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Abstract. Tag-based encryption (TBE) is a generalization of public-key
encryption (PKE), in which both the encryption and the decryption algo-
rithms take a tag as an extra input, which is potentially useful. However,
in contrast to TBE schemes with various types of security and under tra-
ditional number-theoretic assumptions, as far as we know, there is only
one lattice-based TBE scheme with selective-tag security, which, in fact,
is under a variant of DLWE assumption.

In this paper, we propose two efficient TBE schemes, both of which
have adaptive-tag security and are under the standard DLWE assump-
tion. For efficiency, we adopt, in both schemes, a particular q-ary lat-
tice equipped with efficient LWE inversion and preimage sampling algo-
rithms, which are efficiently available for solving the related problems on
a general q-ary lattice. The probabilistic partition technique is used to
achieve the adaptive-tag security. On the other hand, we mainly embed
the preimage sampling problem into the first scheme and the LWE inver-
sion problem into the second one, the latter of which has a smaller mod-
ulus and a smaller approximation factor.

Our schemes can be applied to construct IND-CCA2 secure PKE
schemes and to design protocols that securely realizes the secure mes-
sage transmission functionality in a hybrid model. Additionally, our first
scheme can also be used to construct an adaptively secure identity-based
encryption (IBE) scheme with more efficient secret-key extraction algo-
rithm than those in well-known IBE schemes.

Keywords: Tag-based encryption · DLWE · Adaptive security
Probabilistic partitioning technique · G-trapdoor

1 Introduction

The notion of tag-based encryption (TBE) was proposed by MacKenzie et al.
[MRY04], while it was originated implicitly from Shoup [Sho01] (where the tag is
called label). TBE is a generalization of public-key encryption (PKE), in which
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the encryption and decryption algorithms both take a tag as an extra input.
All the ECIES and RSA-OAEP submissions and Shoup’s proposal for an ISO
standard of PKE include the notion of a tag (in the first two it is called an
encoding parameter), although no indication was given as to the role or function
of a tag.

As an independent primitive, in contrast to PKE, TBE has an additional
ability to attach a tag to the ciphertext during the encryption process, while
the tag is generally not included in the ciphertext and is explicitly given to the
decryption algorithm. Such an explicit treatment of a tag has some notational
advantages, when we consider an adversary who tries to alter the tag without
affecting the ciphertext. The security of TBE can be similarly defined as that
of PKE, as well as adding another dimension selective/adaptive-tag indicating
whether the adversary submits the target tag before receiving the public key
(selective-tag), or in the challenge phase together with a pair of chosen messages
(adaptive-tag). And thus its security notions include indistinguishability against
selective-tag/adaptive-tag chosen-plaintext/(weak) lunch-time/(weak) chosen-
ciphertext attacks, which can be abbreviated, respectively, to IND-sTag-CPA,
IND-aTag-CPA, IND-sTag-wCCA1, IND-sTag-CCA1, IND-aTag-CCA1, IND-
sTag-wCCA2, IND-sTag-CCA2, IND-aTag-wCCA2 and IND-aTag-CCA2. Note
that w here is short for weak, which means that the adversary is not allowed
to query the target tag instead of the pair of the target tag and the challenge
ciphertext to the decryption oracle.

As a cryptographic tool, IND-sTag-wCCA2 secure TBE schemes, belongs to
a more general class of cryptographic schemes than selectively secure identity-
based encryption (IBE) schemes, are sufficient to construct CCA secure PKE
schemes, according to [Kil06]. Note that IND-aTag-CCA2 secure TBE schemes
are equivalent with IND-CCA2 secure PKE schemes. In addition, IND-aTag-
wCCA2 secure TBE schemes can be used, with the technique in [MRY04], to
construct protocols that realizes the secure message transmission functionality
in the universal composition framework.

TBE is an interesting cryptographic primitive and a useful tool from the
above description. As far, except that IND-sTag-wCCA2 (IND-aTag-wCCA2,
IND-aTag-CCA2, respectively) secure TBE schemes can be obtained from IND-
sID-CPA (IND-aID-CPA, IND-aID-CCA2, respectively) secure IBE schemes
by the generic transformation in [Kil06], in the traditional number-theoretic
field, there is also an IND-aTag-wCCA2 secure TBE scheme [MRY04] and two
IND-sTag-wCCA2 secure TBE schemes [Kil06]. Unfortunately, in the lattice-
based field, there is only one IND-sTag-wCCA2 secure lattice-based TBE
scheme [SLLF15], which, in fact, is under a variant of DLWE assumption. Our
goal here is to construct more efficient lattice-based TBE schemes with stronger
security under standard assumptions.

