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Abstract. We study the never-worse relation (NWR) for Markov deci-
sion processes with an infinite-horizon reachability objective. A state q
is never worse than a state p if the maximal probability of reaching the
target set of states from p is at most the same value from q, regardless
of the probabilities labelling the transitions. Extremal-probability states,
end components, and essential states are all special cases of the equiva-
lence relation induced by the NWR. Using the NWR, states in the same
equivalence class can be collapsed. Then, actions leading to sub-optimal
states can be removed. We show that the natural decision problem asso-
ciated to computing the NWR is coNP-complete. Finally, we extend
a previously known incomplete polynomial-time iterative algorithm to
under-approximate the NWR.

1 Introduction

Markov decision processes (MDPs) are a useful model for decision-making in the
presence of a stochastic environment. They are used in several fields, including
robotics, automated control, economics, manufacturing and in particular plan-
ning [20], model-based reinforcement learning [22], and formal verification [1]. We
elaborate on the use of MDPs and the need for graph-based reductions thereof
in verification and reinforcement learning applications below.

Several verification problems for MDPs reduce to reachability [1,5]. For
instance, MDPs can be model checked against linear-time objectives (expressed
in, say, LTL) by constructing an omega-automaton recognizing the set of runs
that satisfy the objective and considering the product of the automaton with the
original MDP [6]. In this product MDP, accepting end components—a general-
ization of strongly connected components—are identified and selected as tar-
get components. The question of maximizing the probability that the MDP
behaviours satisfy the linear-time objective is thus reduced to maximizing the
probability of reaching the target components.

The maximal reachability probability is computable in polynomial time by
reduction to linear programming [1,6]. In practice, however, most model checkers
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use value iteration to compute this value [9,17]. The worst-case time complex-
ity of value iteration is pseudo-polynomial. Hence, when implementing model
checkers it is usual for a graph-based pre-processing step to remove as many
unnecessary states and transitions as possible while preserving the maximal
reachability probability. Well-known reductions include the identification of
extremal-probability states and maximal end components [1,5]. The intended
outcome of this pre-processing step is a reduced amount of transition probabil-
ity values that need to be considered when computing the number of iterations
required by value iteration.

The main idea behind MDP reduction heuristics is to identify subsets of
states from which the maximal probability of reaching the target set of states
is the same. Such states are in fact redundant and can be “collapsed”. Figure 1
depicts an MDP with actions and probabilities omitted for clarity. From p and
q there are strategies to ensure that s is reached with probability 1. The same
holds for t. For instance, from p, to get to t almost surely, one plays to go to
the distribution directly below q; from q, to the distribution above q. Since from
the state p, there is no strategy to ensure that q is reached with probability 1,
p and q do not form an end component. In fact, to the best of our knowledge,
no known MDP reduction heuristic captures this example (i.e., recognizes that
p and q have the same maximal reachability probability for all possible values
of the transition probabilities).

p qs t. . . . . .

Fig. 1. An MDP with states depicted as circles and distributions as squares. The
maximal reachability probability values from p and q are the same since, from both,
one can enforce to reach s with probability 1, or t with probability 1, using different
strategies.

In reinforcement learning the actual probabilities labelling the transitions of
an MDP are not assumed to be known in advance. Thus, they have to be esti-
mated by experimenting with different actions in different states and collecting
statistics about the observed outcomes [14]. In order for the statistics to be good
approximations, the number of experiments has to be high enough. In particular,
when the approximations are required to be probably approximately correct [23],
the necessary and sufficient number of experiments is pseudo-polynomial [13].
Furthermore, the expected number of steps before reaching a particular state
even once may already be exponential (even if all the probabilities are fixed).
The fact that an excessive amount of experiments is required is a known draw-
back of reinforcement learning [15,19].

A natural and key question to ask in this context is whether the maximal
reachability probability does indeed depend on the actual value of the probability
labelling a particular transition of the MDP. If this is not the case, then it need
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not be learnt. One natural way to remove transition probabilities which do not
affect the maximal reachability value is to apply model checking MDP reduction
techniques.

Contributions and Structure of the Paper. We view the directed graph underlying
an MDP as a directed bipartite graph. Vertices in this graph are controlled by
players Protagonist and Nature. Nature is only allowed to choose full-support
probability distributions for each one of her vertices, thus instantiating an MDP
from the graph; Protagonist has strategies just as he would in an MDP. Hence,
we consider infinite families of MDPs with the same support. In the game played
between Protagonist and Nature, and for vertices u and v, we are interested in
knowing whether the maximal reachability probability from u is never (in any of
the MDPs with the game as its underlying directed graph) worse than the same
value from v.

In Sect. 2 we give the required definitions. We formalize the never-worse
relation in Sect. 3. We also show that we can “collapse” sets of equivalent vertices
with respect to the NWR (Theorem 1) and remove sub-optimal edges according
to the NWR (Theorem 2). Finally, we also argue that the NWR generalizes
most known heuristics to reduce MDP size before applying linear programming
or value iteration. Then, in Sect. 4 we give a graph-based characterization of
the relation (Theorem 3), which in turn gives us a coNP upper bound on its
complexity. A matching lower bound is presented in Sect. 5 (Theorem 4). To
conclude, we recall and extend an iterative algorithm to efficiently (in polynomial
time) under-approximate the never-worse relation from [2].

