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Abstract. Graded linear exponential comonads are an extension of lin-
ear exponential comonads wih grading, and provide a categorical seman-
tics of resource-sensitive exponential modality in linear logic. In this
paper, we propose a concise double-category theoretic formulation of
graded linear exponential comonads as a kind of monoid homomorphisms
from the multiplicative monoids of semirings to the composition monoids
of symmetric monoidal endofunctors. We also exploit this formulation to
derive the category of graded comonoid-coalgebras, which decompose
graded linear exponential comonads into symmetric monoidal adjunc-
tions plus twists.

1 Introduction

One of the important discoveries in substructural logic is the decomposition of
the intuitionistic implication φ ⇒ ψ using the linear implication � and the
exponential modality !. This discovery was studied by Girard through his linear
logic, which brought many new ideas and perspectives to logic and programming
language semantics.

Inside linear logic proofs, propositions with the exponential modality !φ can
be freely copied or discarded. Later, it was realized that by adding a copy limit
to the exponential modality, like !rφ, linear logic gains fine control of assumption
usage. This idea was first implemented in bounded linear logic [9], and studied in
connection with implicit complexity theory [4,14]. Indexed exponential modal-
ities !r were then used in wider context: resource management in programming
languages [3,7,8,20,23] and control of sensitivity in the metric semantics of pro-
grams [5,21].

The categorical structure corresponding to the exponential modality ! was
studied by various researchers, and it was identified as a categorical structure
called linear exponential comonad [1]. One of the celebrated results about linear
exponential comonads is that any symmetric lax monoidal adjunction:

(D, 1,×)
L ��⊥ (C, I,⊗)
R

�� (the monoidal structure 1,× is cartesian)

yields a linear exponential comonad L◦R, and every linear exponential comonad
D arises in this way - for D take the category of Eilenberg-Moore coalgebras of D.
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The categorical structure corresponding to the indexed exponential modality
!r has been proposed as exponential action [3] and graded linear exponential
comonad [7]; they are two different presentations of the same data. Compared
to linear exponential comonads, however, categorical understanding of graded
linear exponential comonads is not well-established. The aim of this paper is to
contribute to this point. Concretely speaking, we show the following categorical
results about graded linear exponential comonads:

– We give a new concise formulation of graded linear exponential comonads
as vertical monoid homomorphisms from multiplicative monoids of semirings
to the composition monoids of symmetric lax monoidal endofunctors. This
formulation is given in a rather complex multi-double category of symmetric
monoidal categories. The slogan is “to represent a complex structure in a
simple category as a simple structure in a complex category”.

– In the multi-double category, vertical monoid homomorphisms themselves can
be seen as monoids. By considering actions of such monoids, we obtain the
concept of graded comonoid-coalgebras. They are an extension of Eilenberg-
Moore coalgebras to graded linear exponential comonads, and the category of
graded comonoid-coalgebras provides a resolution of graded linear exponential
comonads by a symmetric lax monoidal adjunction plus a twist.

2 Related Work

Graded linear exponential comonads were first introduced as exponential actions
in [3], and an equivalent definition was given in [7]. This paper adopts the latter
definition as the starting point of study. These papers also consider linear type
systems with an indexed exponential modality !rφ, which is directly interpreted
by a graded linear exponential comonad. This paper, however, focuses only on
the categorical axiomatics of the indexed exponential modality, and omit its
syntactic theory. In [2], Breuvart and Pagani gave a construction of graded lin-
ear exponential comonads from a set of data called stratification. They derived
various graded linear exponential comonads on the category of sets and binary
relations and the category of coherence spaces. Structures close to, but differ-
ent from, graded linear exponential comonads were considered in the categorical
semantics of the following calculi: INTML for interactive computation [23], coef-
fect calculus [20] and bounded affine types system [8].

Looking at the dual structure, graded monads, first considered in mathe-
matics [6,25], were recently used in the semantic study of logic, systems and
programming languages [13,18,19,22]. The resolution of graded monads were
studied in [12], mildly extending a classic work by Street [26]. The major differ-
ence between graded monads and graded linear exponential comonads is the way
how they interact with the monoidal structure. In [13] only strengths were con-
sidered for graded monads, while graded linear exponential comonads interact
with monoidal structures in an intricate manner.

The multicategory of symmetric lax monoidal multifunctors is related to
the 2-multicategory of T -algebras for a pseudo-commutative 2-monad T [11].
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Hyland and Power studied multifunctors that are symmetric strong monoidal in
each argument, while in this paper we weaken “strong” to “lax”. Yet, we think
that by suitably extending their theory, the symmetric lax monoidal multifunc-
tors can also be given in the language of 2-monad theory.

Monoids in the multicategory MSMCl in Sect. 5 are similar to the dis-
tributivity studied in [15], where Laplaza considered two symmetric non-strict
monoidal structures together with a colax distributivity between them. On the
other hand, in this paper, we consider a strict monoidal structure on top of the
underlying symmetric (non-strict) monoidal structure, and a lax distributivity
between them.

