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Abstract. Notions of guardedness serve to delineate the admissibility of
cycles, e.g. in recursion, corecursion, iteration, or tracing. We introduce
an abstract notion of guardedness structure on a symmetric monoidal
category, along with a corresponding notion of guarded traces, which are
defined only if the cycles they induce are guarded. We relate structural
guardedness, determined by propagating guardedness along the oper-
ations of the category, to geometric guardedness phrased in terms of
a diagrammatic language. In our setup, the Cartesian case (recursion)
and the co-Cartesian case (iteration) become completely dual, and we
show that in these cases, guarded tracedness is equivalent to presence
of a guarded Conway operator, in analogy to an observation on total
traces by Hasegawa and Hyland. Moreover, we relate guarded traces to
unguarded categorical uniform fixpoint operators in the style of Simp-
son and Plotkin. Finally, we show that partial traces based on Hilbert-
Schmidt operators in the category of Hilbert spaces are an instance of
guarded traces.

1 Introduction

In models of computation, various notions of guardedness serve to control
cyclic behaviour by allowing only guarded cycles, with the aim to ensure
properties such as solvability of recursive equations or productivity. Typical
examples are guarded process algebra specifications [6,29], coalgebraic guarded
(co-)recursion [27,33], finite delay in online Turing machines [9], and produc-
tive definitions in intensional type theory [1,30], but also contractive maps in
(ultra-)metric spaces [24].

A highly general model for unrestricted cyclic computations, on the other
hand, are traced monoidal categories [22]; besides recursion and iteration,
they cover further kinds of cyclic behaviour, e.g. in Girard’s Geometry of
Interaction [4,14] and quantum programming [3,34]. In the present paper we
parametrize the framework of traced symmetric monoidal categories with a
notion of guardedness, arriving at (abstractly) guarded traced categories, which
effectively vary between two extreme cases: symmetric monoidal categories
(nothing is guarded) and traced symmetric monoidal categories (everything is
guarded). In terms of the standard diagrammatic language for traced monoidal
categories, we decorate input and output gates of boxes to indicate guarded-
ness; the diagram governing trace formation would then have the general form
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depicted in Fig. 1 — that is, we can only form traces connecting guarded (black)
output gates to input gates that are unguarded (black), i.e. not assumed to be
already guarded.

We provide basic structural results on our notion i
of abstract guardedness, and identify a wide array of ' P
examples. Specifically, we establish a geometric charac- '
terization of guardedness in terms of paths in diagrams; ~ ~-----------*
we identify a notion of guarded ideal, along with a con-
struction of guardedness structures from guarded ideals
and simplifications of this construction for the (co-)Cartesian and the Carte-
sian closed case; and we describe ‘vacuous’ guardedness structures where traces
do not actually generate proper diagrammatic cycles. In terms of examples, we
begin with the case where the monoidal structure is either product (Cartesian),
corresponding to guarded recursion, or coproduct (co-Cartesian), for guarded
iteration; the axioms for guardedness allow for a basic duality that indeed makes
these two cases precisely dual. For total traces in Cartesian categories, Hasegawa
and Hyland observed that trace operators are in one-to-one correspondence with
Conway fixpoint operators [18,19]; we extend this correspondence to the guarded
case, showing that guarded trace operators on a Cartesian category are in one-to-
one correspondence with guarded Conway operators. In a more specific setting,
we relate guarded traces in Cartesian categories to unguarded categorical uniform
fixpoints as studied by Crole and Pitts [11] and by Simpson and Plotkin [37,38].
Concluding with a case where the monoidal structure is a proper tensor product,
we show that the partial trace operation on (infinite-dimensional) Hilbert spaces
is an instance of vacuous guardedness; this result relates to work by Abramsky,
Blute, and Panangaden on traces over nuclear ideals, in this case over Hilbert-
Schmidt operators [2].

Fig. 1. Guarded trace

Related Work. Abstract guardedness serves to determine definedness of a
guarded trace operation, and thus relates to work on partial traces. We dis-
cuss work on nuclear ideals [2] in Sect.6. In partial traced categories [17,26],
traces are governed by a partial equational version (consisting of both strong and
directed equations) of the Joyal-Street-Verity axioms; morphisms for which trace
is defined are called trace class. A key difference to the approach via guardedness
is that being trace class applies only to morphisms with inputs and outputs of
matching types while guardedness applies to arbitrary morphisms, allowing for
compositional propagation. Also, the axiomatizations are incomparable: Unlike
for trace class morphisms [17, Remark 2.2], we require guardedness to be closed
under composition with arbitrary morphisms (thus covering contractivity but
not, e.g., monotonicity as in the modal p-calculus); on the other hand, as noted
by Jeffrey [21], guarded traces, e.g. of contractions, need not satisfy Vanishing
IT as a Kleene equality as assumed in partial traced categories. Some approaches
treat traces as partial over objects [8,20]. In concrete algebraic categories, par-
tial traces can be seen as induced by total traces in an ambient category of
relations [5]. We discuss work on guardedness via endofunctors in Remark 23.
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2 Preliminaries

We recall requisite categorical notions; see [25] for a comprehensive introduction.

