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Abstract. Inner product encryption (IPE) is a public-key encryption
mechanism that supports fine-grained access control. Agrawal et al. (ASI-
ACRYPT 2011) proposed the first IPE scheme from the Learning With
Errors (LWE) problem. In their scheme, the public parameter size and
ciphertext size are O(un2 log3 n) and O(un log3 n), respectively. Then,
Xagawa (PKC 2013) proposed the improved scheme with public param-
eter of size O(un2 log2 n) and ciphertext of size O(un log2 n).

In this paper, we construct a more compact IPE scheme under the
LWE assumption, which has public parameter of size O(un2 log n) and
ciphertext of size O(un log n). Thus our scheme improves the size of
Xagawa’s IPE scheme by a factor of log n.

Inspired by the idea of Brakerski et al. (TCC 2016), we propose a
targeted homomorphic IPE (THIPE) scheme based on our IPE scheme.
Compared with Brakerski et al.’s scheme, our THIPE scheme has more
compact public parameters and ciphertexts. However, our scheme can
only apply to the inner product case, while in their scheme the predicate
f can be any efficiently computable polynomial.
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1 Introduction

Predicate encryption (PE) is a subclass of functional encryption that supports
fine-grained access control. In the PE schemes, a receiver corresponding to the
secret key skf which is associated with predicate f can decrypt the ciphertext c
which is associated with the private attribute x if and only if f(x) = 0.

The inner product encryption (IPE) was firstly introduced by Katz et al. [10],
which is a special case of PE. In the IPE scheme, the attribute x and predicate
f are expressed as vectors x and v , and f(x ) = 0 if and only if 〈x , v〉 = 0. IPE
has many useful application scenarios, such as it can support subset, conjunction
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and range queries on encrypted data [8] and polynomial evaluation, CNF/DNF
formulas [10].

At first, the IPE constructions [4,10–16] were based on bilinear groups and
constructing IPE scheme from other assumption was left as an open prob-
lem. Until 2011, Agrawal et al. [2] proposed the first IPE scheme (denoted by
AFV11) from the LWE assumption. One of the drawbacks of the scheme is that
it has large sizes of public parameter (i.e., O(un2 log3 n)) and ciphertext (i.e.,
O(un log3 n)) for q = poly(n), where u is the dimension of the attribute vector, n
is the security parameter. For efficiency, Xagawa1 [17] improved the AFV11 IPE
scheme and obtained a more compact IPE scheme (denoted by Xag13) with pub-
lic parameter of size O(un2 log2 n) and ciphertext of size O(un log2 n). Whether
we can further compress the public parameter and ciphertext size to get a more
compact IPE scheme is an interesting problem.

1.1 Our Contribution

In this paper, we mainly focus on the efficiency of the IPE scheme. We con-
struct a selective security IPE scheme from the LWE assumption with compact
parameters. Our scheme has smaller public parameter size (i.e., O(un2 log n))
and ciphertext size (i.e., O(un log n)) for q = poly(n) and improves both the
public parameter size and the ciphertext size by a factor of O(log n) when com-
pared with Xag13.

In addition, we further note that we can add homomorphic property to
our IPE scheme. More formally, by using the technique proposed by Brakerski
et al. [6], we obtain a targeted homomorphic IPE (THIPE) scheme which has
more compact public parameters and ciphertexts than the scheme in [6] when
only consider the inner product case. Note that, in Brakerski et al.’s scheme, the
predicate f can be any efficiently computable polynomial.

In Table 1, we give a rough comparison of the sizes of public parameter
and ciphertext, the modulus q, the approximate factor among the existing IPE
schemes from LWE.

Table 1. Comparison of IPE schemes based on LWE.

IPE Public parameter size Ciphertext size q Approximation factor

AFV11 [2] O(un2 log3 n) O(un log3 n) u2n3.5+5δlog2.5+2δn u2n4+5δlog1.5+δn

Xag13 [17] O(un2 log2 n) O(un log2 n) u2n4.5+4δlog2.5+2δn u2n5+4δlog1.5+δn

This work O(un2 log n) O(un log n) u2n6.5+4δlog0.5+2δn u2n7+4δlog−0.5+δn

Where u is the dimension of the attribute vector and δ > 0 is a small constant.

1.2 Overview of Our Construction

Here we give the overview of our scheme. We first review the previous IPE scheme
for u = k� dimension attribute vector x = (x1,1, . . . , x1�, . . . , xk,1, . . . , xk,�) and
1 Note that, when only consider the inner product case, the scheme in [7] is just as

same as the scheme of Xagawa [17].
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predicate vector v = (v1,1, . . . , v1�, . . . , vk,1, . . . , vk,�). We give a brief description
of them and then we present our construction. For simplicity, we use the special
case of k = 1 to demonstrate, that is x = (x1, . . . , x�) and v = (v1, . . . , v�).