Preliminaries

For symmetric monoidal categories and symmetric lax monoidal functors, see
[16]. In a symmetric monoidal category C, by ι : I⊗ I → I we mean the isomor-
phism λI = ρI, and by τ : (A ⊗ B) ⊗ (C ⊗ D) → (A ⊗ C) ⊗ (B ⊗ D) we mean
the symmetry swapping the second and third component of the tensor product.
For functors Fi :

∏mi

j=1 Ci,j → Di where 1 ≤ i ≤ n, we define F1 × · · · × Fn to
be the composite functor

∏
1≤i≤n,1≤j≤mi

Ci,j → ∏n
i=1(

∏mi

j=1 Ci,j) → ∏n
i=1 Di,

whose codomain is the product category without the nesting of products.

3 Graded Linear Exponential Comonad

In this paper, comonads are graded by a partially ordered semiring. It is a tuple
(R,≤, 0,+, 1, ∗) such that (R, 0,+, 1, ∗) is a unital semiring (not necessarily com-
mutative) and +, ∗ are monotone in each argument w.r.t. the partial order ≤.
The partially ordered monoids of additive and multiplicative parts of R are
denoted by R+ = (R,≤, 0,+) and R∗ = (R,≤, 1, ∗), respectively.

Let C,D be symmetric monoidal categories. We write SMCl(D,C) for the
category of symmetric lax monoidal functors and monoidal natural transforma-
tions between them. The following pointwise extension of the tensor unit and
tensor product on C extends to a symmetric monoidal structure on SMCl(D,C):

İ(D) = I, (F ⊗̇ G)(D) = FD ⊗ GD.

(We note that the symmetry in C is used to make F ⊗̇ G a symmetric lax
monoidal functor.) Below by [D,C]l we mean the symmetric monoidal category
(SMCl(D,C), İ, ⊗̇) of symmetric lax monoidal functors and monoidal natural
transformations between them.

3.1 Graded Linear Exponential Comonad

Fix a partially ordered semiring (R,≤, 0,+, 1, ∗). We introduce the main subject
of this study, R-graded linear exponential comonad. This concept first appeared
in [3, Definition 13] under the name exponential action. We adopt the following
definition [7, Sect. 5.2], which is equivalent to the exponential action:
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Fig. 1. Four equational axioms related to distributive law

Definition 1. An R-graded linear exponential comonad on a symmetric
monoidal category C is a tuple (D,w, c, ε, δ) where

– D : (R,≤) → SMCl(C,C) is a functor. Below we write mr : I → D(r)(I) and
mr,A,B : D(r)(A) ⊗ D(r)(B) → D(r)(A ⊗ B) for the symmetric lax monoidal
structure of D(r).

– (D,w, c) : R+ → [C,C]l is a symmetric colax monoidal functor.
– (D, ε, δ) : R∗ → (SMCl(C,C), Id, ◦) is a colax monoidal functor.

They satisfy four equational axioms in Fig. 1. Moreover, we say that D is an R-
twist if Dr is strong monoidal for each r ∈ R, and (D, ε, δ) is a strict monoidal
functor (hence D1 = Id and D(r ∗ r′) = Dr ◦ Dr′).

When fully expanded, a graded linear exponential comonad specifies one
functor D : (R,≤) → [C,C] and 6 natural transformations:

mr : D(r)(I) → I, mr,A,B : D(r)(A ⊗ B) → D(r)(A) ⊗ D(r)(B)
wA : D(0)(A) → I cr,r′,A : D(r + r′)(A) → D(r)(A) ⊗ D(r′)(A)
εA : D(1)(A) → A δr,r′,A : D(r ∗ r′)(A) → D(r)(D(r′)(A))

satisfying more than 20 equational axioms.
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Example 1. Let C be a cartesian closed category. We take a partially ordered
monoid R× = (R,≤, 1,×) such that (R,≤) is a join semilattice and × preserves
joins in both arguments. This condition makes the tuple R = (R,≤,⊥,∨, 1,×)
a partially ordered semiring. We also take a lax monoidal functor G : R× → C.
Then the functor D : (R,≤)op → [C,C] defined by DrA = Gr ⇒ A extends
to an Rop-graded linear exponential comonad on C (here Rop is the order-
opposite of R).

Example 2. Continuing the previous example, let R = (D,≤,⊥,∨,�,∧) be a
distributive lattice, regarded as a partially ordered semiring. We consider the
functor category [D,Set], where D is regarded as the discrete category of the
carrier set D. We then define G : R → [D,Set] by (Gr)r′ = ∅ if r′ �≤ r, and
(Gr)r′ = {∗} if r′ ≤ r. This G extends to a lax monoidal functor of type G :
R× → [D,Set]. From the construction in the previous example, DrA = Gr ⇒ A
is a graded linear exponential comonad, which coincides with the masking functor
given in [7, Theorem 2]. It behaves as (DrA)r′ = {∗} if r′ �≤ r and (DrA)r′ = Ar′

if r′ ≤ r. This graded linear exponential comonad is used to model the level of
information flow [7, Sect. 6.1].

