e(g, w)r

∑
i∈Iθ

diλi

Then we have F =
∏

θ∈ψ(i) Fθ′ = e(g, w)r
∑

i∈I diλi = e(g, w)rs and m =
C · F/(D0,K0) = me(g, g)αse(g, w)rs/e(gs, gαwr).
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4 Selective Security Proof

In this section, we will give the concrete security proof of our LU-CP-ASBE
scheme.

– Theorem 1. If the q −1 assumption is selectively secure in polynomial time,
then all PPT adversaries with a challenge matrix of size l ×n, where l, n ≤ q,
have a negligible advantage in selectively breaking our scheme.

– Proof. To prove the theorem, we will suppose that there exists a PPT adver-
sary A with a challenge matrix that satisfies the restriction, which has a
non-negligible advantage AdvA in selectively breaking our scheme. Using the
attacker, we will build a PPT simulator B that can challenge the q−1 assump-
tion with a non-negligible advantage.

– Init. The adversary A declares a challenge access policy A = (M∗, ρ∗) which
he wants to attack, and then sends it to the challenger B. Each row of M∗
will be labeled by an attribute and ρ(i) denotes the label of ith row M∗.

– Setup. B is supposed to generate the public parameters of system. It implic-
itly sets the master key to be α = aq+1 + α̃, β = β̃/s where a, s and q are set
in the assumption and α̃, β̃ are random exponents known to B. Notice that
in this way α and β is correctly distributed and a is information-theoretically
hidden from A. Also B chooses ṽ, ũ, h̃ ∈ Zp randomly, and gives the following
public parameters PK to A.

g = g, w = ga, u = gũ ·
∏

(j,k)∈[l,n]

(gak/b2j )M∗
j,k ,

h = gh̃ ·
∏

(j,k)∈[l,n]

(gak/b2j )−ρ∗(j)M∗
j,k , v = gṽ ·

∏

(j,k)∈[l,n]

(gak/bj )M∗
j,k ,

e(g, g)α = e(ga, gaq

) · e(g, g)α̃,X = wβ = gaβ̃/s.

– Phase 1. Now challenger B has to produce secret keys for tuples which
consists of non-authorized attribute sets S = {A0, A1, A2, · · · , Ak}, where
Ai = {ai1, ai2, · · · , aini

}. The only restriction is that S does not satisfy A
∗.

Consequently, there exists a vector d = (d1, d2, · · · , dn)T ∈ Z
n
p such that

d1 = −1 and 〈M∗
l ,d〉 = 0 for all i ∈ I = {i|i ∈ [l] ∩ ρ∗(i) ∈ S}. B computes

d using linear algebra. Then B picks r̃ for the user and r̃θ(θ ∈ [k]) for each
attribute subset randomly from Zp, and for simplicity we let r̃0 = r̃. Then B
implicitly have

r = r̃θ − d1a
q − · · · − dnaq+1−n = r̃θ −

∑

i∈[n]

dia
q+1−i (θ ∈ [0, k]),

rθ = r̃θ + d1a
q + · · · + dnaq+1−n = r̃θ +

∑

i∈[n]

dia
q+1−i (θ ∈ [0, k]).
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Each rθ is properly distributed due to r̃θ. Then using the suitable terms from
the assumption, B calculates:

K
{θ}
0 = gαwrθ = gα̃(ga)r̃θ

n∏

i=2

(gaq+2−i

)di ,K
{θ}
1 = grθ = gr̃θ

∏

i∈[n]

(gaq+1−i

)di ,

L{θ} = g(r+rθ)/β = g(r̃0+r̃θ)s/β̃).

Additionally, for each attribute aθτ in attribute subset Aθ, B compute the
terms K

{θ}
i,2 = grθ,i and K

{θ}
i,3 = (uaθ,ih)rθ,iv−rθ . The part v−rθ is

v−r̃θ (gṽ ·
∏

(j,k)∈[l,n]

(g
ak

bj )M∗
j,k)− ∑

i∈[n] dia
q+1−i

= v−r̃θ

∏

i∈[n]

(gaq+1−i

)−ṽdi ·
∏

(i,j,k)∈[n,l,n]

g−diM
∗
j,kaq+1+k−i/bj

=
v−r̃θ

∏

i∈[n]

(gaq+1−i

)−ṽdi ·
∏

(i,j,k)∈[n,l,n],i �=k

(g
aq+1+k−i

bj )−diM
∗
j,k

︸ ︷︷ ︸
Φ

·
∏

(i,j)∈[n,l]

g−diM
∗
j,kaq+1/bj

=Φ ·
∏

j∈l

g−〈M ∗
J ,d〉aq+1/bj = Φ ·

∏

j∈l,ρ∗(j)/∈S
g−〈M ∗

J ,d〉aq+1/bj .