Symmetric Monoidal Categories. A symmetric monoidal category (C,®, 1)
consists of a category C (with object class |C|), a bifunctor ® (tensor product),
and a (tensor) unit I € |C|, and coherent isomorphisms witnessing that ® is,
up to isomorphism, a commutative monoid structure with unit 7. For the latter,
we reserve the notation aspc : (A® B)®@ C =2 A® (B ® C) (associator),
vaB: AR B=B®A (symmetry), and vs : I @ A= A (left unitor); the right
unitor Uy : A® I =2 A is expressible via the symmetry. A symmetric monoidal
category is Cartesian if the monoidal structure is finite product (i.e. ® = X,
and I =1 is a terminal object), and, dually, co-Cartesian if the monoidal struc-
ture is finite coproduct (i.e. ® = +, and I = () is an initial object). Coproduct
injections are written in; : X; — X1 + X5 (i = 1,2), and product projections
pr; : X1 x Xo — X,. Various notions of algebraic tensor products also induce
symmetric monoidal structures; see Sect.6 for the case of Hilbert spaces. One
has an obvious expression language for objects and morphisms in symmetric
monoidal categories [36], the former obtained by postulating basic objects and
closing under I and ®, and the latter by postulating basic morphisms of given
profile and closing under ®, I, composition, identities, and the monoidal isomor-
phisms, subject to the evident notion of well-typedness. Morphism expressions are
conveniently represented as diagrams consisting of boxes representing the basic
morphisms, with input and output gates corresponding to the given profile. Ten-
soring is represented by putting boxes on top of each other, and composition by
wires connecting outputs to inputs [36]. In a traced symmetric monoidal category
one has an additional operation (¢race) that essentially enables the formation of
loops in diagrams, as in Fig.1 (but without decorations).

Monads and (Co-)algebras. A(n F)-coalgebra for a functor F : C — C is
a pair (X,f: X — FX) where X € |C|, thought of as modelling states and
generalized transitions [33]. A final coalgebra is a final object in the category of
coalgebras (with C-morphisms h : X — Y such that (Fh)f = gh as morphisms
(X,f) — (Y,9)), denoted (vF,out : vF — FvF) if it exists. Dually, an F'-
algebra has the form (X, f : FX — X). A monad T = (T, u,n) on a category
C consists of an endofunctor 7" on C and natural transformations n : Id — T
(unit) and p : T? — T (multiplication) subject to standard equations [25]. As
observed by Moggi [31], monads can be seen as capturing computational effects
of programs, with TX read as a type of computations with side effects from
T and results in X. In this view, the Kleisli category Cr of T, which has the
same objects as C and Home.(X,Y) = Homc(X,TY), is a category of side-
effecting programs. A monad is strong if it is equipped with a strength, i.e.
a natural transformation X x TY — T(X x Y) satisfying evident coherence
conditions (e.g. [31]). A T-algebra (A, a) is an (FEilenberg-Moore) T-algebra (for
the monad T) if additionally an = id and a(Ta) = apa; the category of T-
algebras is denoted CT.
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3 Guarded Categories

We now introduce our notion of guarded structure. A standard example of guard-
edness are guarded definitions in process algebra. E.g. in the definition P = a.P,
the right hand occurrence of P is guarded, ensuring unique solvability (by a
process that keeps outputting a). A further example is contractivity of maps
between complete metric spaces. We formulate abstract closure properties for
partial guardedness where only some of the inputs and outputs of a morphism
are guarded. Specifically, we distinguish guarded outputs and guarded inputs (D
and B, respectively, in the following definition), with the intended reading that
guarded outputs yield guarded data provided guarded data is already provided
at guarded inputs, while unguarded inputs may be fed arbitrarily.

Fig. 2. Axioms of guarded categories

Definition 1 (Guarded category). An (abstractly) guarded category is a
symmetric monoidal category (C,®,I) equipped with distinguished subsets
Hom*(A ® B,C ® D) C Hom(A® B,C ® D) of partially guarded morphisms
for A, B,C, D € |C|, satisfying the following conditions:

(unig) 7,4 € Hom* (I ® A, AR I);

(vacg) f®g€Hom*(A® B,C®D) forall f: A—C,g: B — D;

(cmpg) g € Hom*(A® B,E® F) and f € Hom*(E ® F,C ® D) imply fg €
Hom*(A® B,C ® D);

(parg) for f € Hom*(A® B,C ® D), g € Hom*(A’ ® B',C’ ® D), the evident
transpose of f ® g is in Hom*(A® A") ® (B® B'),(C @ C")® (D ® D).

We emphasize that Hom®(A ® B,C ® D) is meant to depend individually on A,
B, C, D and not just on A® B and C ® D.