Our Construction. We construct a compact IPE scheme based on [2,17] by
using the technique of [1]. Let Gn,2,m be the gadget matrix with base 2 and
matrix size n×m. In our construction, we use two gadget matrices Gn�,�′ ,m and
Gn,2,m with different bases and matrix sizes as the critical tool to improve the
efficiency.

In our construction, every public matrix can encode � components of x , where
� = O(log n). That is, for x = (x1, . . . , x�) and the corresponding Xi = xiIn

defined as before, let X = [X1| . . . |X�] ∈ Z
n×n�
q , the encryption lattice is defined

as
Λx = Λq(A|A1 + XGn�,�′ ,m)

The corresponding ciphertext is a vector CT = (c, c1) ∈ (Zm
q )2.

For predicate vector v = (v1, . . . , v�) and the corresponding Vi = viIn as before,

let V =

⎛
⎜⎜⎜⎝

v1In

v2In

...
v�In

⎞
⎟⎟⎟⎠ ∈ Z

n�×n
q , we define the mapping Tv : (Zm

q )2 → (Zm
q )2 by

Tv (c, c1) = (c, c1G−1
n�,�′ ,m

(VGn,2,m))

We denote w = 〈x , v〉 and let W = wIn. And Tv (c, c1) is a vector close to the
lattice

Λv ,x = Λq(A|A1G−1
n�,�′,m(VGn,2,m) + WGn,2,m)

The secret key r is defined as a short basis of Λ⊥
q (A|A1G−1

n�,�′,m(VGn,2,m)), so if
〈x , v〉 = 0, then W = 0 , and thus the secret key r can decrypt the corresponding
ciphertext.

Due to the fact that n� log�′ q = O(m) = O(n log q), then � = O(log �′). And
�′ is a bit decomposition base of modulus q = poly(n), thus �′ = O(n) and
� = O(log n). So it’s obvious that our IPE scheme improves the public parameter
and ciphertext size by a factor of � = O(log n).

2 Preliminaries

2.1 Predicate Encryption

Predicate Encryption ([10]). For the set of attribute Σ and the class
of the predicate F , a predicate encryption scheme consists four algorithm
Setup,KeyGen,Enc, Dec which are PPT algorithms such that:
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• Setup uses the security parameter λ and outputs the master public key mpk
and master secret key msk.

• KeyGen uses the master secret key msk and a predicate f ∈ F and outputs a
secret key skf for f .

• Enc uses the master public key mpk and a attribute I ∈ Σ, outputs a cipher-
texts C for message μ ∈ M.

• Dec takes as input the ciphertexts C and secret key skf . If f(I) = 0, it outputs
μ; if f(I) = 1, it outputs a distinguished symbol ⊥ with all but negligible
probability.

Security. We say a PE scheme is weakly attribute hiding in the selec-
tive attribute setting if the adversary can’t distinguish Enc(mpk, I1, μ1) and
Enc(mpk, I2, μ2).

The definition of the weakly attribute hiding security is given in [10].

2.2 Lattices

For positive integers n,m, q, and a matrix A ∈ Z
n×m
q , the m-dimensional integer

lattices are defined as: Λq(A) = {y : y = ATs for some s ∈ Z
n} and Λ⊥

q (A) =
{y : Ay = 0 mod q}.

For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Z
m centered

at c ∈ R
m with parameter s > 0 as ρs,c(x) = exp(−π||x − c||/s2). Let

ρs,c(Λ) =
∑

x∈Λ ρs,c(x), and define the discrete Gaussian distribution over Λ

as DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) , where x ∈ Λ. For simplicity, ρs,0 and DΛ,s,0 are abbrevi-

ated as ρs and DΛ,s, respectively.

Lemma 1. Let p, q, n,m be positive integers with q ≥ p ≥ 2 and q prime. There
exists PPT algorithms such that

• [3,5]: TrapGen(n,m, q) a randomized algorithm that, when m ≥ 6n	log q
,
outputs a pair (A,TA) ∈ Z

n×m
q × Z

m×m such that A is statistically close to
uniform in Z

n×m
q and TA is a basis of Λ⊥

q (A), satisfying ‖T̃A‖ ≤ O(
√

n log q)
with overwhelming probability.

• [9]: SampleLeft(A,B,TA,u, s) a randomized algorithm that, given a full rank
matrix A ∈ Z

n×m
q , a matrix B ∈ Z

n×m
q , a basis TA of Λ⊥

q (A), a vector u ∈
Z

n
q and σ ≥ ‖T̃A‖ · ω(

√
log(2m)), then outputs a vector r ∈ Z

2m
q distributed

statistically close to DΛu
q (F),s where F = [A|B].