1.1 Our Results

In this paper, we present two IND-aTag-wCCA2 secure TBE schemes TBE1 and
TBE2 both under the standard DLWE assumption. We compare the schemes
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Table 1. The comparison between our schemes and the one from [SLLF15]

Scheme Modulus q Approximation factor α−1 Security

[SLLF15] ω(n12)
√

m · ω(n11) IND-sTag-wCCA2

TBE1 ω
(
p2� · m2.5 · (log n)2

)
p2 · � · m2 · ω (log n)2 IND-aTag-wCCA2

TBE2 ω ((� +
√

m) · m · log n) (� +
√

m) · √
m · ω (log n) IND-aTag-wCCA2

Here n is the security parameter, Zp is the message space of TBE1, � is the bit length
of the tag, �q := �log2 q� and m = O(n�q).

with the one in [SLLF15] on some aspects in Table 1, which shows that our
schemes are more efficient with smaller moduli, are under weaker lattice assump-
tions with smaller approximation factors, and are with stronger security, than
the TBE scheme from [SLLF15].

The main idea for constructing our schemes is combining the probabilis-
tic partition technique of [ABB10] for the adaptively secure IBE scheme,
originated from the work [Wat05], and the G-trapdoor as well as some
efficient algorithms from [MP12]. In particular, an ingenious matrix, which
comes from [Boy10], in the construction of [ABB10], is A0‖(B +

∑
i id[i]Ai),

where each entry of id is in {−1, 1}, whose trapdoor can be derived from that
of A0, and is transformed, in the proof, into

A0

∥
∥(A0

∑

i

id[i]R∗
i + (1 +

∑

i

id[i]hi)B), (1)

by setting Ai := A0R∗
i + hiB, and the trapdoor of B, instead of that of A0, is

generated, the probabilistic partition for adaptively secure IBE is to separate the
target identity id∗ from the queried identities {idj} by the term 1 +

∑
i id[i]hi:

– If 1 +
∑

i id
∗[i]hi = 0, the trapdoor of B is not available, and the simulator’s

challenge can be embedded into the challenge ciphertext.
– If 1 +

∑
i idj [i]hi �= 0, the trapdoor of B is used to generate that of matrix

(1) and hence to generate the secret key for the queried identity idj .

According to [MP12],RA is aG-trapdoor ofA∈Z
n×m
q ifA=

(
Ā‖

(
HG − ĀRA

))
,

where H ∈ Z
n×n
q is an invertible matrix, G ∈ Z

n×w
q is a primitive matrix, that

is, its columns generate all of Zn
q and m ≥ w ≥ n.

One of main challenges in the construction is that: If we retain B, it is
hard to extend the G-trapdoor of B to obtain that of matrix (1) in use
of efficient algorithms in [MP12]. However, we observe that if we replace
B with G and sample each entry of R∗

i independently from a proper dis-
crete Gaussian distribution instead of the uniform distribution over {−1, 1} as
in [ABB10], the ingenious matrix, in the proof of our constructions, will be
At := A0

∥
∥(A0

∑
i t[i]R

∗
i +(1+

∑
i t[i]hi)G), where each entry of t is in {−1, 1},

and thus −
∑

i t[i]R
∗
i is just the trapdoor of matrix At when (1+

∑
i t[i]hi) �= 0

in case that q is a prime, which is key to simulating successfully without the
trapdoor of A0. And −

∑
i t

∗[i]R∗
i is used to construct the artificial noise in
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the challenge ciphertext, which is a solution to make our schemes based on the
DLWE assumption.

Additionally, we embed the preimage sampling problem into TBE11, which
is the reason of adding an extra vector in the public key, and the LWE inversion
problem into TBE2. And therefore, for the decryption of TBE1, a preimage
sampling algorithm together with a trapdoor extension algorithm are enough.

It’s more complex for the decryption of TBE2 since LWE samples are not
generated in key generation as Regev encryption [Reg05], the secret key is a
G-trapdoor of the first part of LWE samples not the secret vector used to gen-
erate LWE samples and the message part will be lost if we execute the inversion
algorithm on the second part of LWE samples (as the ciphertext, each entry of
which is in Zq).