Example 3. Consider the category EPMet of extended pseudometric spaces1

and nonexpansive functions between them. It has a symmetric monoidal (closed)
structure, whose unit is a terminal object, and whose tensor product is given by
(X, d)⊗(Y, e) = (X×Y, d+e). It also has the scaling modality !r(X, d) = (X, rd),
where r is an element of the ordered semiring of nonnegative extended reals,
which we denote by [0,∞]. The scaling modality is a [0,∞]-twist with respect
to the above symmetric monoidal structure.

The concept of R-graded linear exponential comonad is a generalization of
non-graded linear exponential comonad [1, Definition 3]. This was first observed
in [3].

Theorem 1. A 1-graded linear exponential comonad on a symmetric monoidal
category C is exactly a non-graded linear exponential comonad on C.

On the other hand, 1-twists make monoidal structures cartesian:

Theorem 2. A 1-twist D exists on a symmetric monoidal category C if and
only if the symmetric monoidal structure of C is cartesian (i.e. I is terminal
and ⊗ is a binary product).

Proof. If it exists, the functor part of D must specify the identity functor IdC

because of the strictness. Next, (Id, w, c) becomes a commutative monoid in
[C,C]l; especially w, c are monoidal natural transformations. From [17, Corol-
lary 17], the monoidal structure of C is cartesian. The converse construction is
evident.

1 Here, extended pseudometrics mean the pseudometrics that can return +∞.
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4 A Double-Category Theoretic Reformulation of Graded
Linear Exponential Comonad

Although it is in a reasonably compact form, the definition of graded linear
exponential comonad is yet technical, and it indeed specifies a quite complex
structure. The motivation of this study is to have a conceptually clean and
compact definition of it.

Particularly, what is less clear in the definition is the extra four axioms
related to the distributive law (Fig. 1). In the non-graded setting (i.e. when
R = 1), these four axioms reduces to simpler axioms, which can be viewed as
the following conditions:

– comultiplication δ is a comonoid morphism, (item 4, Sect. 7.4, [17]) and
– weakening w and contraction c are coalgebra morphisms (item 3, Sect. 7.4, [17]).

However, it is not obvious how to upgrade these axioms to the graded setting,
because the concept of “graded coalgebra” and “graded comonoid” are not yet
defined, at least for graded linear exponential comonads. Especially, the concept
of graded coalgebra should be defined after the concept of graded linear expo-
nential comonad, which we are going to define! From this circularity, the above
view of the four axioms are not very helpful when upgrading them in the current
situation.

It is therefore desirable to have an alternative account on four axioms in
Fig. 1, which relies on a notion that already exists before graded linear exponen-
tial comonads. The key observation of this paper is that these four axioms are
an instance of the axioms for 2-cells in the double category SMC of symmetric
monoidal categories, introduced by Grandis and Paré [10, Sect. 2.3]. In SMC, a
2-cell consists of the following data:

• H ��

V ′

��
⇓a

•
V

��•
H′

�� •

where each • is a (possibly distinct) symmetric monoidal category, horizontal
morphisms H,H ′ are symmetric lax monoidal functors, vertical morphisms V, V ′

are symmetric colax monoidal functors, and a : V ◦ H → H ′ ◦ V ′ is a natural
transformation (between underlying functors of H,H ′, V, V ′) making the follow-
ing diagrams commute:

V I ��

��

V HI

��

V (HX ⊗ HY )

��

�� V H(X ⊗ Y )

��
H ′V ′I

��

V HX ⊗ V HY

��

H ′V ′(X ⊗ Y )

��
I �� H ′I H ′V ′X ⊗ H ′V ′Y �� H ′(V ′X ⊗ V ′Y )

(1)
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We note that when V, V ′ (resp. H,H ′) are identity functors, the above axioms
are reduced to the ones for monoidal natural transformations of type V → V ′

(resp. H → H ′).
Let us see how 2-cell axioms (1) in SMC derives the four axioms in Fig. 1.

Proposition 1. In Definition 1, the four axioms (Fig. 1) can be replaced by the
following statement: for each r ∈ R, both

δr,− : D(r ∗ −) → Dr ◦ D−, δ−,r : D(− ∗ r) → D− ◦ Dr

are 2-cells of the following type in SMC:

R+

D

��

r∗− ��

⇓δr,−

R+

D

��

R+

D

��

−∗r ��

⇓δ−,r

R+

D

��
[C,C]l

Dr◦−
�� [C,C]l [C,C]l −◦Dr

�� [C,C]l

5 Multicategory of Symmetric Lax Monoidal
Multifunctors

Proposition 1 says that by fixing one index of the doubly-indexed natural trans-
formation δ−,= : D(−∗=) → D−◦D=, we obtain a 2-cell in the double category
SMC. However, δ itself does not live in SMC. In order to create a room to
accommodate δ as a kind of 2-cell, we extend horizontal morphisms of SMC to
multi-ary functors that are symmetric lax monoidal in each argument. We first
study such multi-ary functors in this section.