Previous and Related Work. Reductions for MDP model checking were consid-
ered in [5,7]. From the reductions studied in both papers, extremal-probability
states, essential states, and end components are computable using only graph-
based algorithms. In [3], learning-based techniques are proposed to obtain
approximations of the maximal reachability probability in MDPs. Their algo-
rithms, however, do rely on the actual probability values of the MDP.

This work is also related to the widely studied model of interval MDPs,
where the transition probabilities are given as intervals meant to model the
uncertainty of the numerical values. Numberless MDPs [11] are a particular case
of the latter in which values are only known to be zero or non-zero. In the
context of numberless MDPs, a special case of the question we study can be
simply rephrased as the comparison of the maximal reachability values of two
given states.

In [2] a preliminary version of the iterative algorithm we give in Sect. 6 was
described, implemented, and shown to be efficient in practice. Proposition 1 was
first stated therein. In contrast with [2], we focus chiefly on characterizing the
never-worse relation and determining its computational complexity.
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2 Preliminaries

We use set-theoretic notation to indicate whether a letter b ∈ Σ occurs in a word
α = a0 . . . ak ∈ Σ∗, i.e. b ∈ α if and only if b = ai for some 0 ≤ i ≤ k.

Consider a directed graph G = (V,E) and a vertex u ∈ V . We write uE for
the set of successors of u. That is to say, uE := {v ∈ V | (u, v) ∈ E}. We say
that a path π = u0 . . . uk ∈ V ∗ in G visits a vertex v if v ∈ π. We also say that
π is a v–T path, for T ⊆ V , if u0 = v and uk ∈ T .

2.1 Stochastic Models

Let S be a finite set. We denote by D(S) the set of all (rational) probabilistic dis-
tributions on S, i.e. the set of all functions f : S → Q≥0 such that

∑
s∈S f(s) = 1.

A probabilistic distribution f ∈ D(S) has full support if f(s) > 0 for all s ∈ S.

Definition 1 (Markov chains). A Markov chain C is a tuple (Q, δ) where Q
is a finite set of states and δ is a probabilistic transition function δ : Q → D(Q).

A run of a Markov chain is a finite non-empty word � = p0 . . . pn over Q. We
say � reaches q if q = pi for some 0 ≤ i ≤ n. The probability of the run is∏

0≤i<n δ(pi, pi+1).

Let T ⊆ Q be a set of states. The probability of (eventually) reaching T in
C from q0, which will be denoted by P

q0
C [♦T ], is the measure of the runs of C

that start at q0 and reach T . For convenience, let us first define the probability
of staying in states from S ⊆ Q until T is reached1, written P

q0
C [S U T ], as 1 if

q0 ∈ T and otherwise

∑
⎧
⎨

⎩

∏

0≤i<n

δ(qi, qi+1)

∣
∣
∣
∣
∣
∣
q0 . . . qn ∈ (S \ T )∗T for n ≥ 1

⎫
⎬

⎭
.

We then define P
q0
C [♦T ] := P

q0
C [Q U T ].

When all runs from q0 to T reach some set U ⊆ Q before, the probability of
reaching T can be decomposed into a finite sum as in the lemma below.

Lemma 1. Consider a Markov chain C = (Q, δ), sets of states U, T ⊆ Q, and
a state q0 ∈ Q \ U . If P

q0
C [(Q \ U) U T ] = 0, then

P
q0
C [♦T ] =

∑

u∈U

P
q0
C [(Q \ U) U u] Pu

C [♦T ].

Definition 2 (Markov decision processes). A (finite, discrete-time) Markov
decision process M, MDP for short, is a tuple (Q,A, δ, T ) where Q is a finite set
of states, A a finite set of actions, δ : Q × A → D(Q) a probabilistic transition
function, and T ⊆ Q a set of target states.

For convenience, we write δ(q|p, a) instead of δ(p, a)(q).
1 S U T should be read as “S until T” and not understood as a set union.
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Definition 3 (Strategies). A (memoryless deterministic) strategy σ in an
MDP M = (Q,A, δ, T ) is a function σ : Q → A.

Note that we have deliberately defined only memoryless deterministic strate-
gies. This is at no loss of generality since, in this work, we focus on maximizing
the probability of reaching a set of states. It is known that for this type of
objective, memoryless deterministic strategies suffice [18].

From MDPs to Chains. An MDP M = (Q,A, δ, T ) and a strategy σ induce the
Markov chain Mσ = (Q,μ) where μ(q) = δ(q, σ(q)) for all q ∈ Q.

p q

1
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3
4

1
4

3
4

b

a

ba

1
2

1
2

1
2

1
2

p q

1
4

3
4

1
2

1
2

Fig. 2. On the left we have an MDP with actions {a, b}. On the right we have the
Markov chain induced by the left MDP and the strategy {p �→ a, q �→ b}.