The Φ part can be calculated by the simulator using the assumption, while
the second part cannot. Simulator B implicitly sets

rθ,τ = r̃θ,τ + rθ ·
∑

i′∈[l],ρ∗(i′)/∈S

bi′

aθτ − ρ∗(i′)

= r̃θ,τ + r̃θ ·
∑

i′∈[l],ρ∗(i′)/∈S

bi′

aθτ − ρ∗(i′)
+

∑

{i,i′}∈[n,l],ρ∗(i′)/∈S

dibi′aq+1−i

aθτ − ρ∗(i′)
.

where rθ,τ is properly distributed. Notice that rθ,τ is well defined only for
attributes that has nothing to do with the policy, therefore, the denominators
aθτ − ρ∗(i′) are non-zero. The (uaθ,ih)rθ,i part in K

{θ}
i,3 is computed as

(uaθ,ih)r̃θ,l · (K{θ}
i,2 /gr̃θ,l)ũaθ,i+h̃ ·

∏

(i′,j,k)∈[l,l,n],ρ∗(i′)/∈S
g

r̃θM∗
j,kb

i′ ak(aθ,i−ρ∗(j))

b2
j
(aθτ −ρ∗(i′))

·
∏

(i,i′,j,k)∈[n,l,l,n],ρ∗(i′)/∈S
g

M∗
j,kdib

i′ aq+k+1−i(aθ,i−ρ∗(j))

b2
j
(aθτ −ρ∗(i′))

= Ψ ·
∏

(i,j)∈[n,l],ρ∗(j)/∈S
g

M∗
j,idibjaq+1(aθ,i−ρ∗(j))

b2
j
(aθτ −ρ∗(j)) = Ψ ·

∏

j∈[l],ρ∗(j)/∈S
g

〈M ∗
j ,d 〉aq+1

bj .
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where Ψ and K
{θ}
i,2 can be calculated using the terms in our assumption.

The non-computable parts of (uaθ,ih)rθ,i and v−rθ term can cancel with each
other. In this way simulator B can calculate K

{θ}
i,2 and K

{θ}
i,3 and send the

decryption key SK = (S, {K
{θ}
0 ,K

{θ}
1 , L{θ},K{θ}

i,2 ,K
{θ}
i,3 }θ∈[0,k],i∈[nθ]) to A.

– Challenge. The adversary A submits two equal length message m0 and m1.
Then B flips a random coin b

$←− {0, 1} and constructs C = mbTe(g, g)α̃s and
D0 = gs where T is the challenge term. Then B is supposed to generate the
other components in ciphertext and it sets implicitly y = (s, sa + ỹ2, sa

2 +

ỹ3, · · · , san−1 + ỹn) where ỹ2, ỹ3, · · · , ỹn
$←− Zp. Since λ = M∗y, we have that

λX =
∑

i∈[n] M
∗
X ,isa

i−1 +
∑n

i=2 M∗
X ,iỹl =

∑
i∈[n] M

∗
X ,isa

i−1 + λ̃X for each
row X ∈ [l]. And for each now B sets implicitly tX = −sbX which is properly
distributed. Using this, B calculates

C
{θ}
τ,1 = wλX vtX

= wλ̃X ·
∏

i∈[n]

gM∗
X ,isai · g−sbX ṽ ·

∏

(j,k)∈[l,n]

g
− sakbX M∗

j,k
bj

= wλ̃X ·
∏

i∈[n]

gM∗
X ,isai · g−sbX ṽ ·

∏

k∈[n]

g−sakM∗
X ,k ·

∏

(j,k)∈[l,n],j �=X
g

− sakbX M∗
j,k

bj

= wλ̃X · (gsbX )−ṽ ·
∏

(j,k)∈[l,n],j �=X
(g

sakbX
bj )−M∗

j,k ,

C
{θ}
τ,2 = (uρ∗(X )h)−tX

= (gsbX )−(ũρ∗(X )+h̃) · (
∏

(j,k)∈[l,n]

g(ρ
∗(X )−ρ∗(j))M∗

j,kak/b2j )−sbX

= (gsbX )−(ũρ∗(X )+h̃) · (
∏

(j,k)∈[l,n],j �=X
gsbX ak/b2j )−(ρ∗(X )−ρ∗(j))M∗

j,k ,

C
{θ}
τ,3 = (gsbX )−1,

Ĉθ = XλX = X λ̃X ·
∏

i∈[n]

gM∗
X ,isβ̃/sai

= X λ̃X ·
∏

i∈[n]

(gai

)M∗
X ,iβ̃ .

where X =
∑θ

i=0 nθ + τ .

By using tX = −sbX , term v can cancel with the unknown powers of wλX and
similarly by using β = β̃/s, the unknown powers in Ĉθ can also be canceled.
Now there is nothing non-computable for B in terms C

{θ}
i,2 , C

{θ}
i,3 and Ĉθ.

So far, B successfully generates the correct ciphertext under the access struc-
ture (M,ρ) using the suitable terms in our assumption and public parameters
PK. Finally, B sends the challenged ciphertext CT

(C, (M,ρ),D0, {C
{θ}
τ,1 , C

{θ}
τ,2 , C

{θ}
τ,3 }θ∈[0,m],τ∈[nθ], {Ĉθ}θ∈[m])
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to the attacker A.
– Phase 2. Phase 1 is repeated.
– Guess. The adversary A is supposed to output a guess b′ of b to B. If b′ = b,

B outputs 0 and claim the challenge term is T = e(g, g)aq+1s, otherwise, it
outputs 1 and the challenge term T is random.

Since the probability of T = e(g, g)aq+1s equals 1/2, B has an advantage of
AdvA/2 to break the q-type security assumption.

5 Conclusion

In this paper, we proposed a feasible and efficient attribute-set based encryp-
tion scheme, which can be applied in the scenario where many attributes are
only meaningful in groups or in sets as they describe users. Our scheme is large
universe, unbounded and powerful in expressing complex access policies. Addi-
tionally, it is proved to be selectively secure under the q-type assumption.
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