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Abstract. In this paper, we formally consider the construction of tightly
secure deterministic public key encryption (D-PKE). Initially, we com-
pare the security loss amongst the D-PKE schemes under the concrete
assumptions and also analyze the tightness of generic D-PKE construc-
tions. Furthermore, we prove that the CPA secure D-PKE scheme of
Boldyreva et al. (Crypto’08) is tightly PRIV-IND-CPA secure for block-
sources. Our security reduction improves the security loss of their scheme
from O(nc∗) to O(1). Additionally, by upgrading the all-but-one trap-
door function (TDF) in the construction of Boldyreva et al. to all-but-n
TDF defined by Hemenway et al. (Asiacrypt’11), we give general con-
struction of PRIV-IND-n

2
-CCA secure (i.e., the number of challenge

ciphertexts nc∗ is bounded by n
2
) D-PKE scheme for block-sources. And

we observe that if the security reduction of the all-but-n TDF is tight,
the D-PKE scheme can be tightly PRIV-IND-n

2
-CCA secure. Finally,

we prove that the all-but-n TDF given by Hemenway et al. is tightly
secure, which results in the first tightly PRIV-IND-n

2
-CCA secure D-

PKE scheme for block-sources, based on the s-DCR assumption.
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1 Introduction

Currently, the formal way to prove the security of cryptographic primitives is
providing a security reduction, i.e., any adversary A breaking the security of a
scheme with advantage εA implies an adversary B that can solve the underlying
hard problem with advantage εB . Specially, we call the quotient L = εA/εB the
security loss of a reduction. Naturally, we hope that the quotient L is small.
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Tight Security Reduction. Standard security notions for public key encryp-
tion (PKE) schemes, e.g., IND-CCA security [6], only consider one user and one
ciphertext. However, in the reality setting, the adversary can know at most nu

public keys of users and obtain at most nc∗ challenge ciphertexts from per user.
These two parameters can be very large, e.g., nu = nc∗ = 240. In general, L
will depend on nu and nc∗ [1]. In order to compensate for the security loss, we
have to increase the strength of the underlying intractability assumption which
worsens the parameters of the encryption scheme and affects the performance
of the implementation. For example, for encryption schemes from the Decisional
Diffie-Hellman assumption over cyclic groups, we have to increase the size of the
underlying groups, which in turn increases the running time of the implementa-
tion, as exponentiation in an l-bit group takes time about O(l3) as stated in [7].
Hence, it is important to study tight security reductions where the security loss
L is a small constant that in particular does not depend on parameters under
the adversary’s control, such as nu, nc∗ . In the case of CCA security, L should
also be independent of the parameter nc, which is the number of queries that
the adversary can make to each decryption oracle at most.

Tight Security in Deterministic-PKE. Deterministic-PKE (D-PKE),
namely, deterministic public-key encryption, was introduced by Bellare et al.
[2], in which the encryption algorithm is deterministic.

Bellare et al. [2] defined a strongest possible security notion for D-PKE,
called PRIV, over plaintext distributions with high min-entropy independent of
the public key. The definition of PRIV considers a message block containing
multi-plaintext. If the size of block is one, then the security definition is called
PRIV1. The security notions of D-PKE evolved in a series of literatures [3–5,11].
Many D-PKE constructions have been proposed based on concrete assumptions
as depicted in Fig. 1. These D-PKE constructions are all secure in the one-user,
multi-ciphertext case. However, all of these constructions have a security loss
about O(nc∗).

Our Contributions. It seems that the tight security reduction of D-PKE
has not been deliberately studied in literatures. We compare the security loss
amongst the D-PKE schemes based on the concrete assumptions in Fig. 1. In this
paper, we formally consider the construction of tightly secure D-PKE scheme
which is either PRIV-IND-CPA or PRIV-IND-CCA secure for block-sources in
the standard model.

We start from [4] which introduced two D-PKE schemes based on lossy TDFs
and all-but-one TDFs [10]. One is PRIV1-IND-CPA secure and the other is
PRIV1-IND-CCA secure, for block-sources. Initially, we prove that their PRIV1-
IND-CPA secure D-PKE scheme is tightly PRIV-IND-CPA secure for block-
sources. Our security reduction improves the security loss of this scheme from
O(nc∗) to O(1). So we can obtain tightly PRIV-IND-CPA secure D-PKE schemes
for block-sources by instantiating D-PKE constructions based on the DDH, s-
DCR, LWE assumption.
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Fig. 1. The security loss amongst the D-PKE schemes under the concrete assumptions.