Example 1. Figure 2 depicts an MDP on the left. Circles represent states; double-
circles, target states; and squares, distributions. The labels on arrows from states
to distributions are actions; those on arrows from distributions to states, prob-
abilities.

Consider the strategy σ that plays from p the action a and from q the action
b, i.e. σ(p) = a and σ(q) = b. The Markov chain on the right is the chain induced
by σ and the MDP on the left. Note that we no longer have action labels.

The probability of reaching a target state from q under σ is easily seen to
be 3/4. In other words, if we write M for the MDP and T for the set of target
states then P

q
Mσ [♦T ] = 3

4 .

2.2 Reachability Games Against Nature

We will speak about families of MDPs whose probabilistic transition functions
have the same support. To do so, we abstract away the probabilities and focus
on a game played on a graph. That is, given an MDP M = (Q,A, δ, T ) we
consider its underlying directed graph GM = (V,E) where V := Q∪ (Q×A) and
E := {(q, 〈q, a〉) ∈ Q × (Q × A)} ∪ {(〈p, a〉, q) | δ(q|p, a) > 0}. In GM, Nature
controls the vertices Q × A. We formalize the game and the arena it is played
on below.

Definition 4 (Target arena). A target arena A is a tuple (V, VP , E, T ) such
that (VP , VN := V \VP , E) is a bipartite directed graph, T ⊆ VP is a set of target
vertices, and uE 
= ∅ for all u ∈ VN .

Informally, there are two agents in a target arena: Nature, who controls the
vertices in VN , and Protagonist, who controls the vertices in VP .
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From Arenas to MDPs. A target arena A = (V, VP , E, T ) together with a family
of probability distributions μ = (μu ∈ D(uE))u∈VN

induce an MDP. Formally,
let Aμ be the MDP (Q,A, δ, T ) where Q = VP � {⊥}, A = VN , δ(q|p, a) is μa(q)
if (p, a), (a, q) ∈ E and 0 otherwise, for all p ∈ VP ∪ {⊥} and a ∈ A we have
δ(⊥|p, a) = 1 if (p, a) 
∈ E.

The Value of a Vertex. Consider a target arena A = (V, VP , E, T ) and a vertex
v ∈ VP . We define its (maximal reachability probability) value with respect to
a family of full-support probability distributions μ as Valμ(v):= maxσ P

v
Aσ

μ
[♦T ].

For u ∈ VN we set Valμ(u) :=
∑{μu(v)Valμ(v) | v ∈ uE}.

3 The Never-Worse Relation

We are now in a position to define the relation that we study in this work. Let
us fix a target arena A = (V, VP , E, T ).

Definition 5 (The never-worse relation (NWR)). A subset W ⊆ V of
vertices is never worse than a vertex v ∈ V , written v � W , if and only if

∀μ = (μu ∈ D(uE))u∈VN
,∃w ∈ W : Valμ(v) ≤ Valμ(w)

where all the μu have full support. We write v ∼ w if v � {w} and w � {v}.
It should be clear from the definition that ∼ is an equivalence relation. For u ∈ V
let us denote by ũ the set of vertices that are ∼-equivalent and belong to the
same owner, i.e. ũ is {v ∈ VP | v ∼ u} if u ∈ VP and {v ∈ VN | v ∼ u} otherwise.

p

q

t fin

fail

p

s

q

t

fin

fail

Fig. 3. Two target arenas with T = {fin} are shown. Round vertices are elements from
VP ; square vertices, from VN . In the left target arena we have that p� {q} and q� {p}
since any path from either vertex visits t before T—see Lemma 1. In the right target
arena we have that t � {p}—see Proposition 1.

Example 2. Consider the left target arena depicted in Fig. 3. Using Lemma 1, it
is easy to show that neither p nor q is ever worse than the other since t is visited
before fin by all paths starting from p or q.

The literature contains various heuristics which consist in computing sets of
states and “collapsing” them to reduce the size of the MDP without affecting the
maximal reachability probability of the remaining states. We now show that we
can collapse equivalence classes and, further, remove sub-optimal distributions
using the NWR.
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3.1 The Usefulness of the NWR

We will now formalize the idea of “collapsing” equivalent vertices with respect
to the NWR. For convenience, we will also remove self-loops while doing so.

Consider a target arena A = (V, VP , E, T ). We denote by A/∼ its ∼-quotient.
That is, A/∼ is the target arena (S, SP , R, U) where SP = {ṽ | ∃v ∈ VP },
S = {ṽ | ∃v ∈ VN} ∪ SP , U = {t̃ | ∃t ∈ T}, and

R ={(ũ, ṽ) | ∃(u, v) ∈ (VP × VN ) ∩ E : vE \ ũ 
= ∅}
∪{(ũ, ṽ) | ∃(u, v) ∈ (VN × VP ) ∩ E}.