To overcome this obstacle, we observe that the inversion algorithm in [MP12]
for Λ(AT

t ) is essentially that for Λ(GT ) by transforming the former into the latter
in use of the trapdoor RAt at first. To solve the above problem for TBE2, we
map the message into an element in Λ(GT )/2Λ(GT ) and use a perturbed vector
of 2Λ(At) to hide the encoded message. And then in decryption, we get the
transformed error by executing the first two steps of the inversion algorithm
on the perturbed vector of Λ(GT ) and subtract it from the perturbed vector
of Λ(GT )/2Λ(GT ), from which the message can be obtained by the inverse
mapping. Note that the mapping is efficient to evaluate and to invert according
to [MP12].

1.2 Applications

Adaptively Secure Identity-based Encryption. Although there is not, as far, a
generic framework for transforming a TBE scheme into an IBE scheme, our
scheme TBE1 can be easily transformed into an adaptively secure IBE scheme.
For achieving this, we treat a tag as an identity, take the preimage vector of the
vector in public key corresponding to the extended matrix for some identity as a
secret key of the identity, and exploit the trapdoor extension algorithm and the
preimage sampling algorithm to extract the key. Similar to those IBE schemes
in [ZCZ16,Yam17], our derived IBE scheme is also an improved version of the
adaptive one in [ABB10] (ABB-IBE). Specifically, Zhang et al. and Yamada used
different techniques to make public parameters smaller and to make the DLWE
assumption much stronger as well as the key extraction and the encryption more
complex, which is a tradeoff. We just exploit G-trapdoor and some related effi-
cient algorithms to get a scheme with the most efficient key extraction algorithm.
Their (variant of {0, 1}-message space) comparisons are presented in Table 2.

1 Although it seems able to construct a TBE scheme by simply, based on the dual-
Regev encryption [GPV08], duplicating the same number of the image vectors and
the preimage vectors as the bit length of a tag in key generation and just sum
the image vectors indexed by the tag during the encryption, such a scheme is only
IND-aTag-CPA secure.
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Table 2. The comparison of the Series of ABB-IBE

Chosen-Ciphertext Secure Public-Key Encryption. Kiltz [Kil06] proposed a trans-
formation that turns an IND-sTag-wCCA2 secure TBE scheme into a IND-CCA2
secure PKE scheme, together with a strongly one-time secure signature or a
strongly one-time secure message authentication code. So we can construct two
IND-CCA2 PKE schemes from our schemes TBE1 and TBE2, respectively. In
case of strongly one-time signature, our resulted IND-CCA2 secure PKE schemes
also have smaller moduli and are under weaker lattice assumptions, than the one
in [SLLF15], according to Table 1.

Secure Message Transmission Functionality. Intuitively, the secure message
transmission functionality allows multiple parties to send messages to a single
receiver with preserving the secrecy and the integrity of the message. MacKenzie
et al. [MRY04] adopted their IND-aTag-wCCA2 secure TBE scheme to design
a protocol that securely realizes this functionality in a hybrid model. With the
same technique, we can design two protocols, realizing the functionality, by using
our two schemes, respectively.

2 Preliminaries

2.1 Basic Notation

In this paper, we use bold lower case letters (e.g. a,b) to denote column vec-
tors and bold upper case letters (e.g. A,B) to denote matrices. For a matrix
A, A−1, AT denote its inversion and transposition, respectively, A[i, j] denotes
the entry in the i-th row and the j-th column, ‖A‖ := maxu ‖Au‖ for all unit
vectors u and the norm of a vector x is defined as ‖x‖ :=

√∑
i x[i]2, where
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x[i] denotes the i-th entry of x. For a positive integer n, let In denote the n-
dimensional identity matrix. For an integer q ≥ 2, the notation �q is �log2 q�.
For a set S, then s

$←− S represents the operation of picking an element s from
S uniformly at random. For k ∈ N, then [k] denotes the set {1, . . . , k}. Let PPT
short for probabilistic polynomial-time.