One easily derives a weakening rule stating that if f € Hom*((A® A')® B,C ®
(D'®D)), then the obvious transpose of f is in Hom*(A® (4A’'® B), (C®D")®@ D).
We extend the standard diagram language for symmet- B D
ric monoidal categories (Sect.2), representing morphisms f € 4 C
Hom®*(A® B,C ® D) by decorated bozes as shown on the right,
with black bars marking the unguarded input gates A and the guarded output
gates D. Weakening then corresponds to shrinking the black bars of decorated
boxes. Figure 2 depicts the above axioms in this language. Solid boxes represent
the assumptions, while dashed boxes represent the conclusions. The latter only
occur in the derivation process and do not form part of the actual diagrams rep-
resenting concrete morphisms. We silently identify object expressions and sets
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of gates in diagrams. Given a (well-typed) morphism expression e, a judgement
e € Hom*(A ® B,C ® D), called a guardedness typing of e, is derivable if it can
be derived from the assumed guardedness typing of the constituent basic boxes
of e using the rules in Definition 1. We have an obvious notion of (directed)
paths in diagrams; a path is guarded if it passes some basic box f through an
unguarded input gate and a guarded output gate (intuitively, guardedness is
then introduced along the path as the passage through f will guarantee guarded
output without assuming guarded input). We then have the following geometric
characterization of guardedness typing:

Theorem 2. For a well-typed morphism expression e € Hom(A ® B,C ® D),
the guardedness typing e € Hom®* (A ® B,C ® D) is derivable iff in the diagram
of e, every path from an input gate in A to an output gate in D is guarded.

Every symmetric monoidal category has both a largest (Hom*(A® B,C ® D) =
Hom(A® B,C ® D)) and a least guarded structure:

Lemma and Definition 3 (Vacuous guardedness). FEvery symmetric
monoidal category is guarded under taking f € Hom*(A ® B,C ® D) iff f fac-
tors as

Ao B %, pope D@, 0o D

(eliding associativity) with g : B — E® D, h : A® E — C. This is the least
guarded structure on C, the vacuous guarded structure.

E.g. the natural guarded structure on Hilbert spaces (Sect. 6) is vacuous.

Remark 4 (Duality). The rules and axioms in Fig.2 are stable under 180°-
rotation, that is, under reversing arrows and applying the monoidal symmetry
on both sides (this motivates decorating the unguarded inputs). Consequently, if
C is guarded, then so is the dual category C°P, with guardedness given by f €
Hom®er (A® B, C @ D) iff the obvious transpose of f is in Homg (D ® C, B® A).

In case ® is coproduct, we can simplify the description of partial guardedness:

Proposition 5. Partial guardedness in a co-Cartesian category (C,+,0) is
equivalently determined by distinguished subsets Hom,(X,Y) C Hom(X,Y') with
o ranging over coproduct injections Yo — Y1 + Yo 2 Y, subject to the rules on
the right hand side of Fig. 3, where f : X —, Y denotes f € Hom,(X,Y), with
fe Hom'(X1 + X9, Y1 + Yg) iff (finl) S Hom;nz(Xl,Yl + }/2)

We have used the mentioned rules for —, in previous work on guarded iter-
ation [16] (with (vacy) called (trv), and together with weakening, which as
indicated above turns out to be derivable). By duality (Remark 4), we immedi-
ately have a corresponding description for the Cartesian case:

Corollary 6. Partial guardedness in a Cartesian category (C, x,1) is equiv-
alently determined by distinguished subsets Hom? (X,Y) C Hom(X,Y) with o
ranging over product projections X = X1 x Xo — X7, subject to the rules on
the left hand side of Fig. 3, where f : X —° Y denotes f € Hom? (X,Y), with
f € Hom® (X x Xo,Y] x Ya) iff prof € HomP't (X x X5, Ya).
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f:X—>2Z

(vacx) fpri: X xY —p2 7

f: X xY P27
g:V-7X h:V->Y
flg.h):V =7 Z

(cmpx)

f:X->7Y g: X -7
(f,g): X »°Y xZ

(parx)

fi X2
nlf:X_’ing Z+Y

(vac,) -

fZX_’inzth‘Z
g:Y -,V h:Z—->V

(Cmp+) [g7h]fX_)o V

FiX>e 2  fiY > Z
[f,9] : X+Y >, Z

(par,)

Fig. 3. Axioms of Cartesian (left) and co-Cartesian (right) guarded categories

Remark 7. In a co-Cartesian category, vacuous guardedness (Lemma 3) can
equivalently be described by f € Hom®*(A + B,C + D) iff f decomposes as
f = [in1h, g] (uniquely provided that in; is monic), or in terms of the description
from Proposition 5, u € Homi,, (X, Y + Z) iff u factors through in;. Of course,
the dual situation obtains in Cartesian categories.