Let Ci (1 ≤ i ≤ n) and D be symmetric monoidal categories. Intuitively,
an n-ary functor F : C1 × · · · × Cn → D is symmetric lax monoidal in each
argument if it comes with a structure making the functor F (C1, ..,−m, .., Cn) :
Cm → D symmetric lax monoidal for each m ∈ {1, · · · , n} and Ci ∈ Ci, i ∈
{1, · · · , n}\{m}. Moreover, these symmetric lax monoidal structures commute
with each other in a coherent manner.

To formally define such multi-ary symmetric lax monoidal functors, we intro-
duce a notation for sequences. For a sequence C = C1, · · · , Cn of mathe-
matical objects, a natural number 1 ≤ i ≤ n and another sequence D, by
C[i : D] we mean the sequence obtained by replacing Ci with D. For instance,
(1, 3, 5)[2 : X,Y ] = 1,X, Y, 5. When D is empty, C[i :] stands for the sequence
obtained by removing the i-th element of C.

Definition 2. A symmetric lax monoidal multifunctor of type (C1, · · · ,Cn) →
D consists of a functor and a family of natural transformations indexed by 1 ≤
i ≤ n:

F : C1 × · · · × Cn → D

φi
C[i:] : I → F (C[i : I]) (C ∈ C1 × · · · × Cn)

φi
C[i:X,Y ] : F (C[i : X]) ⊗ F (C[i : Y ]) → F (C[i : X ⊗ Y ]) (C ∈ C1 × · · · × Cn, X, Y ∈ Ci)
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such that:

1. For each C ∈ C1 × · · · × Cn and 1 ≤ i ≤ n, The tuple (F (C[i : −]),
φi

C[i:], φ
i
C[i:−,=]) is a symmetric lax monoidal functor from Ci to D. We denote

it by F (C/i).
2. The following equalities hold for each C ∈ C1 × · · · × Cn and 1 ≤ i < j ≤ n:

– φi
C[j:I][i:] = φj

C[i:I][j:]

– φj
C[i:I][j:P,Q] ◦ (φi

C[j:P ][i:] ⊗ φi
C[j:Q][i:]) = φi

C[j:P⊗Q][i:] ◦ ι

– φi
C[j:I][i:P,Q] ◦ (φj

C[i:P ][j:] ⊗ φj
C[i:Q][j:]) = φj

C[i:P⊗Q][j:] ◦ ι

– φj
C[i:X⊗Y ][j:P,Q] ◦ (φi

C[j:P ][i:X,Y ] ⊗ φi
C[j:Q][i:X,Y ]) = φi

C[j:P⊗Q][i:X,Y ] ◦
(φj

C[i:X][j:P,Q] ⊗ φj
C[i:Y ][j:P,Q]) ◦ τ .

We note that a symmetric lax monoidal multifunctor of type () → D is just an
object in D, because all natural transformations vanish and only the functor of
type 1 → D remains.

Example 4. Let us see how the definition of a binary symmetric lax monoidal
multifunctor M : (C,C) → C is unfolded. It consists of a functor M : C×C → C

and the following natural transformations:

φ1
C : I → M(I, C), φ1

X,Y,C : M(X,C) ⊗ M(Y,C) → M(X ⊗ Y,C)

φ2
C : I → M(C, I), φ2

C,X,Y : M(C,X) ⊗ M(C, Y ) → M(C,X ⊗ Y )

such that

1. For each C ∈ C, (M(−, C), φ1
C , φ1

−,=,C) and (M(C,−), φ2
C , φ2

C,−,=) are sym-
metric lax monoidal functors of type C → C.

2. The following coherence axioms holds:

φ1
I = φ2

I , φ1
C⊗C′ ◦ ι = φ2

I,C,C′ ◦ (φ1
C ⊗ φ1

C′), φ2
C⊗C′ ◦ ι = φ1

C,C′,I ◦ (φ2
C ⊗ φ2

C′)

φ2
C⊗C′,D,D′ ◦ (φ1

C,C′,D ⊗ φ1
C,C′,D′) = φ1

C,C′,D⊗D′ ◦ (φ2
C,D,D′ ⊗ φ2

C′,D,D′) ◦ τ

We will later use the following binary symmetric lax monoidal multifunctors.
Let R be a partially ordered semiring and C be a symmetric monoidal category.