2.2 Lattices

In general, an m-dimensional lattice Λ is a discrete additive subgroup of Rm. If
Λ is generated as the set of all integer linear combinations of some k linearly
independent vectors b1, . . . ,bk, then k is called the rank and B := (b1, . . . ,bk)
is called a basis of Λ, i.e., Λ = {Bz : z ∈ Z

k}. In case of k = m, Λ ⊆ Z
m is called

a full-rank integer lattice.
In this paper, we focus on a particular family of so-called q-ary integer

lattices, which contain qZm as a sublattice for any positive integer q. For
positive integers n,m, q and a matrix A ∈ Z

n×m
q , define the following full-

rank m-dimensional q-ary lattices: Λ⊥(A) := {z ∈ Z
m : Az = 0 mod q},

Λ(AT ) := {z ∈ Z
m : ∃ s ∈ Z

n
q s.t. z = AT s mod q}. For any u ∈ Z

n
q admitting

an integer solution x to Ax = u mod q, define the coset (or “shifted” lattice):
Λ⊥
u (A) := {z ∈ Z

m : Az = u mod q} = Λ⊥(A) + x.

2.3 Discrete Gaussians

For any c ∈ R
m and a positive parameter s ∈ R, the m-dimensional Gaussian

function ρc,s : Rm → (0, 1] is defined as: ρc,s(x) := exp(−π‖x−c‖2

s2 ). For a lattice
Λ ⊂ R

m, the discrete Gaussian distribution over Λ with center c and parameter
s is defined as DΛ+c,s(x) := ρc,s(x)

ρc,s(Λ) , where ρc,s(Λ) =
∑

x∈Λ ρc,s(x).
Combining the result of Lemma 3.1 in [GPV08] with Lemma 4.4 in [MR07],

we have the following tail bound on discrete Gaussians.

Lemma 1. Let Λ ⊂ R
m be a lattice with basis B, c ∈ span(Λ) := {Br : r ∈ R

k}
and s ≥ ‖B̃‖ ·ω(

√
log m), where B̃ is the Gram-Schmidt orthogonalization of B,

we have Prx←DΛ+c,s
[‖x‖ ≥ s

√
m] = negl(m).

For positive α ∈ R, Ψα is defined to be the distribution on T := R/Z of a
normal variable with mean 0 and standard deviation α/

√
2π, reduced modulo 1.

And its discretization Ψ̄α is the discrete distribution over Zq, for integer q ≥ 2,
of the random variable �q · XΨα

� mod q, where XΨα
has distribution Ψα.

2.4 Learning with Errors (LWE)

The LWE problem was introduced by Regev [Reg05]. Decisional LWE (DLWE) is
defined as follows.
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Definition 1 (DLWE). For security parameter λ, let n = n(λ) be an integer
dimension, let an integer q = q(λ) ≥ 2 be a modulus, and Ψ̄α be a noise distribu-
tion. The decisional learning with errors problem, denoted by DLWEn,q,Ψ̄α

, is to
distinguish the following two distributions: In the first distribution, denoted by
U(Zn

q ×Zq), one samples (a, b) uniformly from Z
n
q ×Zq. In the second distribution,

denoted by As,Ψ̄α
for uniformly random s ∈ Z

n
q , one samples (a, b) ∈ Z

n
q ×Zq by

sampling a $←− Z
n
q uniformly at random, e ← Ψ̄α, and setting b = 〈a, s〉 + e. The

DLWEn,q,Ψ̄α
assumption is that the DLWEn,q,Ψ̄α

problem is infeasible.

There are known quantum [Reg05] and classical [Pei09] reductions between
DLWEn,q,Ψ̄α

and approximating short vector problems on lattices. In particular,
for αq ≥ 2

√
n, solving the DLWEn,q,Ψ̄α

problem is at least as hard as solving
worst-case lattice problems with approximation factors of Õ(n/α).

2.5 Trapdoors for Lattices

It is much required to generate a (nearly) uniform parity-check matrix A together
with some strong trapdoor for advanced lattice-based cryptographic schemes,
including chosen-ciphertext secure encryption, “hash-and-sign” digital signature,
identity-based encryption, et al.

In 1999, Ajtai [Ajt99] showed how to sample an essentially uniform A,
along with a relatively short trapdoor S ⊂ Λ⊥(A). And later Micciancio and
Goldwasser [MG02] and Gentry et al. [GPV08] successively improved the result
slightly.