Example 8 (Process algebra). Fix a monad T on (C, 4, ?) and an endofunc-
tor X : C — C such that the generalized coalgebraic resumption transform
Ts = vy. T(— + X7v) exists; we think of T, X as a type of processes that have
side-effects in T and perform communication actions from X', seen as a general-
ized signature. The Kleisli category Cr,, of Tx is again co-Cartesian. Putting

i X i, Te(Y + Z) < outf € {T(iny +id)g | g: X = T(Y + XTs(Y + 2))}

(cf. Sect. 2 for notation), we make Cr,, into a guarded category [16]. The stan-
dard motivating example of finitely nondeterministic processes is obtained by
taking T = P,, (finite powerset monad) and X' = A x — (action prefixing).

Example 9 (Metric spaces). Let C be the Cartesian category of metric spaces
and non-expansive maps. Taking f : X x Y —P2 Z iff \y. f(z,y) is contractive
for every z € X makes C into a guarded Cartesian category.

4 Guardedness via Guarded Ideals

Most of the time, the structure of a guarded category is determined by morphisms
with only unguarded inputs and guarded outputs, which form an ideal:

Definition 10 (Guarded morphisms). A morphism f : X — Y in a
guarded category is guarded (as opposed to only partially guarded) if vy* fox €
Hom®*(X ® I, I ® Y'); we write Hom”(X,Y") for the set of guarded morphisms
f: X—=Y.

Definition 11 (Guarded ideal). A family G of subsets G(X,Y) C Hom(X,Y)
(X,Y € |C)) in a monoidal category (C,®,I) is a guarded ideal if it is closed
under ® and under composition with arbitrary C-morphisms on both sides, and
G(I,I) =Hom(I,I).
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There is always a least guarded ideal, G(X,Y)={g9f | f: X = I,g: 1 - Y}
Moreover, as indicated above:

Lemma and Definition 12. In a guarded category, the sets Hom”(X,Y) form
a guarded ideal, the guarded ideal induced by the guarded structure.

Conversely, it is clear that every guarded ideal generates a guarded structure by
just closing under the rules of Definition 1.

Definition 13 (Ideally guarded category). A guarded category is ideal or
ideally guarded (over G) if it is generated by some guarded ideal (G).

We give a more concrete description:

Theorem 14. Let (C,®,1) be ideally guarded over G. Then Hom®(A®B,C®D)
consists of the morphisms of the form

_______________________________

for g; in G and arbitrary p, q, fi, hi.

The transitions between guarded ideals and guarded structures are not in general
mutually inverse: The guarded structure generated the guarded ideal induced by
a guarded structure may be smaller than the original one (Example 21), and the
guarded ideal induced by the guarded structure generated by a guarded ideal G
may be larger than G (Remark 16). We proceed to analyse details.

Proposition 15. On every symmetric monoidal category, the least guarded
structure (Lemma 3) is ideal.

Remark 16. Vacuously guarded categories need not induce the least guarded
ideal (although by the next results, this does hold in the Cartesian and the co-
Cartesian case). In fact, by Lemma 3, the guarded ideal induced by the vacuous
guarded structure consists of the morphisms of the form (h ® idp)(ida ® g)
(eliding associativity and the unitor) where g: I - E® D, h: AQE — I:

: S

This ideal will resurface in the discussion of Hilbert spaces (Sect. 6).

The situation is simpler in the Cartesian and, dually, in the co-Cartesian case.

Lemma 17. Let C be ideally guarded over G, and suppose that every [ €
G(XQ®Y, Z) factors through f®id: X @Y - V QY for some f € G(X,V).
Then the guardedness structure of C induces G.
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If ® = +, the premise of the lemma is automatic, since f € G(X +Y,Z) can
be represented as [f iny, f ing] = [id, f ing] (f iny +id) where f in; € G(X, Z) by
the closure properties of guarded ideals. Hence, we obtain

Theorem 18. The guarded structure generated by a guarded ideal G on a co-
Cartesian category is equivalently described by Homin, (X, Y + Z) = {]in1, g]h |
geGW, Y +2),h: X —Y + W}, and hence induces G.

Corollary 19. The guarded structure generated by a guarded ideal G on a
Cartesian category is equivalently described by HomP* (X x Y, Z) = {h{(g,pry) |
gEGX XY,W),h: W xY — Z}, and hence induces G.

The description can be further simplified in the Cartesian closed case.

Corollary 20. Given a guarded ideal G on a Cartesian closed category, put
F: X XY =P Z iff curry f € G(X,ZY). This describes the guarded structure
induced by G iff G is exponential, i.e. f € G(X,Y) implies fV € G(XV,YV).

(We leave it as an open question whether a similar characterization holds in the
monoidal closed case.) Natural examples of both ideal and non-ideal guardedness
are found in metric spaces:

Example 21 (Metric spaces). The guarded structure on metric spaces from
Example 9 fails to be ideal: It induces the guarded ideal of contractive maps,
which however generates the (ideal) guarded structure described by f : X x
Y —P2 Ziff f(x,y) is uniformly contractive in y, i.e. there is ¢ < 1 such that
for every =, A\y. f(z,y) is contractive with contraction factor c.

A large class of ideally guarded structures arises as follows.