1. The multiplication (∗) is a symmetric lax monoidal multifunctor of type
(R+, R+) → R+.

2. The evaluation functor ev : [C,C]l × C → C extends to a symmetric lax
monoidal multifunctor of type ([C,C]l,C) → C.

3. The functor composition (◦) extends to a symmetric lax monoidal multifunc-
tor of type ([C,C]l, [C,C]l) → [C,C]l.

Note that (∗) is symmetric strict monoidal in each argument, while (◦), ev are
symmetric strict monoidal in the first argument, and symmetric lax monoidal in
the second argument.
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Next, for symmetric lax monoidal multifunctors (F, φ) : (C1, · · · ,Cn) → D

and (Gi, γ(i)) : (Bi,1, · · · ,Bi,mi
) → Ci (1 ≤ i ≤ n), we define their multi-

composition. First, we define a bijection (/) : {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} →
{1, · · · ,

∑
1≤i≤n mi}, and represent a number in the latter set as the pair of num-

bers uniquely determined by (/) in the former set. Then the multicomposition
is given by the following (H, η):

H = F ◦ (G1 × · · · × Gn)

η
i/j

(B1,··· ,Bn)[i/j:] = F ((GB1, · · · , GBn)[i : γ(i)
j
Bi[j:]

] ◦ φ
i
(GB1,··· ,GBn)[i:]

η
i/j

(B1,··· ,Bn)[i/j:X,Y ] = F ((GB1, · · · , GBn)[i : γ(i)
j
Bi[j:X,Y ]] ◦ φ

i
(GB1,··· ,GBn)[i:G(Bi[j:X]),G(Bi[j:Y ])]

Theorem 3. Symmetric monoidal categories, symmetric lax monoidal multi-
functors, and the above multi-composition form a multicategory MSMCl.

Proof (Proof sketch). To check that symmetric lax monoidal multifunctors are
closed under multicomposition, the key case is when n = 2,m1 = m2 = 1 and
n = 1,m1 = 2.

In MSMCl we consider monoids and monoid actions. A monoid is a tuple
(C, U : () → C,M : (C,C) → C) of a symmetric monoidal category C and
symmetric lax monoidal multifunctors U,M such that

Id = M ◦ (Id, U), Id = M ◦ (U, Id), M ◦ (Id,M) = M ◦ (M, Id).

An action of a monoid (C, U,M) on a symmetric monoidal category D is a
symmetric lax monoidal multifunctor A : (C,D) → D such that

A ◦ (U, Id) = Id, A ◦ (Id, A) = A ◦ (M, Id).

By unfolding the definition, a monoid (C, U,M) in MSMCl equips C with an
additional strict monoidal structure (U,M). The argument-wise symmetric lax
monoidal structure on M becomes a lax distributivity (see Example 4). Thus we
call a monoid in MSMCl a lax distributive strict rig category. It has a smaller
set of coherence axioms than the one given by Laplaza in [15], thanks to the
strictness of (U,M).

Example 5 (Continued from Example 4). (R+, 1, ∗) and ([C,C]l, Id, ◦) are both
lax distributive strict rig categories. Both monoids acts on themselves. The latter
monoid acts on C with the evaluation functor ev.

6 Graded Linear Exponential Comonads as Vertical
Monoid Homomorphisms

We now extend the double category SMC of Grandis and Paré by replacing
horizontal morphisms with symmetric lax monoidal multifunctors. The concept
of 2-cells in SMC is also replaced by prisms — the reason of the name is because
they are placed in the middle of the space surrounded by two horizontal multi-
functors and vertical morphisms. Such a prism is defined to be a natural trans-
formation that is a 2-cell of SMC in each argument.
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Definition 3. Let F : (C1, · · · ,Cn) → D and G : (E1, · · · ,En) → F be symmet-
ric lax monoidal multifunctors and Vi : Ci → Ei (1 ≤ i ≤ n) and W : D → F be
symmetric colax monoidal functors. A prism α of type (V1, · · · , Vn) → W : F →
G, which is depicted as

(C1, · · · ,Cn) F ��

(V1,··· ,Vn)

��
⇓α

D

W

��
(E1, · · · ,En)

G
�� F

is a natural transformation α : W ◦ F → G ◦ (V1 × · · · × Vn) such that for each
C ∈ ∏n

i=1 Ci and 1 ≤ i ≤ n, αC[i:−] is a 2-cell of the following type in the double
category SMC:

Ci

⇓αC[i:−]

F (C[i:−]) ��

Vi

��

D

W

��
Ei

G((V1C1,··· ,VnCn)[i:−])
�� F

We note that when n = 0, a prism α : () → W : F → G is simply a morphism
α : WF → G in F.

Proposition 2. Let D : R+ → [C,C]l be a symmetric colax monoidal functor
and δ be a prism of type (D,D) → D : (∗) → (◦), where (∗) and (◦) are
symmetric lax monoidal multifunctors appeared in Example 4. Then for each
r ∈ R, δr,− and δ−,r are 2-cells of the following type in SMC:

R+

D

��

r∗− ��

⇓δr,−

R+

D

��

R+

D

��

−∗r ��

⇓δ−,r

R+

D

��
[C,C]l

Dr◦−
�� [C,C]l [C,C]l −◦Dr

�� [C,C]l

Like double categories, composition of prisms can be done in two directions.
Consider the following prisms (1 ≤ i ≤ n).