However, their PRIV1-IND-CCA D-PKE scheme in [4] (The sect. 7.2) is not
tightly PRIV-IND-CCA secure for block-sources. In their PRIV1-IND-CCA D-
PKE scheme, the ciphertext of a message m contains an item as follows

Fabo(ekabo,Hcr(kcr,Hinv(kinv,m)),Hinv(kinv,m)),

where Fabo is a collection of all-but-one TDFs, Hcr is a family of collision-
resistant hash functions, Hinv is a collection of pairwise-independent permuta-
tions with invertibility. Let function f be

f = Fabo(ekabo,Hcr(kcr, ·), ·) and ekabo
R← Kabo(Hcr(kcr, ·)),

where Kabo is the key generation algorithm of Fabo. According to the gen-
eralized “Crooked” leftover hash lemma, the statistical distance between
f(Hinv(kinv,m)) and f(h) is negligible, where h

$← Uinv and Uinv denotes the
uniform distribution on the range of Hinv. So that f(h) includes no information
of the message m. In order to use the generalized “Crooked” leftover hash lemma,
Hcr(kcr,Hinv(kinv,m)) and Hcr(kcr, h) must belong to the lossy branch of the
respective all-but-one TDF Fabo. As a result, the security loss of their scheme is
2 times of the security loss of the all-but-one TDF Fabo. However, the tight secu-
rity reduction considers nc∗ > 1 challenge ciphertexts in the PRIV-IND-CCA
security game for block-sources. Though PRIV1-IND-CCA and PRIV-IND-CCA
are proved to be equivalent in [4], there is a security loss of 2 · nc∗ due to the
employment of the hybrid technique.

Furthermore, to address this problem, we upgrade the all-but-one TDF in
the constructions of [4] to all-but-n TDF [8] whose number of the lossy branches
is n. When the number of the lossy branches is two times of the number of the
challenge ciphertexts, i.e., n = 2 · nc∗ (because we additionally need Hcr(kcr, h)
to be in the lossy branches of the all-but-n TDF), every challenge ciphertext
can be evaluated on the lossy branches in the PRIV-IND-CCA security game for
block-sources. In addition, apparently that if the security loss of the all-but-n
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TDF is independent of n (tightly secure), then the security loss of the D-PKE
scheme can also be independent of nc∗ , i.e., the D-PKE scheme can be tightly
PRIV-IND-CCA secure for block-sources. However, because the number of the
lossy branches of the all-but-n TDF in the construction is bounded by n, so
that the number of the challenge ciphertexts nc∗ is bounded by n

2 . As a result,
our D-PKE schemes are only able to be tightly PRIV-IND-n

2 -CCA secure for
block-sources, where PRIV-IND-n

2 -CCA security for block-sources is very similar
to PRIV-IND-CCA security for block-sources except with the restriction the
number of the challenge ciphertexts is bounded by n

2 .
As aforementioned, the most important part of our constructions is to find

tightly secure all-but-n TDFs. Finally, we prove that the all-but-n TDF given by
Hemenway et al. [8] is tightly secure with a security loss of only 2. This improves
their original security reduction which has a security loss of 2n due to the use of
the hybrid technique. Applying this result to our constructions, we obtain the
first D-PKE scheme which is tightly PRIV-IND-n

2 -CCA secure for block-sources
based on the s-DCR assumption.

2 Preliminaries

Notations. For a random variable X, we write x
R← X to denote sampling

x according to X’s distribution. For a random variable X, its min-entropy is
defined as H∞(X) = − log(maxxPX(x)). Given Y , the worst-case conditional
min-entropy of X is H∞(X|Y ) = − log(maxx,yPX|Y =y(x)) and the average-case
conditional min-entropy of X is ˜H∞(X|Y ) = − log(

∑

y PY (y) ·maxxPX|Y =y(x)).
A random variable X ∈ {0, 1}l is called a (t, l)-source if it satisfies that H∞(X) ≥
t. And a vector

−→
X is called a (t, l)-block-source of length n if it is a list of random

variables (X1, · · · ,Xn) over {0, 1}l and satisfies that H∞(Xi|X1, · · · ,Xi−1) ≥ t
for all i ∈ [n] = {1, · · · , n}. The statistical distance between two distributions
X,Y over a finite or countable domain D is �(X,Y ) = 1

2

∑

w∈D |PX(w) −
PY (w)|. A hash function H = (K,H) with range R is pairwise-independent if
for all x1 �= x2 ∈ {0, 1}l and all y1, y2 ∈ R, Pr[H(K,x1) = y1 ∧ H(K,x2) =
y2 : K

R← K] ≤ 1
|R|2 . A hash function H(K,H) is collision resistant if for all

probabilistic polynomial-time adversary A, the advantage Advcr
H(A) is negligible,

where Advcr
H = Pr

[

H(K,x1) = H(K,x2) K
R← K;(x1, x2)

R← A(K);
]

.