Proposition 22. Let C be a Cartesian category equipped with an endofunctor
» : C — C and a natural transformation next : Id — ». Then the following
definition yields a guarded ideal in C: G(X,Y) = {f next | f : »X — Y}. The
arising guarded structure is HomP (X x Y, Z) = {f(next,pry) | f : (X x Y) x
Y — Z}. If moreover next : X x Y — »(X xY) factors through next x id :
X XY - w»X XY, then HomP (X x Y, Z) = {f(next xid) | f: » X XY — Z}.

Remark 23. Proposition 22 connects our approach to previous work based pre-
cisely on the assumptions of the proposition [28] (in fact, the term guarded traced
category is already used there, with different meaning). A limitation of the app-
roach via a functor » arises from the need to fix » globally, so that, e.g., the
ideal guarded structure on metric spaces (Example 21) is not covered — capturing
contractivity via » requires fixing a single global contraction factor.

The following instance of Proposition 22 has received extensive recent interest
in programming semantics:

Example 24 (Topos of Trees). Let C be the topos of trees [7], i.e. the
presheaf category Set” " where w is the preorder of natural numbers (starting
from 1) ordered by inclusion. An object X of C is thus a family (X(n))n,=12...
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(g) Tightening (h) Yanking

Fig. 4. Axioms of guarded traced categories

of sets with restriction maps r,, : X(n + 1) — X(n). The later-endofunctor
» : C — C is defined by »X(1) = {x} and »X(n + 1) = X(n), and the
natural transformation nexty : X — »X by nextx(l) =!: X(1) — {x},
nextx(n + 1) = mp41 : X(n+1) — X(n). Guarded morphisms according to
Proposition 22 are called contractive, generalizing the metric setup. Contractive
morphisms form an exponential ideal, so partial guardedness is described as in
Corollary 20, and hence agrees with contractivity in part of the input as in [7,
Definition 2.2].

5 Guarded Traces

As indicated previously, the main purpose of our notion of abstract guardedness
is to enable fine-grained control over the formation of feedback loops, viz, traces.

Definition 25 (Guarded traced category). We call a guarded category
(C,®,1I) guarded traced if it is equipped with a guarded trace operator

tri p.op: Hom' (A®U)® B,C® (D®U)) — Hom*(A® B,C @ D),

visually corresponding to the diagram formation rule in Fig. 1, so that the adap-
tation of the Joyal-Street-Verity axiomatization of traced symmetric monoidal
categories [22] shown in Fig. 4 is satisfied.
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Remark 26. The versions of the sliding axiom in Fig. 4 differ in the way the
loop is guarded. They are in line with duality (Remark 4): Sliding IT arises from
Sliding I by 180° rotation, and Sliding III is symmetric under 180° rotation.

We proceed to investigate the geometric properties of guarded traced categories,
partly extending Theorem 2. The syntactic setting extends the one for guarded
categories by additionally closing morphism expressions under the trace operator
(interpreted diagrammatically as in Fig. 1), obtaining traced morphism expres-
sions. Term formation thus becomes mutually recursive with guardedness typ-
ing: if e is a traced morphism expression such that e € Hom*(A® U) ® B,C ®
(D ®U)) is derivable, then tra g o p(e) is a traced morphism expression, and
tra g,op(e) € Hom*(A ® B,C ® D) is derivable. Traced diagrams consists of
finitely many (decorated) basic boxes and wires connecting output gates of basic
boxes to input gates, with each gate attached to at most one wire; open gates
are regarded as inputs or outputs, respectively, of the whole diagram. Of course,
acyclicity is not required. We first note that the easy direction of Theorem 2
adapts straightforwardly to the setting with traces:

Proposition 27. Let e be a traced morphism expression such that e € Hom®*(A®
B,C ® D) is derivable. Then in the diagram of e, all loops and all paths from
input gates in A to output gates in D are guarded (p. 4).

Remarkably, the converse of Proposition 27 in general fails in several ways:

Example 28. The left diagram below

shows that guardedness typing is not closed under equality of traced morphism
expressions: Write e for the expression inducing the dashed box. By Proposi-
tion 27, e, and hence tr(e), fail to type as indicated. However, tr(e) = gf, for
which the overall guardedness typing indicated is easily derivable.

Moreover, the diagram on the right above satisfies the necessary condition
from Proposition 27 but is not induced by an expression for which the indicated
guardedness typing is derivable, essentially because both ways of cutting the
loop violate the necessary condition from Proposition 27.

However, if C is ideally guarded over a guarded ideal G, we do have a converse
to Proposition 27: By Theorem 14, we can then restrict basic boxes in diagrams
to be either guarded, i.e. have only black gates, or unguarded, i.e. have only
white gates. We call the correspondingly restricted diagrams ideally guarded. (We
emphasize that the guardedness typing of composite ideally guarded diagrams
still needs to mix guarded and unguarded inputs and outputs.) A path in an
ideally guarded diagram is guarded iff it passes through a guarded basic box.
The left-hand diagram in (2) is in fact ideally guarded, so guardedness typing
fails to be closed under equality also in the ideally guarded case. However, for
ideally guarded diagrams we have the following converse of Proposition 27.
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Theorem 29. Let A be an ideally guarded diagram, with sets of input and out-
put gates disjointly decomposed as A\J B and C U D, respectively. If every loop
in A and every path from a gate in A to a gate in D is guarded, then A is
induced by a traced morphism expression e such that e € Hom*(A ® B,C ® D)
is derivable.