(Bi,1, · · · ,Bi,mi
)

Gi ��

(Ui,1,··· ,Ui,mi
)

��
⇓γi

Ci

Vi

��

(C1, · · · ,Cn) F ��

(V1,··· ,Vn)

��
⇓α

D

W

��
(B′

i,1, · · · ,B′
i,mi

)
G′

i ��

(U ′
i,1,··· ,U ′

i,mi
)

��
⇓δi

C
′
i

Vi

��

(C′
1, · · · ,C′

n) F ′
��

(V ′
1 ,··· ,V ′

n)

��
⇓β

D
′

W ′

��
(B′′

i,1, · · · ,B′′
i,mi

)
G′′

i

�� C′′
i (C′′

1 , · · · ,C′′
n)

F ′′
�� D′′
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Then define vertical composition and horizontal multicomposition of prisms
by the following (ordinary) natural transformations:

β � α = (β ◦ (V1 × · · · × Vn)) • (W ′ ◦ α)
α � (γ1, · · · , γn) = (F ′ ◦ (γ1 × · · · × γn)) • (α ◦ (G1 × · · · × Gn))

where • on the right hand side is the vertical composition of natural transfor-
mations.

Proposition 3. In the above setting,

1. β � α is a prism of type (V ′
1 ◦ V1, · · · , V ′

n ◦ Vn) → W ′ ◦ W : F → F ′′.
2. α � (γ1, · · · , γn) is a prism of type (U1,1, · · · , Un,mn

) → W : F ◦
(G1, · · · , Gn) → F ′ ◦ (G′

1, · · · , G′
n).

3. The interchange law holds:

(β � (δ1, · · · , δn)) � (α � (γ1, · · · , γn)) = (β � α) � (δ1 � γ1, · · · , δn � γn).

Definition 4. Let (C, U,M), (D, U ′,M ′) be monoids in MSMCl. A vertical
monoid homomorphism consists of a symmetric colax monoidal functor A : C →
D and prisms ε : () → A : U → U ′ and δ : (A,A) → A : M → M ′:

()

⇓ε

U �� C

⇓δA

��

(C,C)M��

(A,A)

��
()

U ′
�� D (D,D)

M ′
��

such that the following prism equalities hold:

δ � (id, ε) = id, δ � (ε, id) = id, δ � (id, δ) = δ � (δ, id).

The above prism equalities amounts to the following equality of natural trans-
formations:

M ′(AX, ε) ◦ δX,U = id M ′(ε, AX) ◦ δU,X = id
M ′(AX, δY,Z) ◦ δX,M(Y,Z) = M ′(δX,Y , AZ) ◦ δM(X,Y ),Z

With this concept, we can concisely capture R-graded linear exponential
comonads:

Theorem 4. There is a bijective correspondence between

1. A vertical monoid homomorphism (D, ε, δ) from (R+, 1, ∗) to ([C,C]l, Id, ◦).
2. An R-graded linear exponential comonad on C.

Vertical monoid homomorphisms vertically compose. Therefore we can
extend a graded linear exponential comonad (as a vertical monoid homomor-
phism) by stacking vertical monoid homomorphisms.
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Proposition 4. Let R,S be partially ordered semirings. Then a vertical monoid
homomorphism from (R+, 1R, ∗R) to (S+, 1S , ∗S) bijectively corresponds to a
monotone function h : (R,≤R) → (S,≤S) such that h(

∑
R ri) ≤ ∑

S h(ri) and
h(

∏
R ri) ≤ ∏

S h(ri) (which we call colax homomorphism).

Proposition 5. Let F � U : C → D be a symmetric lax monoidal adjunction.
Then the functor V F
U defined by V F
UH = F ◦ H ◦ U is a vertical monoid
homomorphism from ([C,C]l, Id, ◦) to ([D,D]l, Id, ◦).

Proof. Let F � U : C → D be a symmetric lax monoidal adjunction. From
Kelly’s doctrinal adjunction, F is symmetric strong monoidal, hence so is F ◦ −
in the following diagram:

V F
U = [C,C]l
F◦− �� [C,D]l

−◦U �� [D,D]l

Next, −◦U above is always symmetric strict monoidal. By composing them,
we obtain that V F
U is symmetric strong, hence colax monoidal. We next intro-
duce prisms (ε, δ) of the following type:

()

⇓ε

Id �� [C,C]l

⇓δV F�U

��

([C,C]l, [C,C]l)
◦��

(V F�U ,V F�U )

��
()

Id
�� [D,D]l ([D,D]l, [D,D]l)◦

��

We define ε to be the counit of the adjunction F � U , which is monoidal natural,
and δ be the following natural transformation:

δH1,H2 = V F
U (H1 ◦ η ◦ H2) : V F
U (H1 ◦ H2) → V F
UH1 ◦ V F
UH2

It is routine to check that this satisfies the axioms of prism. ��
Theorem 5. Let R be a partially ordered semiring and D be an R-graded linear
exponential comonad on a symmetric monoidal category C. We moreover let S
be another partially ordered semiring, h : S → R be a colax homomorphism and
F � U : C → D be a symmetric lax monoidal adjunction. Then the following
composite of vertical monoid homomorphisms is an S-graded linear exponential
comonad on D.