Lemma 2 (Trapdoor Generation I [Ajt99,GPV08]). For any prime q =
poly(n) and any integer m ≥ 5n�q, there exists a PPT algorithm that, on input
1n, outputs a matrix A ∈ Z

n×m
q and a full-rank set S ⊂ Λ⊥(A), where the

distribution of A is statistically close to uniform over Z
n×m
q and the length

‖S‖ ≤ L = m1+ε for any ε > 0.
In particular, by Lemma 7.1 in [MG02], given an arbitrary basis of Λ⊥(A),

the full-rank set S can be converted efficiently to a good basis T such that ‖T̃‖ ≤
‖S̃‖.

In 2011, Alwen and Peikert [AP11] elucidated and generalized Ajtai’s algo-
rithm to provide a basis of essentially optimal length.

Lemma 3 (Trapdoor Generation II [AP11]). For any integer q ≥ 2 and
m ≥ 2n�2q, there exists a PPT algorithm that, on inputs n, q and m, outputs a
nearly uniform matrix A ∈ Z

n×m
q and a basis S of Λ⊥(A) with ‖S̃‖ ≤ 5

√
n�q.

In 2012, Micciancio and Peikert [MP12] proposed a significantly more efficient
algorithm, which essentially amounts to just one multiplication of two random
matrices. For any positive integers n and q ≥ 2, let G := In ⊗ gT ∈ Z

n×n�q
q ,

where gT = (20, 21, . . . , 2�q−1).2

2 This g can be generalized into ones using other bases.
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Lemma 4 (Trapdoor Generation III [MP12]). For any positive integers
n, q ≥ 2,m = O(n�q), there exists a PPT algorithm TrapGen that, on inputs a
uniform matrix Ā ∈ Z

n×m
q and an invertible matrix H ∈ Z

n×n
q ,3 outputs a sta-

tistically near-uniform matrix A ∈ Z
n×(m+n�q)
q and its G-trapdoor R ∈ Z

m×n�q

w.r.t. H, by firstly choosing each element of R independently from a proper dis-
crete Gaussian distribution D over Z, and then setting A := (Ā‖(HG − ĀR)).
Note that ‖R‖ ≤ O(

√
m+

√
n�q) ·ω(

√
log n) = O(

√
n�q) ·ω(

√
log n) except with

probability 2−Ω(m+n�q).

Based on the above G-trapdoor, Micciancio and Peikert constructed efficient
parallel algorithms for preimage sampling over a shifted lattice, LWE inversion
and trapdoor extension, respectively.

Lemma 5 (Preimage Sampling [MP12]). For parameters given in Lemma 4,
some s ∈ R and a uniformly random vector u ∈ Z

n
q , there exists a PPT algorithm

SamplePre that, on inputs R, Ā,H,u, s, outputs a vector e, whose distribution
is statistically close to D

m+n�q

Z,s·ω(
√
log n)

, satisfying (Ā‖(HG−ĀR)) ·e = u mod q.

Lemma 6 (LWE Inversion [MP12]). For parameters given in Lemma 4, a
vector b = AT s + e for any uniform s ∈ Z

n
q and suitably small e ∈ Z

m+n�q ,
there exists a PPT algorithm Invert that, on inputs R, Ā,H,b, outputs s and e,
by first transforming the perturbed vector b w.r.t. Λ(AT ) into b′ := (RT ‖In�q

)·b
w.r.t. Λ(GT ), then obtaining the solution (s′, e′) in use of the inversion algorithm
for Λ(GT ), and finally computing s := (H−1)T s′, e := b − AT s.

Lemma 7 (Trapdoor Extension [MP12]). For parameters given in Lemma
4, a uniform matrix B ∈ Z

n×n�q
q , there exists a PPT algorithm TrapExt that, on

inputs a G-trapdoor R for A ∈ Z
n×m
q w.r.t. some invertible H, an extension

A′ = (A‖B) of A, an invertible H′ ∈ Z
n×n
q and s ∈ R, outputs a G-trapdoor R′

for A′ w.r.t. H′. Particularly, the i-th column of R′ is sampling independently
from a discrete Gaussian with parameter s over Λ⊥

(H′G−B)[i](A) in use of R,
where (H′G − B)[i] is the i-th column of (H′G − B). Note that ‖R′‖ ≤ s ·
O(

√
m +

√
n�q) except with negligible probability.

2.6 Tag-Based Encryption

Informally, in a tag-based encryption scheme, both the encryption and decryp-
tion algorithms take an additional tag as input. A tag may be a binary string of
appropriate length or has any particular internal structure. We recall its defini-
tion from [Kil06].