Definition 1 (Invertible Pairwise-Independent Permutation [4]). A pairwise-
independent hash function Hinv = (Kinv,Hinv) is an invertible pairwise-
independent permutation if it satisfies the following two conditions: (1) Invert-
ible. There exists a PPT algorithm Inv such that Inv(kinv,Hinv(kinv,m)) = m,
where m ∈ {0, 1}l and kinv

R← Kinv; (2) Permutable. Hinv is a permutation.

Definition 2 (Lossy TDF [10]). A collection of (l, l − r)-lossy trapdoor
function LT DF is defined by four probabilistic polynomial-time algorithms
(Klt, ˜Klt,Flt,F−1

lt ) satisfying the following properties. (1) ˜Klt induces a lossy
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function. When algorithm ˜Klt(1k) outputs (˜ek,⊥), Flt on inputs ˜ek, x ∈ {0, 1}l

returns Flt(˜ek, x). In addition, we also require that the size of Flt(˜ek, ·) is
bounded by 2r for all ˜ek. (2) Klt induces an injective function with trap-
door. The key generation algorithm Klt(1k) outputs (ek, tk). Then Flt takes ek
and an input x ∈ {0, 1}l to return an unique value c = Flt(ek, x). Finally, on
inputs (tk,Flt(ek, x)), F−1

lt returns x or ⊥. (3) Security. Let EK denote the
fist random variable output by Klt, and let ˜EK denote the first random variable
output by ˜Klt. For all probabilistic polynomial-time adversary A, the advantage
of A in distinguishing EK from ˜EK, denoted by Advind

LT DF (A), is negligible, i.e.,
EK

c≈ ˜EK.

Definition 3 (All-But-n TDF [8]). A collection of (l, l − r) all-but-n trap-
door function ABN with the branch set B is defined by a tuple of 3 probabilis-
tic polynomial-time algorithms (Kabn,Fabn,F−1

abn) satisfying the properties below.
(1) Kabn with a given lossy set I. For any n-subset I ⊆ B, the key generation
algorithm Kabn(I) returns (ek, tk). It requires that for each b ∈ I, the size of
Fabn(ek, b, ·) is bounded by 2r for all ek. Additionally, for any branch b ∈ B\I,
Fabn(ek, b, ·) is an injective function on {0, 1}l, and F−1

abn(tk, b,Fabn(ek, b, x))
= x for all x. (2) Security. For any two distinct n−subsets I0, I1 ⊆ B, let
EK0 denote the first random variable generated by K(I0) and EK1 denote the
first random variable generated by K(I1). For all probabilistic polynomial-time
adversary A, the advantage of A in distinguishing EK0 from EK1, denoted by
Advind

ABN (A), is negligible, i.e., EK0
c≈ EK1.

If the quotient L = Advind
ABN (A)/Adv(A′) is a small constant, we say that the

all-but-n TDF ABN is tightly secure, where A′ is the adversary who attacks
the underlying hard problem.

Definition 4 (PRIV-IND Security for Block-Sources [4]). We say that an l-bit
deterministic public encryption scheme AE = (K, E ,D) is PRIV-IND secure for
(t, l)-block-sources if for any (t, l)-block-sources

−→
M0,

−→
M1 of polynomial length nc∗

and all probabilistic polynomial-time adversary A, the PRIV-IND-advantage

Advpriv−ind
AE (A,

−→
M0,

−→
M1) = GuessAE(A,

−→
M0) − GuessAE(A,

−→
M1)

of A against AE is negligible, where for β ∈ {0, 1}

GuessAE(A,
−→
Mβ) = Pr

[

AO(pk, E(pk,−→mβ)) = 1 (pk, sk) R← K;−→mβ
R← −→

Mβ

]

.