For a family μ = (μu ∈ D(uE))u∈VN
of full-support distributions we denote by

μ/∼ the family ν = (νũ ∈ D(ũR))ũ∈SN
defined as follows. For all ũ ∈ SN and all

ṽ ∈ ũR we have νũ(ṽ) =
∑

w∈ṽ μu(w), where u is any element of ũ.
The following property of the ∼-quotient follows from the fact that all the

vertices in ṽ have the same maximal probability of reaching the target vertices.

Theorem 1. Consider a target arena A = (V, VP , E, T ). For all families μ =
(μu ∈ D(uE))u∈VN

of full-support probability distributions and all v ∈ VP we
have

max
σ

P
v
Aσ

μ
[♦T ] = max

σ′
P

ṽ
Bσ′

ν
[♦U ],

where B = A/∼, ν = μ/∼, and U = {t̃ | ∃t ∈ T}.
We can further remove edges that lead to sub-optimal Nature vertices.

When this is done after ∼-quotienting the maximal reachability probabilities are
preserved.

Theorem 2. Consider a target arena A = (V, VP , E, T ) such that A/∼ = A.
For all families μ = (μu ∈ D(uE))u∈VN

of full-support probability distributions,
for all (w, x) ∈ E ∩ (VP × VN ) such that x� (wE \{x}), and all v ∈ VP we have

max
σ

P
v
Aσ

μ
[♦T ] = max

σ′
P

v
Bσ′

μ
[♦T ],

where B = (V, VP , E \ {(w, x)}, T ).

3.2 Known Efficiently-Computable Special Cases

We now recall the definitions of the set of extremal-probability states, end com-
ponents, and essential states. Then, we observe that for all these sets of states
their maximal probability reachability coincide and their definitions are inde-
pendent of the probabilities labelling the transitions of the MDP. Hence, they
are subsets of the set of the equivalence classes induced by ∼.
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Extremal-Probability States. The set of extremal-probability states of an
MDP M = (Q,A, δ, T ) consists of the set of states with maximal probability
reachability 0 and 1. Both sets can be computed in polynomial time [1,4]. We give
below a game-based definition of both sets inspired by the classical polynomial-
time algorithm to compute them (see, e.g., [1]). Let us fix a target arena A =
(V, VP , E, T ) for the sequel.

For a set T ⊆ V , let us write ZT := {v ∈ V | T is not reachable from v}.

(Almost-Surely Winning) Strategies. A strategy for Protagonist in a target arena
is a function σ : VP → VN . We then say that a path v0 . . . vn ∈ V ∗ is consistent
with σ if vi ∈ VP =⇒ σ(vi) = vi+1 for all 0 ≤ i < n. Let Reach(v0, σ)
denote the set of vertices reachable from v0 under σ, i.e. Reach(v0, σ) := {vk |
v0 . . . vk is a path consistent with σ}.

We say that a strategy σ for Protagonist is almost-surely winning from u0 ∈ V
to T ⊆ VP if, after modifying the arena to make all t ∈ T into sinks, for all
v0 ∈ Reach(u0, σ) we have Reach(v0, σ)∩T 
= ∅. We denote the set of all such
strategies by Winv0

T .
The following properties regarding almost-surely winning strategies in a tar-

get arena follow from the correctness of the graph-based algorithm used to com-
pute extremal-probability states in an MDP [1, Lemma 10.108].

Lemma 2 (From [1]). Consider a target arena A = (V, VP , E, T ). For all fam-
ilies μ = (μu ∈ D(uE))u∈VN

of full-support probability distributions, for all
v ∈ VP the following hold.

(i) maxσ P
v
Aσ

μ
[♦T ] = 0 ⇐⇒ v ∈ ZT

(ii) ∀σ : σ ∈ Winv
T ⇐⇒ P

v
Aσ

μ
[♦T ] = 1

End Components. Let us consider an MDP M = (Q,A, δ, T ). A set S ⊆ Q
of states is an end component in M if for all pairs of states p, q ∈ S there exists
a strategy σ such that P

p
Mσ [S U q] = 1.

Example 3. Let us consider the MDP shown on the left in Fig. 2. The set {p, q}
is an end component since, by playing a from both states, one can ensure to
reach either state from the other with probability 1.

It follows immediately from the definition of end component that the maximal
probability of reaching T from states in the same end component is the same.

Lemma 3. Let S ⊆ Q be an end component in M. For all p, q ∈ S we have
that maxσ P

p
Mσ [♦T ] = maxσ P

q
Mσ [♦T ].

We say an end component is maximal if it is maximal with respect to set inclu-
sion. Furthermore, from the definition of end components in MDPs and Lemma 2
it follows that we can lift the notion of end component to target arenas. More pre-
cisely, a set S ⊆ VP is an end component in A if and only if for some family of
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full-support probability distributions μ we have that S is an end component in Aμ

(if and only if for all μ′ the set S is an end component in Aμ′).
The set of all maximal end components of a target arena can be computed in

polynomial time using an algorithm based on the strongly connected components
of the graph [1,8].