3 Compact Inner Product Encryption from LWE

In this section, we propose a compact IPE scheme from LWE problem. For
attribute vector x = (Z�

q)
k and predicate vector v = (Z�

q)
k, we use x =

(x 1, . . . ,xk) and v = (v1, . . . , vk) to denote them respectively and each x i =
(xi,1, . . . , xi,�), v i = (vi,1, . . . , vi,�) ∈ Z

�
q.
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3.1 The Construction

Let λ be the security parameter and u = k� be the dimension of predicate and
attribute vectors. Set lattice parameters n = n(λ),m = m(λ), q = q(λ) and
Gaussian parameters α = α(λ), s = s(λ), define �

′
= 2�.

• IPE.Setup(1λ): On input the security parameter λ, do:
1. Use the algorithm TrapGen(n,m, q) to generate a matrix A ∈ Z

n×m
q and

its trapdoor TA.
2. Choose k uniformly random matrix Ai ∈ Z

n×m
q for i = 1, . . . , k and

sample a uniformly random matrix P ∈ Z
n×m
q .

Output mpk = (A, {Ai}i∈{1,...,k},P) and msk = TA.
• IPE.KeyGen(mpk,msk,x ): On input the master public key mpk and master

secret key msk, and a predicate vector v = (v1, . . . , vk) ∈ (Z�
q)

k where
v i = (vi,1, . . . , vi,�) ∈ Z

�
q, do:

1. For i = 1, . . . , �, compute the matrices V
′
i :=

⎛
⎜⎜⎜⎝

vi,1In

vi,2In

...
vi,�In

⎞
⎟⎟⎟⎠ ∈ Z

�n×n
q , and let

Vi := G−1
n�,�′ ,m

(V
′
i · Gn,2,m)

2. Define the matrices:

B :=
k∑

i=1

AiVi ∈ Z
n×m
q

3. Using msk to compute U ← SampleLeft(A,B,TA,P, s), it holds that
[A|B] · U = P mod q, for U ∈ Z

2m×m
q .

Output the secret key skv = U.
• IPE.Enc(mpk,x , μ): On input the master public key mpk, the attribute vector

x = (x 1, . . . ,xk) ∈ (Z�
q)

k, and a message μ ∈ {0, 1}, do:
1. For i = 1, . . . , k, set the matrices Xi = [xi,1In|xi,2In| . . . |xi,�In] ∈ Z

n×n�
q .

2. Choose a uniformly random vector s ∈ Z
n
q , and sample two noise vectors

e , e
′ ← DZm

q
.

3. For i = 1, . . . , k, choose these random matrices Ri ∈ {−1, 1}m×m. Then
define noise vectors eT

i := eTRi.
4. For i = 1, . . . , k, compute the ciphertext

c := sTA+ eT, ci := sT(Ai +XiGn�,�
′
,m

) + eT
i , c

′
:= sTP+ e

′
+ (0, . . . , 0, � q

2
�µ)

Output the ciphertext CT := (c, {ci}i∈{1,...k}, c
′
)

• IPE.Dec(mpk,CT, skv ): On input the master public key, a secret key skv = U
for predicate vector v and the ciphertext CT := (c, {ci}i∈{1,...k}, c

′
), do:

1. For i = 1, . . . , k, compute the vector cv =
∑k

i=1 ciVi.
2. Compute z ← c

′ − [c|cv ] · U mod q.
Output � zm

q/2
 ∈ {0, 1}, if ‖(z1, . . . , zm−1)‖∞ < q/4; otherwise, output ⊥.
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3.2 Parameters

In Table 2, we set the parameters of the IPE scheme above.

Table 2. IPE parameters setting.

Variable Description Parameters setting

λ Security parameter

n Row dimension of PK matrix n = λ

m Column dimension of PK matrix m = n1+δ

q Modulus q = k2n6.5+4δlog2.5+2δn

k� Dimension of attribute vector � = log n

�
′

Base of gadget matrix Gn�,�′,m �
′
= n

α Gaussian parameter of error α =
√

nlog1+δn

s Parameter of SampleLeft and SampleRight s = kn2.5+1.5δlog1.5+δn

3.3 Security

Theorem 1. Suppose that m ≥ 6n log q, assuming the hardness of the decisional
LWE problem, then the above inner product encryption scheme is weakly attribute
hiding.