(S+, 1S , ∗S) h �� (R+, 1R, ∗R) D �� ([C,C]l, IdC, ◦) V F�U
�� ([D,D]l, IdD, ◦)

We call the above composite the extension of D with F � U and h.

7 From Monoid Actions to Graded Comonoid-Coalgebras

Let (D, ε, δ) : (R+, 1, ∗) → ([C,C]l, Id, ◦) be an R-graded linear exponen-
tial comonad as a vertical monoid homomorphism. The prism equations in
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Definition 4 suggests that the vertical monoid homomorphism itself can be seen
as a monoid. We can thus consider monoid actions of (D, ε, δ): it consists of a
prism

(R+, R+)

(D,A)

��

∗ ��

⇓a

R+

A

��
([C,C]l,C)

ev
�� C

such that the following prism equations hold:

a � (δ, id) = a � (id, a), a � (ε, id) = id.

We note that this makes sense because (∗) and ev are also monoid actions in
MSMCl; see Example 5. By unfolding this definition, we obtain the following
structure, which we name graded comonoid-coalgebra.

Definition 5. Let R be a partially ordered semiring. An R-graded comonoid-
coalgebra of an R-graded linear exponential comonad (D,w, c, ε, δ) on a sym-
metric monoidal category C is a tuple (A, a, u, o) such that

– (A, u, o) : R+ → C is a symmetric colax monoidal functor.
– ar,r′ : A(r ∗ r′) → D(r)(A(r′)) is a natural transformation.

They satisfy the following six equational axioms:

A(r ∗ s ∗ t)
ar,s∗t ��

ar∗s,t

��

D(r)(A(s ∗ t))

D(r)(as,t)

��
D(r ∗ s)(A(t))

δr,s,A(t)

�� D(r)(D(s)(A(t)))

A(1 ∗ t)
a1,t ��

���
���

���
��

���
���

���
��

D(1)(A(t))

εA(t)

��
A(t)

A(0)

u

��

A(0 ∗ r)

a0,r

��
D(0)(A(r))

wA(r)

��
I I

A(0)

u

��

A(r ∗ 0)

ar,0

��
D(r)(A(0))

D(r)(u)

��
I

mr

�� D(r)(I)

A(s ∗ r + t ∗ r)

os∗r,t∗r

��

A((s + t) ∗ r)

as+t,r

��
A(s ∗ r) ⊗ A(t ∗ r)

as,r⊗at,r

��

D(s + t)(A(r))

cs,t,A(r)

��
D(s)(A(r)) ⊗ D(t)(A(r)) D(s)(A(r)) ⊗ D(t)(A(r))
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A(r ∗ s + r ∗ t)

or∗s,r∗t

��

A(r ∗ (s + t))

ar,s+t

��
A(r ∗ s) ⊗ A(r ∗ t)

ar,s⊗ar,t

��

D(r)(A(s + t))

D(r)(os,t)

��
D(r)(A(s)) ⊗ D(r)(A(t))

mr,A(s),A(t)
�� D(r)(A(s) ⊗ A(t))

A morphism from an R-graded comonoid-coalgebra (A, a, u, o) to another
(B, b, v, p) is a monoidal natural transformation h : (A, u, o) → (B, v, p) such
that h satisfies:

A(r ∗ s)
hr∗s ��

ar,s

��

B(r ∗ s)

br,s

��
Dr(As)

Drhs

�� Dr(Bs)

We write C(C,D) for the category of R-graded comonoid-coalgebras of D.

Proposition 6. Let R be a partially ordered semiring and (D,w, c, ε, δ) be an
R-graded linear exponential comonad on a symmetric monoidal category C. The
following gives a symmetric monoidal structure on C(C,D):

I = (İ, (λr, s . mr), idI, (λr, s . ι−1))

(A, a, u, o) ⊗ (B, b, v, p)

= (A ⊗̇ B, λr, r′ . mr,Ar′,Br′ ◦ (ar,r′ ⊗ br,r′ ), ι ◦ (u ⊗ v), λr, r′ . τ ◦ (or,r′ ⊗ pr,r′ ))

(f ⊗ g)r = fr ⊗ gr

(λA)r = λAr, (ρA)r = ρAr, (αA,B,C)r = αAr,Br,Cr, (σA,B)r = σAr,Br

When R = 1, The category C(C,D) reduces to the category of Eilenberg-
Moore coalgebras of the non-graded linear exponential comonad.