A tag-based encryption scheme, with message space M and tag space T ,
consists of three polynomial-time algorithms (Gen, Enc, Dec) described as follows:

– Gen(1λ) → (pk, sk): A probabilistic algorithm that takes the security param-
eter 1λ as input, generates and outputs a pair of public key and private key
(pk, sk).

3 H here and below can be In.
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– Enc(pk, t ∈ T , μ ∈ M) → c: A probabilistic algorithm that takes the public
key pk, a tag t and a message μ as input, generates and outputs a ciphertext
c. Note that the tag is not explicitly contained in the ciphertext.

– Dec(sk, t, c) → μ: A deterministic or probabilistic algorithm that takes the
secret key sk, a tag t and a ciphertext c as input, generates and outputs a
message μ if t is valid and is just the tag used to generate c, and outputs ⊥
meaning decryption failure otherwise.

The correctness and security are defined as follows:

– Correctness. For all λ ∈ N, all tags t ∈ T and all messages μ ∈ M, we
have Pr [Dec (sk, t,Enc (pk, t, μ)) = μ] = 1, where the probability is taken over
the choice of (pk, sk) ← Gen(1λ), and the coins of the algorithms in the
expression.

– Security. Due to known applications of TBE, there is only some security
definitions, IND-sTag-wCCA2, IND-aTag-wCCA2 and IND-aTag-CCA2, for
TBE. In fact, other standard security definitions for TBE can be easily defined
corresponding to those for PKE. In this paper, we focus on IND-aTag-wCCA2
security, which is defined as a game executed by a challenger C and a PPT
adversary A interactively.

• Key Generation Phase. The challenger C calls Gen(1λ) to generate
(pk, sk) and sends pk to the adversary A.

• Decryption Query Phase I. On the query (t, c) from A, C acts as the
decryption oracle: Calls Dec(sk, t, c) to generate a message μ or the failure
symbol ⊥ as the answer to A.

• Challenge Phase. Once A submits t∗ and a pair of messages (μ0, μ1)
with the same length, C samples a random bit b, calls Enc(pk, t∗, μb) to
generate the challenge ciphertext c∗ and sends it to A.

• Decryption Query Phase II. On the query (t, c) from A, C checks
whether t = t∗: if yes, C aborts the game and outputs a random bit; else,
C answers to A as in the decryption query phase I.

• Guess Phase. Once A submits its guess b′, C checks whether b′ = b: if
yes, it outputs 1, and outputs 0 otherwise.

The advantage of A is defined as

AdvaTag-wCCA2
A (λ) := |Pr[C outputs 1] − 1/2|, (2)

a TBE scheme is said to be IND-aTag-wCCA2 secure if the advantage function
(2) is negligible for all PPT adversaries A.

3 Tag-Based Encryption Scheme TBE1

In this section, we construct the first scheme TBE1, in which the preimage sam-
pling problem is mainly embedded. Specifically, this scheme has an encryption
similar to the dual-Regev encryption, where the relation Ae = u mod q is the
core. And hence there is an image vector u in the public key, its corresponding
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LWE value is used to hide the message, the tag is bound to the part of A and
the preimage vector e will first be sampled for decryption.

Let n be the security parameter, a prime q = poly(n), α ∈ (0, 1) such that
αq ≥ 2

√
n, m = O(n�q) and D is the distribution used in Lemma 4. The tag

space is T = {0, 1}� and the message space is Zp for some 2 ≤ p < q.

– TBE1.Gen(1n): Sample Ā0
$←− Z

n×m
q and run (A0,TA0) ← TrapGen(Ā0, In),

where A0 :=
(
Ā0

∥
∥

(
G − Ā0TA0

))
. Choose A1, . . . ,A�

$←− Z
n×n�q
q , u $←− Z

n
q ,

output pk := (A0,A1, . . . ,A�,u) and sk := TA0 .

– TBE1.Enc(pk, t ∈ T , μ ∈ Zp): Sample s $←− Z
n
q , Ri ← D(m+n�q)×n�q for

i ∈ [�], x ← Ψ̄α, y ← Ψ̄
m+n�q
α , let At := (A0

∥
∥(G +

∑�
i=1(−1)t[i]Ai),Rt :=

∑�
i=1(−1)t[i]Ri, z := −RT

t y, compute and output c := (u‖At)
T s +

(x,yT , zT )T + (μ · �q/p�,01×(m+2n�q))
T mod q.