We next take a look at the Cartesian and co-Cartesian cases. Recall that by
Proposition 5, the definition of guarded category can be simplified if ® = + (and
dually if ® = x). This simplification extends to guarded traced categories by
generalizing Hyland-Hasegawa’s equivalence between Cartesian trace operators
and Conway fixpoint operators [18,19].

Definition 30 (Guarded Conway operators). Let C be a guarded co-
Cartesian category. We call an operator (—)' of profile

f € Homyyia(X,Y 4+ X) — fT € Homy (X, Y) (3)
a guarded iteration operator if it satisfies
— fizpoint: f1 =[id, f1]f for f: X —in, Y + X;
and a Conway iteration operator if it additionally satisfies

— naturality: g ft = ((g+id)f)f for f: X =, Y +X,9:Y — Z;

— dinaturality: ([in1, h]g)" = [id, ([in1,g]h) g for g: X —in, Y +Z and h: Z —
Y+ Xorg: X—=Y+Zand h:Z —, Y+ X,

~ (co)diagonal: ([id,ing] )T = f1T for f: X —in,pia (Y + X) + X.

Furthermore, we distinguish the following principles:

~ squaring [12): £ = ([iny, 1)} for £ 1 X —iw, ¥ + X;
— uniformity w.r.t. a subcategory S of C: (id + h) f = gh implies fT = g h for
all f: X -, 24+ X,9:Y »ip, Z+Y and h: Y — X from S;

and call (=)' squarable or uniform if it satisfies squaring or uniformity, respec-
tively.

Guarded (Conway) recursion operators (— )¢ on guarded Cartesian categories are
defined dually in a straightforward manner. We collect the following facts about
guarded iteration operators for further reference.

Lemma 31. Let (=)' be a guarded iteration operator on (C,+,0).

1. If (=)' is uniform w.r.t. some co-Cartesian subcategory of C and satisfies the
codiagonal identity then it is squarable.

2. If (—)1 is squarable and uniform w.r.t. coproduct injections then it is dinat-
ural.

8. If (=)' is Conway then it is uniform w.r.t. coproduct injections.

Proposition 32. A guarded co-Cartesian category C is traced iff it is equipped
with a guarded Conway iteration operator (=)', with mutual conversions like in
the total case [18,19].
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Example 33 (Guarded Conway operators). We list some examples of
guarded Conway iteration/recursion operators. In all cases except 2, Conwayness
follows from uniqueness of fixpoints [16, Theorem 17].

1. In a vacuously guarded co-Cartesian category (Remark 7), f: X —i,, Y+ 2
iff f =inyg for some g : X — Y. If coproduct injections are monic, then g is
uniquely determined, and f = g defines a guarded Conway operator.

2. Every Cartesian category C is guarded under Hom™(X,Y) = Hom(X,Y)
(making every morphism guarded). Then C has a guarded Conway recursion
operator iff C is a Conway category [13], i.e. models standard total recursion.

3. The guarded Cartesian category of complete metric spaces as in Example 9 is
traced: For f : X xY —P2 Y define f(x) as the unique fixpoint of \y. f(z,y)
according to Banach’s fixpoint theorem.

4. Similarly, the topos of trees, ideally guarded as in Example 24, has a guarded
Conway recursion operator obtained by taking unique fixpoints [7, Theo-
rem 2.4].

5. The guarded co-Cartesian category Cr,, of side-effecting processes (Exam-
ple 8) has a guarded Conway iteration operator obtained by taking unique
fixpoints, thanks to the universal property of the final coalgebra Tx X [32].

Guarded vs. Unguarded Recursion. We proceed to present a class of exam-
ples relating guarded and unguarded recursion. For motivation, consider the
category (Cpo, x,1) of complete partial orders (cpos) and continuous maps.
This category nearly supports recursion via least fixpoints, except that, e.g.,
id : X — X only has a least fixpoint if X has a bottom. The following equivalent
approaches involve the lifting monad (—),, which adjoins a fresh bottom L to
a given X € |Cpo|.

Classical approach [38,39]: Define a total recursion operator (—); on the cat-
egory Cpo, of pointed cpos and continuous maps, using least fixpoints.

Guarded approach (cf.[28]): Extend Cpo to a guarded category: f : X x
Y =P Ziff f € {g(idxn)|g: X xY, — Z} (see Proposition 22), and
define a guarded recursion operator sending f = g(id x n) : ¥ x X —P2 X
to fr = g(id, f):Y — X with f(y) € X, calculated as the least fixpoint of

Az.ng(y, 2).