Theorem 6. Let (D,w, c, ε, δ) be a 1-graded linear exponential comonad on a
symmetric monoidal category C. Then the category C(C,D) is strong monoidally
isomorphic to the category C

D of Eilenberg-Moore coalgebras of the comonad
(D, ε, δ).

Like C
D, there is a symmetric lax monoidal adjunction of the following type:

C(C,D)
F ��⊥ C

U
��

but this itself is not enough to recover D — D takes two arguments, while the
composite F ◦U is only equal to the symmetric lax monoidal comonad D1 on C.
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The category C(C,D) actually carries an R-twist T , which acts on comonoid-
coalgebras as follows:

Tr(A, · · · ) = (A(− ∗ r), · · · ),

and D is recovered as the extension of T with the adjunction F � U (Theorem 5).

Theorem 7. Let R be a partially ordered semiring and (D,w, c, ε, δ) be an R-
graded linear exponential comonad on a symmetric monoidal category C.

1. The functor F : C(C,D) → C given by F (A, a, u, o) = A1 and Fh = h1 is
symmetric strict monoidal, and has a symmetric lax monoidal right adjoint U :
C → C(C,D), whose object part is given by UA = (λr .DrA, λr, r′ . δr,r′,A, wA,
λr, r′ . cr,r′,A).

2. The following data give an R-twist T on C(C,D):

TrA = (λs . A(s ∗ r), λs, s′ . as,s′∗r, u, λs, s′ . os∗r,s′∗r), (Trh)t = ht∗r

(mT
r )t = idI, (mT

r,A,B)t = idA(t∗r)⊗B(t∗r), (wT
A)t = u, (cT

r,s,A)t = ot∗r,t∗s.

Here, A = (A, a, u, o) and B are R-graded comonoid coalgebras. From the
definition of twists, εT , δT are identities.

3. The extension of D with F � U (Theorem 5) coincides with the R-graded
linear exponential comonad D.

The following classic result [1, Theorem 6-1] can be reproved by Theorem 7.

Corollary 1. Let C be a symmetric monoidal category and Let D be a non-
graded linear exponential comonad on C. The canonical symmetric monoidal
structure on the category C

D of Eilenberg-Moore coalgebras of D is cartesian.

Proof. From Theorem 1, D is a 1-graded linear exponential comonad on C.
Therefore C(C,D) has a 1-twist by Theorem 7-3. Therefore the symmetric
monoidal structure of C(C,D) is cartesian by Theorem 2. Finally, C(C,D)
is strong monoidally isomorphic to C

D by Theorem 6, hence the symmetric
monoidal structure of CD is also cartesian. ��

We show the finality of the category of graded comonoid-coalgebras. Let R be
a partially ordered semiring and D be an R-graded linear exponential comonad
on a symmetric monoidal category C. We define a resolution of D to be a pair of
a symmetric lax monoidal adjunction J � K : E → C and an R-twist (S,wS , cS)
on E such that the extension of S with J � K is equal to D. Then the following
set of data becomes a strong monoidal functor (M,mM ,mM

E,E′) : E → C(C,D):

ME = (λr . J(Sr)E, λr, r
′

. J(Sr)η
J�K
Sr′E , (m

J
)
−1 ◦ w

S
E , λr, r

′
. (m

J
SrE,Sr′E)

−1 ◦ Jc
S
r,r′,E)

(Mf)r = J(Sr)f, (m
M

)r = J(m
S
r ) ◦ m

J
, (m

M
E,E′ )r = J(m

S
r,E,E′ ) ◦ m

J
SrE,SrE′

(recall that Sr, J are both symmetric strong monoidal).
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Theorem 8. The above M is the unique symmetric strong monoidal functor
such that:

1. Equality of symmetric lax monoidal functors M ◦ K = U and F ◦ M = J
hold.

2. Let M∗ = − ◦ M and M∗ = M ◦ − be induced symmetric strict (resp. strong)
monoidal functors. Then the following square of symmetric colax monoidal
functors commutes.

R+ S ��

T

��

[E,E]l

M∗
��

[C(C,D), C(C,D)]l
M∗

�� [E, C(C,D)]l

8 Conclusion

We have given a concise characterization of graded linear exponential comonad
as a vertical monoid homomorphism (D, ε, δ) from (R+, 1, ∗) to ([C,C]l, Id, ◦).
This characterization is built upon a combination of the theory of symmetric lax
monoidal multifunctors and Grandis and Paré’s double category of symmetric
monoidal categories. After this characterization, we considered monoid actions,
and derived the concept of graded comonoid-coalgebras. The category of graded
comonoid-coalgebras are shown to give a resolution of the graded linear expo-
nential comonad D. These results are consistent with the theory of non-graded
linear exponential comonads developed in [1].

It remains to be seen if the category of graded comonoid-coalgebras can
be constructed in a purely double-category theoretic way. In non-graded case,
there are other type of categorical models of exponential modality using Lafont
category and Seely category [17]. Graded version of these categories are also an
interesting research topic.
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