Essential States. Consider a target arena A = (V, VP , E, T ) and let � be the
smallest relation satisfying the following. For all u ∈ VP we have u � u. For all
u0, v ∈ VP \ZT such that u0 
= v we have u0 � v if for all paths u0u1u2 we have
that u2 � v and there is at least one such path. Intuitively, u � v holds whenever
all paths starting from u reach v. In [7], the maximal vertices according to � are
called essential states2.

Lemma 4 (From [7]). Consider a target arena A = (V, VP , E, T ). For all fam-
ilies μ = (μu ∈ D(uE))u∈VN

of full-support probability distributions, for all v ∈
VP and all essential states w, if v � w then maxσ P

v
Aσ

μ
[♦T ] = maxσ′ P

w
Aσ′

μ
[♦T ].

Note that, in the left arena in Fig. 3, p � t does not hold since there is a cycle
between p and q which does not visit t.

It was also shown in [7] that the � relation is computable in polynomial time.

4 Graph-Based Characterization of the NWR

In this section we give a characterization of the NWR that is reminiscent of the
topological-based value iteration proposed in [5]. The main intuition behind our
characterization is as follows. If v � W does not hold, then for all 0 < ε < 1
there is some family μ of full-support distributions such that Valμ(v) is at least
1 − ε, while Valμ(w) is at most ε for all w ∈ W . In turn, this must mean that
there is a path from v to T which can be assigned a high probability by μ while,
from W , all paths go with high probability to ZT .

We capture the idea of separating a “good” v–T path from all paths starting
from W by using partitioning of V into layers Si ⊆ V . Intuitively, we would like
it to be easy to construct a family μ of probability distributions such that from
all vertices in Si+1 all paths going to vertices outside of Si+1 end up, with high
probability, in lower layers, i.e. some Sk with k < i. A formal definition follows.

Definition 6 (Drift partition and vertices). Consider a target arena A =
(V, VP , E, T ) and a partition (Si)0≤i≤k of V . For all 0 ≤ i ≤ k, let S+

i := ∪i<jSj

and S−
i := ∪j<iSj, and let Di := {v ∈ Si ∩ VN | vE ∩ S−

i 
= ∅}. We define the
set D := ∪0<i<kDi of drift vertices. The partition is called a drift partition if
the following hold.

– For all i ≤ k and all v ∈ Si ∩ VP we have vE ∩ S+
i = ∅.

– For all i ≤ k and all v ∈ Si ∩ VN we have vE ∩ S+
i 
= ∅ =⇒ v ∈ D.

2 This is not the usual notion of essential states from classical Markov chain theory.
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Using drift partitions, we can now formalize our characterization of the nega-
tion of the NWR.

Theorem 3. Consider a target arena A = (V, VP , E, T ), a non-empty set of
vertices W ⊆ V , and a vertex v ∈ V . The following are equivalent

(i) ¬ (v � W )
(ii) There exists a drift partition (Si)0≤i≤k and a simple path π starting in v

and ending in T such that π ⊆ Sk and W ⊆ S−
k .

Before proving Theorem 3 we need an additional definition and two interme-
diate results.

Definition 7 (Value-monotone paths). Let A = (V, VP , E, T ) be a target
arena and consider a family of full-support probability distributions μ = (μu ∈
D(uE))u∈VN

. A path v0 . . . vk is μ-non-increasing if and only if Valμ(vi+1) ≤
Valμ(vi) for all 0 ≤ i < k; it is μ-non-decreasing if and only if Valμ(vi) ≤
Valμ(vi+1) for all 0 ≤ i < k.

It can be shown that from any path in a target arena ending in T one can obtain
a simple non-decreasing one.

Lemma 5. Consider a target arena A = (V, VP , E, T ) and a family of full-
support probability distributions μ = (μu ∈ D(uE))u∈VN

. If there is a path from
some v ∈ V to T , there is also a simple μ-non-decreasing one.

Additionally, we will make use of the following properties regarding vertex-
values. They formalize the relation between the value of a vertex, its owner, and
the values of its successors.

Lemma 6. Consider a target arena A = (V, VP , E, T ) and a family of full-
support probability distributions μ = (μu ∈ D(uE))u∈VN

.

(i) For all u ∈ VP , for all successors v ∈ uE it holds that Valμ(v) ≤ Valμ(u).
(ii) For all u ∈ VN it holds that

(∃v ∈ uE : Valμ(u) < Valμ(v)) =⇒ (∃w ∈ uE : Valμ(w) < Valμ(u)).

Proof (of Theorem 3). Recall that, by definition, (i) holds if and only if there
exists a family μ = (μu ∈ D(uE))u∈VN

of full-support probability distributions
such that ∀w ∈ W : Valμ(w) < Valμ(v).

Let us prove (i) =⇒ (ii). Let x0 < x1 < . . . be the finitely many (i.e. at most
|V |) values that occur in the MDP Aμ, and let k be such that Valμ(v) = xk. For
all 0 ≤ i < k let Si := {u ∈ V | Valμ(u) = xi}, and let Sk := V \ ∪i<kSi. Let us
show below that the Si form a drift partition.