– TBE1.Dec(sk, t, c): First derive a trapdoor TAt ← TrapExt(TA0 ,At, In,
‖TA0‖). And then sample et ← SamplePre(TAt ,At,u, ‖TAt‖), such that
Atet = u mod q, and compute δ := (1,−eT

t ) · c/q. Finally find and output
μ ∈ Zp such that δ − μ/p is closest to 0 modulo 1.

Lemma 8 (Correctness). Let a prime q = ω(p2� · (n�q)2.5 · (log n)2) and α <
(p2�·(n�q)2·ω((log n)2))−1. Then TBE1.Dec works with overwhelming probability.

Proof. In the decryption algorithm, TrapExt and SamplePre are firstly called and
their correctness are guaranteed by Lemmas 7 and 5 respectively. Subsequently,
(1,−eT

t ) · c = μ · (q/p) − μ · (q/p − �q/p�) + x − eT
t (yT , zT )T mod q, in which

the error term is −μ · (q/p − �q/p�) + x − (et,1 − Ret,2)Ty, if we parse et as
(eT

t,1, e
T
t,2)

T .
According to Lemmas 1, 4 and 5, we have

‖et‖ ≤ ‖TAt‖ · ω(
√

log n) ·
√

m + 2n�q ≤ O((n�q)1.5) · ω(log n),

and since ‖R‖ ≤ � · O(
√

m + n�q +
√

n�q) · ω(
√

log n) = � · O(
√

n�q) · ω(
√

log n)
by Lemma 4, ‖et,1 − Ret,2‖ ≤ ‖et,1‖ + ‖Ret,2‖ ≤ � · O((n�q)2) · ω((log n)1.5),
and hence by Lemma 12 in [ABB10],

|(et,1 − Ret,2)Ty| ≤ ‖et,1 − Ret,2‖ · αq · ω(
√

log(m + n�q))

+ ‖et,1 − Ret,2‖ ·
√

m + n�q/2,

and thus | − μ · (q/p − �q/p�) + x − (et,1 − Ret,2)Ty| is less than

p +
2p2

√
n�q

2p
+

2p2� · (n�q)2.5 · ω((log n)2)
2p

+ � · O((n�q)2.5) · ω((log n)1.5) <
q

2p
,

therefore |δ − μ/p| = |(1,−eT
t ) · c/q − μ/p| = |μ/p + 1/q · (−μ · (q/p − �q/p�) +

x − eT
t (yT , zT )T ) − μ/p| < 1/(2p),

so TBE1.Dec outputs μ as desired. ��
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Theorem 1 (Security). The above scheme TBE1 is IND-aTag-wCCA2 secure
in the standard model if the DLWEn,q,Ψ̄α

assumption holds.

Proof. To prove the theorem, we suppose that an arbitrary PPT adversary A
against IND-aTag-wCCA2 security of TBE1. And we consider the following
games, each of which is described as the modification from its previous one.

Game 0. This is the original IND-aTag-wCCA2 security experiment between
A and a challenger C. In addition, C maintains a list T for storing queried
tags.
Game 1. In preparation for use of probabilistic partition technique, we
slightly change the way that C generates the matrices Ai for all i ∈ [�]:
At the key generation phase, C chooses R∗

i as in Game 0 and also chooses
random scalar hi ∈ Zq uniformly, and then it uses A0 generated as in Game
0 to construct Ai as Ai := −A0R∗

i + hiG.
Game 2. After receiving A’s guess, we start to partition the challenge tag
t∗ from A’s queried tags T by introducing the abort check with the abort-
resistant function Hh(t) := 1 +

∑�
i=1(−1)t[i]hi, and then use an artificial

abort to force the probability of aborting to be independent of A’s particular
queries, as in [Wat05,ABB10,ZCZ16].
Game 3. C chooses A0 uniformly at random from Z

n×(m+n�q)
q . For answering

the decryption query on (ti, ci), since

At = (A0‖(−A0

�∑

i=1

(−1)t[i]R∗
i + Hh(t) · G)), (3)

C first computes Hh(ti) and checks if Hh(ti) = 0: If yes, it aborts the game
and outputs a random bit; else, it computes Ati

as in (3), uses its trapdoor
∑�

j=1(−1)ti[j]R∗
j to generate eti

, and finally it exploits eti
to decrypt ci and

sends the result to A.
At the challenge phase, once receiving t∗ from A, C first computes Hh(t∗)

and checks whether it equals to 0: If not, it aborts the game and outputs a
random bit; else, it generates a challenge ciphertext as in Game 2.