4 A Single Targeted Homomorphic Compact IPE Scheme

In this section, we propose our single targeted homomorphic compact inner prod-
uct encryption scheme from LWE. Inspired by the idea of [6], we add homo-
morphic property to our IPE scheme and get compact ciphertext and public
parameter size. The construction of the scheme is as follows:

4.1 The THIPE Construction

Let λ be the security parameter and u = k� be the length of predicate and
attribute vectors. Set lattice parameters n = n(λ),m = m(λ), q = q(λ) and
Gaussian parameters α = α(λ), s = s(λ), define �

′
= 2� and M = (2m +

1)	log q
.
• THIPE.Setup(1λ): On input a security parameter λ, do:

1. Use the algorithm TrapGen(n,m, q) to generate a matrix A and its trap-
door TA.

2. Choose k+1 uniformly random matrix Ai ∈ Z
n×m
q for i = 0, 1, . . . , k and

sample a uniformly random vector u ∈ Z
n
q .

Output mpk = (A,A0, {Ai}i∈{1,...,k},u) and msk = TA.
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• THIPE.KeyGen(mpk,msk,x ): On input the master public key mpk and mas-
ter secret key msk, and a predicate vector v = (v1, . . . , vk) ∈ (Z�

q)
k where

v i = (vi,1, . . . , vi,�) ∈ Z
�
q, do:

1. For i = 1, . . . , �, compute the matrices V
′
i :=

⎛
⎜⎜⎜⎝

vi,1In

vi,2In

...
vi,�In

⎞
⎟⎟⎟⎠ ∈ Z

�n×n
q , and let

Vi := G−1
n�,�′ ,m

(V
′
i · Gn,2,m)

2. Define the matrices:

B :=
k∑

i=1

AiVi ∈ Z
n×m
q

3. Using msk to compute r1 ← SampleLeft(A,A0 + B,TA,u , s), it holds
that [A|A0 + B] · r1 = u mod q. For rT = [−r1

T, 1], we have that
[A|A0 + B|u ] · r = 0 .

Output the secret key skv = r .
• THIPE.Enc(mpk,x , μ): On input the master public key mpk, the attribute

vector x = (x 1, . . . ,xk) ∈ (Z�
q)

k, and a message μ ∈ {0, 1}, do:
1. For i = 1, . . . , k, set the matrices Xi = [xi,1In|xi,2In| . . . |xi,�In] ∈ Z

n×n�
q .

2. Choose a uniformly random vector S ∈ Z
n×M
q , and sample a noise matrix

E ← D
Z

m×M
q ,α and a noise vector e ← DZm

q ,α.
3. For i = 0, 1, . . . , k, choose these random matrices Ri ∈ {−1, 1}m×m. Then

define noise vectors Ei := RT
i E.

4. Compute the ciphertext as follows:
⎛
⎝

CA

C0

Cu

⎞
⎠ =

⎛
⎝

AT

AT
0

uT

⎞
⎠ · S +

⎛
⎝

E
E0

e

⎞
⎠ + μG2m+1,2,M

And for all i = 1, . . . , k, we compute:

Ci = (Ai + XiGn�,�′ ,m)TS + Ei

Output the ciphertext CT := (CA,C0,Cu , {Ci}i∈{1,...,k}).
• THIPE.Trans(mpk,CT, v): For predicate vector v and ciphertext CT which

corresponds to attribute x , such that 〈x , v〉 = 0. The evaluator then com-
putes:

Cv =
k∑

i=1

VT
i Ci

Then the evaluator sets:

C =

⎛
⎝

CA

C0 + Cv

cu

⎞
⎠ ∈ Z

(2m+1)×M
q

The ciphertext C is the final ciphertext that used to do homomorphic
evaluation.
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• THIPE.TEval(g,C1, . . . ,Ct): The ciphertexts Ci which are the outputs of
THIPE.Trans are corresponding to the same predicate vector v that the eval-
uator knows in advance, it outputs Cg = Eval(g,C1, . . . ,Ct). In the process
of evaluation, it computes NAND gate as:

NAND(C1,C2) = G2m+1,2,M − C1(G−1
2m+1,2,MC2)

• THIPE.Dec(mpk,Cg, skv ): On input the master public key, a secret key skv =
r for predicate vector v and the ciphertext Cg, do:
1. For b = (0, . . . , 0, �q/2
)T, compute z ← rTCgG−1

2m+1,2,M (b) mod q
2. Output 0, if |z| < q/4; otherwise, output 1.

5 Conclusion

In this work, we built a compact IPE scheme and a targeted homomorphic com-
pact IPE scheme. We make use of two gadget matrix Gn�,�′ ,m and Gn,2,m and
decrease the public parameter size to O(un2 log n), ciphertext size to O(un log n).
Our IPE scheme improve the public parameters by a factor of O(log n) compared
with [17].
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