– ∀i ≤ k,∀u ∈ Si ∩ SP : uE ∩ S+
i = ∅ by Lemma 6(i) (for i < k) and since

S+
k = ∅.

– ∀i ≤ k,∀u ∈ Si ∩ SN : uE ∩ S+
i 
= ∅ =⇒ x ∈ D by Lemma 6(ii) (for i < k)

and since S+
k = ∅.
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We have that Valμ(w) < Valμ(v) = xk for all w ∈ W , by assumption, so
W ⊆ S−

k by construction. By Lemma 5 there exists a simple μ-non-decreasing
path π from v to T , so all the vertices occurring in π have values at least Valμ(v),
so π ⊆ Sk.

We will prove (ii) =⇒ (i) by defining some full-support distribution family
μ. The definition will be partial only, first on π ∩ VN , and then on the drift
vertices in V \ Sk. Let 0 < ε < 1, which is meant to be small enough. Let us
write π = v0 . . . vn so that v0 = v and vn ∈ T . Let us define μ on π ∩ VN as
follows: for all i < n, if vi ∈ VN let μvi

(vi+1) := 1 − ε. Let σ be an arbitrary
Protagonist strategy such that for all i < n, if vi ∈ VP then σ(vi) := vi+1.
Therefore

(1 − ε)|V | ≤ (1 − ε)n since π is simple

≤
∏

i<n,vi∈SN

μvi
(vi+1) by definition of μ

≤ P
v
Aσ

μ
[♦T ]

≤ max
σ′

P
v
Aσ′

μ
[♦T ] = Valμ(v). (1)

So, for 0 < ε < 1 − 1
|V |√2

, we have 1
2 < (1 − ε)|V | ≤ Valμ(v). Below we will

further define μ such that Valμ(w) ≤ 1 − (1 − ε)|V | < 1
2 for all w ∈ W and all

0 < ε < 1 − 1
|V |√2

, which will prove (ii) =⇒ (i). However, the last part of the
proof is more difficult.

For all 1 ≤ i ≤ k, for all drift vertices u ∈ Si, let �(u) be a successor of u in S−
i .

Such a �(u) exists by definition of the drift vertices. Then let μu(�(u)) := 1 − ε.
We then claim that

∀u ∈ D : (1 − ε)(1 − P
�(u)
Aσ

μ
[♦T ]) ≤ 1 − P

u
Aσ

μ
[♦T ]. (2)

Indeed, 1 − P
u
Aσ

μ
[♦T ] is the probability that, starting at u and following σ, T is

never reached; and (1 − ε)(1 − P
�(u)
Aσ

μ
[♦T ]) is the probability that, starting at u

and following σ, the second vertex is �(u) and T is never reached.
Now let σ be an arbitrary strategy, and let us prove the following by induction

on j.

∀0 ≤ j < k,∀w ∈ Sj ∪ S−
j : P

w
Aσ

μ
[♦T ] ≤ 1 − (1 − ε)j

Base case, j = 0: by assumption W is non-empty and included in S−
k , so

0 < k. Also by assumption T ⊆ Sk, so T ∩ S0 = ∅. By definition of a drift
partition, there are no edges going out of S0, regardless of whether the starting
vertex is in VP or VN . So there is no path from w to T , which implies Valμ(w) = 0
for all w ∈ S0, and the claim holds for the base case. Inductive case, let w ∈ Sj ,
let D′ := D ∩ (Sj ∪ S−

j ) and let us argue that every path π from w to T must at
some point leave Sj ∪ S−

j to reach a vertex with higher index, i.e. there is some
edge (πi, πi+1) from πi ∈ Sj ∪ S−

j to some πi+1 ∈ S� with j < 
. By definition
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of a drift partition, πi must also be a drift vertex, i.e. πi ∈ D′. Thus, if we let
F := VP \ D′, Lemma 1 implies that P

w
Aσ

μ
[♦T ] =

∑
u∈D′ P

w
Aσ

μ
[F U u] Pu

Aσ
μ
[♦T ].

Now, since
∑

u∈D′
P

u
Aσ

μ
[♦T ]

=
∑

u∈D∩S−
j

P
u
Aσ

μ
[♦T ] +

∑

u∈Dj

P
u
Aσ

μ
[♦T ] by splitting the sum

≤
∑

u∈D∩S−
j

P
u
Aσ

μ
[♦T ] +

∑

u∈Dj

(1 − (1 − ε)(1 − P
�(u)
Aσ

μ
[♦T ])) by (2)