At the guess phase, C just performs the artificial abort as in Game 2.

Game 4. This game is identical to Game 3 except that the challenge cipher-
text is chosen as a random element in Z

m+2n�q+1
q .

4 Tag-Based Encryption Scheme TBE2 with Smaller
Modulus and Approximation Factor

In this section, our second scheme TBE2 is presented. TBE2 has a smaller mod-
ulus, which is a key factor of efficiency, and a smaller approximation factor,
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which means a weaker lattice assumption, than TBE1. In particular, we mainly
embed the LWE inversion problem without the image vector in the public key
and hence the preimage sampling algorithm is not available. LWE samples are
also generated freshly for hiding the message in the encryption, which has to be
decrypted by recovering the secret vector or the noise.

The tag space is similar to that of TBE1. The message space is {0, 1}n�q ,
according to [MP12], which can be mapped bijectively to the coset of
Λ(GT )/2Λ(GT ) via a function f : {0, 1}n�q → Z

n�q . Note that f is efficient
to evaluate and to invert and its inversion is denoted as f−1.

– TBE2.Gen(1n): Similar to TBE1.Gen(1n) without sampling u, output pk :=
(A0,A1, . . . ,A�) and sk := TA0 .

– TBE2.Enc(pk, t ∈ T ,µ ∈ {0, 1}n�q ): Sample s $←− Z
n
q , e1 ← Ψ̄

m+n�q
α , Ri ←

D(m+n�q)×n�q for i ∈ [�], where D is the distribution used in Lemma 4. Let
At := (A0

∥
∥(G +

∑�
i=1(−1)t[i]Ai)),Rt :=

∑�
i=1(−1)t[i]Ri, e2 := −RT

t e1,
compute and output c := 2(AT

t s mod q)+(eT
1 , eT

2 )T +(01×(m+n�q), f(µ)T )T

mod 2q.
– TBE2.Dec(sk, t, c): Let TAt ← TrapExt(TA0 ,At, In, ‖TA0‖), where A0TAt

= G − (G +
∑�

i=1(−1)t[i]Ai) = −
∑�

i=1(−1)t[i]Ai. And to compute(
z ∈ Z

n
q , e ∈ Z

n�q
)

as in Lemma 6 on inputs (TAt ,At, c mod q) as follows:
1. b :=

(
TT

At

∥
∥In�q

)
· (c mod q) as a perturbed vector w.r.t. Λ(GT );

2. run the inversion algorithm for Λ(GT ), to get the inversion (z, e) for b.
If ‖e‖ ≥ (�+

√
n�q) ·αq ·O(

√
n�q) · ω̃(log n)+(�+

√
n�q) ·O(n�q) ·ω(

√
log n),

output ⊥. Compute u := (TT
At

∥
∥In�q

) · (c mod 2q) − e, and output f−1(u).

Lemma 9 (Correctness). Let q = ω((� +
√

n�q) · n�q · log n) and α < ((� +
√

n�q)·
√

n�q ·ω(log n))−1. Then TBE2.Dec works with overwhelming probability.

The above lemma can be proved similarly as that for Lemma 8.

Theorem 2 (Security). The above scheme TBE2 is IND-aTag-wCCA2 secure
in the standard model if the DLWEn,q,Ψ̄α′ assumption holds for α′ = α/3 ≥
2
√

n/q.

Proof. The proof is identical to that for Theorem 1 except that the difficulty of
distinguishing from the latter two games is based on a particular form of dis-
cretized DLWE assumption: It is infeasible to distinguish the following two dis-
tributions for any uniform s ∈ Z

n
q , U(Zn

q ×T) := {(a, b)}
a

$←−Zn
q , b

$←−T

and As,α′ :=

{(a, b := 〈a, s〉/q + e mod 1)}
a

$←−Zn
q , e←Ψ̄ ′

α

, which can be transformed into the

distributions over Z
n
q × Z2q by the mapping b �→ 2qb + D

Z−2qb,
√

(αq)2−(2α′q)2 by

Theorem 6.3 in [MP12]. ��
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