When nc∗ = 1, we call the scheme PRIV1-IND secure for block-sources; when O
is the encryption oracle E(pk, ·), we call the scheme PRIV-IND-CPA secure for
block-sources; when O includes the encryption and decryption oracle E(pk, ·) ∨
D(sk, ·)¬−→c ∗

, we call the scheme PRIV-IND-CCA secure for block-sources.
We also define a notion of PRIV-IND-q-CCA security for block-sources which

is very similar to PRIV-IND-CCA security for block-sources except with the
restriction that the length nc∗ of block-sources is bounded by q.
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3 Tightly Secure D-PKE Constructions

Let Hinv = (Kinv,Hinv) be an l-bit invertible pairwise-independent permutation
with the inversion algorithm Inv, and Uinv denote the uniform distribution on
its range Rinv = {0, 1}l. Let LT DF = (Klt, ˜Klt,Flt,F−1

lt ) be a collection of
(l, l−rlt) lossy TDF. Let ABN = (Kabn,Fabn,F−1

abn) be a collection of (l, l−rabn)
all-but-n TDF with a branch set B and let Hcr = (Kcr,Hcr) be an l-bit collision
resistant hash function. And the range Rcr ⊆ B of Hcr is bounded by 2rcr .

Fig. 2. Tightly secure D-PKE constructions

Theorem 1. (1) Let AECPA = (K, E ,D) be defined in Fig. 2(a). Then, the
decryption algorithm can recover the message correctly. And for any probabilistic
polynomial-time adversary A, any (t, l)-block-sources

−→
M0,

−→
M1 of length nc∗ , there

exists an adversary Alt such that

Advpriv−ind−cpa
AECPA

(A,
−→
M0,

−→
M1) ≤ 2 · Advind

LT DF (Alt) + 2nc∗ · ε, (1)

where ε ≤ 2
rlt−2−t

2 . (2) Let the D-PKE scheme AECCA be depicted in Fig. 2(b).
Then the decryption algorithm can recover the message correctly. And for any
probabilistic polynomial-time adversary A, any (t, l)-block-sources

−→
M0,

−→
M1 of

length nc∗ ≤ n
2 , there exist adversaries Acr,Alt,Aabn such that

Adv
priv−ind−n

2 −cca

AECCA
(A,

−→
M0,

−→
M1)

≤2 · Advcr
Hcr

(Acr) + 2 · Advind
LT DF (Alt) + 4 · Advind

ABN (Aabn) + 2nc∗ · ε,
(2)

where ε ≤ 2
rcr+rlt+rabn−2−t

2 . Additionally, if the all-but-n TDF ABN is tightly
secure, then the D-PKE construction AECCA is tightly PRIV-IND-n

2 -CCA
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secure for block-sources. In the above, Acr is the adversary who wants to find
collisions of Hcr, and Alt (respectively, Aabn) is the adversary who attacks the
security of LT DF (respectively, ABN ).

Tightly Secure All-But- n TDF Under the s-DCR Assumption. Look
ahead, tightly PRIV-IND-n

2 -CCA secure deterministic public-key encryption
construction needs the primitive of tightly secure all-but-n TDF. In this paper,
we also prove the all-but-n TDF given by [8] is tightly secure with a security loss
of only 2. This improves their original security reduction which has a security
loss of 2n due to the use of the hybrid technique. Please see more details in our
full version paper.

Acknowledgments. We thank the anonymous ICICS’2017 reviewers for their helpful
comments. This work is supported by the National Cryptography Development Fund
MMJJ20170116 and the National Nature Science Foundation of China (Nos. 61602473,
61502480, 61672019, 61772522, 61379137, 61572495).

References

1. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

3. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 20

4. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 19

5. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 543–560. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 31

6. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC 1991, pp. 542–552

7. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

8. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 4

https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/978-3-642-22792-9_31
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4


Towards Tightly Secure Deterministic Public Key Encryption 161

9. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-
key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 37

10. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
2008, pp. 187–196

11. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9 6

12. Wee, H.: Dual projective hashing and its applications — lossy trapdoor functions
and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 246–262. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 16

13. Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-
based encryption from lattices in the auxiliary-input setting. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32928-9 1

https://doi.org/10.1007/978-3-642-29011-4_37
https://doi.org/10.1007/978-3-642-29011-4_37
https://doi.org/10.1007/978-3-642-38348-9_6
https://doi.org/10.1007/978-3-642-29011-4_16
https://doi.org/10.1007/978-3-642-29011-4_16
https://doi.org/10.1007/978-3-642-32928-9_1

	Towards Tightly Secure Deterministic Public Key Encryption
	1 Introduction
	2 Preliminaries
	3 Tightly Secure D-PKE Constructions
	References