≤
∑

u∈D∩S−
j

(1 − (1 − ε)j−1)+ by IH and since

∑

u∈Dj

(1 − (1 − ε)(1 − ε)j−1) ∀x ∈ Dj : �(x) ∈ S−
j

≤
∑

u∈D′
(1 − (1 − ε)j) (1 − ε)j ≤ (1 − ε)j−1

and
∑

u∈D′ P
w
Aσ

μ
[F U u] ≤ 1, we have that P

w
Aσ

μ
[♦T ] ≤ 1−(1−ε)j . The induction

is thus complete. Since σ is arbitrary in the calculations above, and since j <
k ≤ |V |, we find that Valμ(w) ≤ 1 − (1 − ε)|V | for all w ∈ W ⊆ S−

k .
For 0 < ε < 1 − 1

|V |√2
we have 1

2 < (1 − ε)|V |, as mentioned after (1), so

Valμ(w) ≤ 1 − (1 − ε)|V | < 1
2 . ��

5 Intractability of the NWR

It follows from Theorem 3 that we can decide whether a vertex is sometimes
worse than a set of vertices by guessing a partition of the vertices and verifying
that it is a drift partition. The verification can clearly be done in polynomial
time.

Corollary 1. Given a target arena A = (V, VP , E, T ), a non-empty set W ⊆ V ,
and a vertex v ∈ V , determining whether v � W is decidable and in coNP.

We will now show that the problem is in fact coNP-complete already for
Markov chains.

Theorem 4. Given a target arena A = (V, VP , E, T ), a non-empty vertex set
W ⊆ V , and a vertex v ∈ V , determining whether v � W is coNP-complete
even if |uE| = 1 for all u ∈ VP .

The idea is to reduce the 2-Disjoint Paths problem (2DP) to the existence
of a drift partition witnessing that v � {w} does not hold, for some v ∈ V .
Recall that 2DP asks, given a directed graph G = (V,E) and vertex pairs
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(s1, t1), (s2, t2) ∈ V × V , whether there exists an s1–t1 path π1 and an s2–t2
path π2 such that π1 and π2 are vertex disjoint, i.e. π1 ∩ π2 = ∅. The problem
is known to be NP-complete [10,12]. In the sequel, we assume without loss of
generality that (a) t1 and t2 are reachable from all s ∈ V \ {t1, t2}; and (b) t1
and t2 are the only sinks G.

Proof (of Theorem 4). From the 2DP input instance, we construct the target
arena A = (S, SP , R, T ) with S := V ∪ E, R := {(u, 〈u, v〉), (〈u, v〉, v) ∈ S × S |
(u, v) ∈ E or u = v ∈ {t1, t2}}, SP := V × V , and T := {〈t1, t1〉}. We will show
there are vertex-disjoint s1–t1 and s2–t2 paths in G if and only if there is a drift
partition (Si)0≤i≤k and a simple s1–t1 path π such that π ⊆ Sk and s2 ∈ S−

k .
The result will then follow from Theorem 3.

Suppose we have a drift partition (Si)0≤i≤k with s2 ∈ S−
k and a simple path

π = v0〈v0, v1〉 . . . 〈vn−1, vn〉vn with v0 = s1, vn = t1. Since the set {t2, 〈t2, t2〉} is
trapping in A, i.e. all paths from vertices in the set visit only vertices from it,
we can assume that S0 = {t2, 〈t2, t2〉}. (Indeed, for any drift partition, one can
obtain a new drift partition by moving any trapping set to a new lowest layer.)
Now, using the assumption that t2 is reachable from all s ∈ V \ {t1, t2} one can
show by induction that for all 0 ≤ j < k and for all � = u0 ∈ Sj there is a path
u0 . . . um in G with um = t2 and � ⊆ S−

j+1. This implies that there is a s2–t2
path π2 in G such that π2 ⊆ S−

k . It follows that π2 is vertex disjoint with the
s1–t1 path v0 . . . vn in G.

Now, let us suppose that we have s1–t1 and s2–t2 vertex disjoint paths π1 =
u0 . . . un and π2 = v0 . . . vm. Clearly, we can assume both π1, π2 are simple.
We will construct a partition (Si)0≤i≤m+1 and show that it is indeed a drift
partition, that u0〈u0, u1〉 . . . 〈un−1, un〉un ⊆ Sm+1, and s2 = v0 ∈ S−

m+1. Let us
set S0 := {〈vm−1, vm〉, vm, 〈t2, t2〉}, Si := {〈vm−i−1, vm−i〉, vm−i} for all 0 < i ≤
m, and Sm+1 := S \ ∪0≤i≤mSi. Since π2 is simple, (Si)0≤i≤m+1 is a partition of
V . Furthermore, we have that s2 = v0 ∈ S−

m+1, and u0〈u0, u1〉 . . . 〈un−1, un〉un ⊆
Sm+1 since π1 and π2 are vertex disjoint. Thus, it only remains for us to argue
that for all 0 ≤ i ≤ m+1: for all w ∈ Si ∩SN we have wR ∩S+

i = ∅, and for all
w ∈ Si ∩ VN we have wR ∩ S+

i 
= ∅ =⇒ wR ∩ S−
i 
= ∅. By construction of the

Si, we have that eR ⊆ Si for all 0 ≤ i ≤ m and all e ∈ Si ∩ SP . Furthermore,
for all 0 < i ≤ m, for all x ∈ Si ∩ SN = {vm−i}, there exists y ∈ Si−1 ∩ SP =
{〈vm−i, vm−i+1〉} such that (x, y) ∈ R—induced by (vm−i, vm−1+1) ∈ E from
π2. To conclude, we observe that since S0 = {〈vm−1, vm〉, vm = t2, 〈t2, t2〉} and
{t2, 〈t2, t2〉} is trapping in A, the set t2R is contained in S0. ��

6 Efficiently Under-Approximating the NWR

Although the full NWR cannot be efficiently computed for a given MDP, we can
hope for “under-approximations” that are accurate and efficiently computable.