Pointed cpos happen to be always of the form X, with X € |Cpo|, which
indicates that (—); is a special case of (—)+. This is no longer true in more general
cases when the connection between (—); and (—); is more intricate. We show
that (—); and (—)4 are nevertheless equivalent under reasonable assumptions.

Definition 34 ([11]). A let-ccc with a fizpoint object is a tuple (C, T, 2,w),
consisting of a Cartesian closed category C, a strong monad T on it, an initial
T-algebra (£2,in) and an equalizer w: 1 — R of inn: 2 — N and id: 2 — .

The key requirement is the last one, satisfied, e.g., for Cpo and the lifting monad.
Given a monad T on C, CT denotes the category of T-algebras and C-morphisms
(instead of T-algebra homomorphisms).
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Proposition 35 ([37, Theorem 4.6]). Let (C, T, £2,w) be a let-ccc with a fizpoint
object. Then CY has a unique CT-uniform recursion operator (—);.

By [38, Theorem 4], the operator (—); in Proposition 35 is Conway, in par-
ticular, by Lemma 31, squarable, if C has a natural numbers object and T
is an equational lifting monad [10], such as (—).. There are however further
squarable operators obtained via Proposition 35, e.g. for the partial state monad
TX = (X x S) [11]. By Lemma 31, the following result applies in particular
in the setup of Proposition 35 under the additional assumption of squarability.

Theorem 36. Let T be a strong monad on a Cartesian category C. The follow-
ing gives a bijective correspondence between squarable dinatural recursive opera-
tors (—)s on CT and squarable dinatural guarded recursive operators (—); on C
ideally guarded over Hom™ (X, Y)={fn|f: TX - Y}:

(f: BxA— A)y=a(nf(idxa); for (A,a) € |C]] (4)

(f=9g(dxn): Y xX — X); = g(id, (ng)s) (5)

(in (5) we call on a slight extension of (—);; the right hand side of (4) is defined
because nf(id x a) factors as nf(id x a(Ta)n)). Moreover, (—)+ is Conway iff so

is (=)i-
6 Vacuous Guardedness and Nuclear Ideals

We proceed to discuss traces in vacuously guarded categories (Lemma 3), and
show that the partial trace operation in the category of (possibly infinite-
dimensional) Hilbert spaces [2] in fact lives over the vacuous guarded structure.
We first note that vacuous guarded structures are traced as soon as a simple
rewiring operation satisfies a suitable well-definedness condition (similar to one
defining traced nuclear ideals [2, Definition 8.14]):

Proposition 37. Let (C,®,1) be vacuously guarded. If for f € Hom*(A ® B,
C ® D) with factorization f = (h @ idpgu)(idagu ® g) (eliding associativity),
g:B—>EQDQRU,h: AQU ® E — C as per Lemma 3, the composite

A@BM8, Ao EeDoU~AcUeE®D X292, coD  (6)
depends only on f, then C is guarded traced, with trg,BC’D(f) defined as (6).

Diagrammatically, the trace in a vacuously guarded category is thus given by
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We proceed to instantiate the above to Hilbert spaces. On a more abstract
level, a dagger symmetric monoidal category [35] (or tensored x-category [2]) is
a symmetric monoidal category (C,®,I) equipped with an identity-on-objects
strictly involutive functor (=) : C — C°P coherently preserving the symmet-
ric monoidal structure. The main motivation for dagger symmetric monoidal
categories is to capture categories that are similar to (dagger) compact closed
categories in that they admit a canonical trace construction for certain mor-
phisms, but fail to be closed, much less compact closed. The “compact closed
part” of a dagger symmetric monoidal category is axiomatized as follows.

Definition 38 (Nuclear Ideal, [2]). A nuclear ideal N in a dagger symmetric
monoidal category (C,®, I, (—)!) is a family of subsets N(X,Y) C Homg(X,Y),
X,Y € |C|, satisfying the following conditions:

1. Nis closed under ®, (—)f, and composition with arbitrary morphisms on both
sides;

2. There is a bijection 6 : N(X,Y) — Homg (I, X ® V), natural in X and Y,
coherently preserving the dagger symmetric monoidal structure.

3. (Compactness) For f € N(B,A) and g € N(B,(C), the following diagram
commutes:

A2, A1 MY | A (BT®O)
gf*l ig
C—1QC (BT® A)®C

0()) @idc

The above definition is slightly simplified in that we elide a covariant involutive
functor (=) : C — C, capturing, e.g. complex conjugation; i.e., we essentially
restrict to spaces over the reals.

We proceed to present a representative example of a nuclear ideal in the
category of Hilbert spaces. Recall that a Hilbert space [23] H over the field R
of reals is a vector space with an inner product (—,—) : H x H — R that is
complete as a normed space under the induced norm ||z|| = v/{(z,x). Let Hilb
be the category of Hilbert spaces and bounded linear operators.