Definition 8 (Under-approximation of the NWR). Let A = (V, VP , E, T )
be a target arena and consider a relation � : V × P(V ). The relation � is an
under-approximation of the NWR if and only if �⊆ �.
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We denote by �∗ the pseudo transitive closure of �. That is, �∗ is the smallest
relation such that �⊆�∗ and for all u ∈ V,X ⊆ V if there exists W ⊆ V such
that u �∗ W and w �∗ X for all w ∈ W , then u �∗ X.

Remark 1. The empty set is an under-approximation of the NWR. For all under-
approximations � of the NWR, the pseudo transitive closure �∗ of � is also an
under-approximation of the NWR.

In [2], efficiently-decidable sufficient conditions for the NWR were given. In
particular, those conditions suffice to infer relations such as those in the right
MDP from Fig. 3. We recall (Proposition 1) and extend (Proposition 2) these
conditions below.

Proposition 1 (From [2]). Consider a target arena A = (V, VP , E, T ) and an
under-approximation � of the NWR. For all vertices v0 ∈ V , and sets W ⊆ V
the following hold.

(i) If there exists S ⊆ {s ∈ V | s � W} such that there exists no path v0 . . . vn ∈
(V \ S)∗T , then v0 � W .

(ii) If W = {w} and there exists S ⊆ {s ∈ VP | w � {s}} such that Winv0
S∪T 
=

∅, then w � {v0}.
Proof (Sketch). The main idea of the proof of item (i) is to note that S is
visited before T . The desired result then follows from Lemma 1. For item (ii),
we intuitively have that there is a strategy to visit T with some probability or
visit W , where the chances of visiting T are worse than before. We then show
that it is never worse to start from v0 to have better odds of visiting T . ��

The above “rules” give an iterative algorithm to obtain increasingly bet-
ter under-approximations of the NWR: from �i apply the rules and obtain a
new under-approximation �i+1 by adding the new pairs and taking the pseudo
transitive closure; then repeat until convergence. Using the special cases from
Sect. 3.2 we can obtain a nontrivial initial under-approximation �0 of the NWR
in polynomial time.

The main problem is how to avoid testing all subsets W ⊆ V in every iter-
ation. One natural way to ensure we do not consider all subsets of vertices in
every iteration is to apply the rules from Proposition 1 only on the successors of
Protagonist vertices.

In the same spirit of the iterative algorithm described above, we now give
two new rules to infer NWR pairs.

Proposition 2. Consider a target arena A = (V, VP , E, T ) and � an under-
approximation of the NWR.

(i) For all u ∈ VN , if for all v, w ∈ uE we have v � {w} and w � {v}, then
u ∼ x for all x ∈ uE.

(i) For all u, v ∈ VP \ T , if for all w ∈ uE such that w � (uE \ {w}) does not
hold we have that w � vE, then u � {v}.
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Proof (Sketch). Item (i) follows immediately from the definition of Val. For
item (ii) one can use the Bellman optimality equations for infinite-horizon reach-
ability in MDPs to show that since the successors of v are never worse than the
non-dominated successors of u, we must have u � {v}. ��

p q

finfail

p q

fin fail

Fig. 4. Two target arenas with T = {fin} are shown. Using Propositions 1 and 2 one
can conclude that p ∼ q in both target arenas.

The rules stated in Proposition 2 can be used to infer relations like those
depicted in Fig. 4 and are clearly seen to be computable in polynomial time as
they speak only of successors of vertices.

7 Conclusions

We have shown that the never-worse relation is, unfortunately, not computable in
polynomial time. On the bright side, we have extended the iterative polynomial-
time algorithm from [2] to under-approximate the relation. In that paper, a
prototype implementation of the algorithm was used to empirically show that
interesting MDPs (from the set of benchmarks included in PRISM [17]) can be
drastically reduced.

As future work, we believe it would be interesting to implement an exact
algorithm to compute the NWR using SMT solvers. Symbolic implementations
of the iterative algorithms should also be tested in practice. In a more theoretical
direction, we observe that the planning community has also studied maximizing
the probability of reaching a target set of states under the name of MAXPROB
(see, e.g., [16,21]). There, online approximations of the NWR would make more
sense than the under-approximation we have proposed here. Finally, one could
define a notion of never-worse for finite-horizon or quantitative objectives.
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M., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

4. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: SODA, pp. 1318–1336. SIAM (2011)
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