Clearly, R itself is a Hilbert space; linear operators X — R are conventionally
called functionals. More generally, we consider (multi-)linear functionals X; x
... Xx X, — R, i.e. maps that are linear in every argument. Such a functional
is bounded if |f(x1,...,2,)| < c|lx1]| - - ||zn|| for some constant ¢ € R. We can
move between bounded linear operators and bounded linear functionals, similarly
as we can move between relations and functions to the Booleans:

Proposition 39 ([23, Theorem 2.4.1]). Given a bounded linear operator f :
X =Y, fo(z,y) = (fx,y) defines a bounded linear functional f°, and every
bounded linear functional X XY — R arises in this way.

Definition 40 (Hilbert-Schmidt operators/functionals). A bounded lin-
ear functional f : X; x ... x X,, — R is Hilbert-Schmidt if the sum

29:1631 R ZZEHEB,L (f('rh cee 73771))2
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is finite for some, and then any, orthonormal bases Bi,...,B, of Xi,...,X,,
respectively. A bounded linear operator f : X — Y is Hilbert-Schmidt if
the induced functional f° (Proposition 39) is Hilbert-Schmidt, equivalently if
> wcp || fz||? is finite for some, and then any, orthonormal basis B of X. We
denote by HS(X,Y") the space of all Hilbert-Schmidt operators from X to Y.

For X,Y € |Hilb|, the space of Hilbert-Schmidt functionals X x ¥ — R is
itself a Hilbert space, denoted X ® Y, with the pointwise vector space structure
and the inner product (f,g) = >, cp > ,cp f(z,y)g(z,y) where B and B’ are
orthonormal bases of X and Y, respectively. By virtue of the equivalence between
f and f°, this induces a Hilbert space structure on HS(X,Y), with induced
norm || f|l, = \/>_,ep lfz||?. The operator ® forms part of a dagger symmetric
monoidal structure on Hilb, with unit R. For a bounded linear operator f :
X =Y, ft 1Y — X is the adjoint operator uniquely determined by equation
(z, fTy) = (fz,y). The tensor product of f : A — B and g : C — D is the
functional sending h: A x C — R to h(f! x g'): B x D — R. Given a € A and
¢ € C, let us denote by a ® ¢ € A® C the functional (a, ') — (a,a’) (¢, '), and
so, with the above f and g, (f ® g)(a ® ¢) = f(a) ® g(c).

Proposition 41 ([2]). The Hilbert-Schmidt operators form a nuclear ideal in
Hilb with 0 : HS(X,Y) = Hom(R, XT ® Y) defined by

0f : X =>Y)r:R)z: X,y:Y)=r(fz,y).

A crucial fact underlying the proof of Proposition 41 is that HS(X,Y") is isomor-
phic to XT®Y, naturally in X and Y. We emphasize that what makes the case of
Hilb significant is that we do not restrict to finite-dimensional Hilbert spaces.
In that case all bounded linear operators would be Hilbert-Schmidt and the
corresponding category would be (dagger) compact closed [35]. In the infinite-
dimensional case, identities need not be Hilbert-Schmidt, so HS is indeed only
an ideal and not a subcategory.

Let N2(X,Y) ={¢'h: X - Y | h e N(X,Z),g € N(Y, Z)} for any nuclear
ideal N. The main theorem of the section now can be stated as follows.

Theorem 42. 1. The guarded ideal induced by the vacuous guarded structure
on Hilb (see (1)) is precisely HS®, and Hilb is guarded traced over HS®.

2. Guarded traces in Hilb commute with (=)' in the sense that if f € Hom®((A®
U)®B,Co(D®U)), thenyp av [ Ypev.c € Hom*(DeU)®C, BR(AU))
and tr, ¢ p A(vB.asU fTYDeU.C) = vA.8 ('Y 5 o p(f) T veD-

Clause 1 is a generalization of the result in [2, Theorem 8.16] to parametrized
traces. Specifically, we obtain agreement with the conventional mathematical
definition of trace: given f € HS*(X, X), tr(f) = 3.,(f(e;), e;) for any choice of
an orthonormal basis (e;);, and HS?(X, X) contains precisely those f for which
this sum is absolutely convergent independently of the basis.
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7 Conclusions and Further Work

We have presented and investigated a notion of abstract guardedness and
guarded traces, focusing on foundational results and important classes of exam-
ples. We have distinguished a more specific notion of ideal guardedness, which in
many respects appears to be better behaved than the unrestricted one, in partic-
ular ensures closer agreement between structural and geometric guardedness. An
unexpectedly prominent role is played by ‘vacuous’ guardedness, characterized
by the absence of paths connecting unguarded inputs to guarded outputs; e.g.,
partial traces in Hilbert spaces [2] turn out to be based on this form of guard-
edness. Further research will concern a coherence theorem for guarded traced
categories generalizing the well-known unguarded case [22,34], and a generaliza-
tion of the Int-construction [22], which would relate guarded traced categories to
a suitable guarded version of compact closed categories. Also, we plan to investi-
gate guarded traced categories as a basis for generalized Hoare logics, extending
and unifying previous work [5,15].
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