
Logics for Bisimulation and Divergence

Xinxin Liu, Tingting Yu(B) , and Wenhui Zhang

State Key Laboratory of Computer Science, Institute of Software, CAS,
University of Chinese Academy of Sciences, Beijing, China

{xinxin,yutt,zwh}@ios.ac.cn

Abstract. The study of modal logics and various bisimulation equiv-
alences so far shows the following progression: 1. weak bisimilarity is
characterized by Hennessy-Milner logic (HML), a simple propositional
modal logic with a weak possibility modality, and 2. extending HML by
refining the weak possibility modality one obtains a logic which char-
acterizes branching bisimilarity, a refinement of weak bisimilarity, and
3. further extending the logic with a divergence modality one obtains
a logic which characterizes branching bisimilarity with explicit diver-
gence, a refinement of branching bisimilarity. In this paper, we explore
the development by exchanging the above 2 and 3, i.e. by first extending
HML with a divergence modality and then refining the weak possibil-
ity modality in the extended logic. We have the following findings: A.
extending HML with a new divergence modality one obtains a new logic
which characterizes complete weak bisimilarity, an equivalence relation
with distinguishing power in between weak bisimilarity and branching
bisimilarity with explicit divergence; B. further extending the obtained
logic by refining the weak possibility modality in it one obtains another
logic which characterizes branching bisimilarity with explicit divergence.
As main results of the paper, the logic in A. provides a modal character-
ization for complete weak bisimilarity, and moreover the two new logics
in A. and B. are both sub-logics of the known logic obtained in above 3.

1 Introduction

Weak bisimilarity is a popular equivalence relation introduced by Milner [9]. It is
defined through the notion of weak bisimulation which was proposed by Milner
[9] based on an idea independently discovered by van Benthem [4] and Park [8].
The importance of weak bisimulation is that it not only defines an equivalence
relation but also provides a verification technique for the equality. A well-known
theoretical result for weak bisimilarity is that the equivalence is characterized
by a modal logic which is known as Hennessy-Milner logic (HML) [2] in the
following sense: two processes are equivalent with respect to weak bisimilarity if
and only if they satisfy exactly the same set of HML formulas.
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Because weak bisimilarity does not preserve divergence, i.e. it is possible for
two equivalent processes that one of them is capable of endless internal computa-
tions while the other is not, various divergence preserving versions of weak bisim-
ulation equivalences and pre-orders are studied later [1,3,5,13]. Complete weak
bisimilarity is a newly proposed divergence preserving weak bisimulation equiv-
alence [10]. Like weak bisimilarity, complete weak bisimilarity is supported by
a bisimulation verification technique called inductive weak bisimulation, which
can be very helpful in practical verification that concerns divergence. One of the
main aims of this paper is to find a modal logic which characterizes complete
weak bisimilarity just as HML characterizes weak bisimilarity.

We will put our study into a more general context. The study of modal logics
and various bisimulation equivalences so far shows the following progression
which reveals the co-related increase for the expressive power of the logics and
the distinguishing power of the equivalences:

1. Weak bisimilarity is characterized by HML which is a simple propositional
modal logic with a weak possibility modality [2];

2. Extending HML by refining the weak possibility modality one obtains a logic
which characterizes branching bisimilarity [5,6], a refinement of weak bisim-
ilarity proposed in [12],

3. Further extending the logic with a divergence modality one obtains a logic
which characterizes branching bisimilarity with explicit divergence [13], a
refinement of branching bisimilarity proposed in [12].

In this paper, we explore the development by exchanging the order of 2 and 3,
i.e. by first extending HML with a divergence modality and then refining the
weak possibility modality in the extended logic. We have the following findings:

A. Extending HML with a new divergence modality one obtains a logic which
characterizes complete weak bisimilarity, an equivalence relation with distin-
guishing power in between weak bisimilarity and branching bisimilarity with
explicit divergence;

B. Further extending the obtained logic by refining the weak possibility modality
in it one obtains another logic which characterizes branching bisimilarity with
explicit divergence.

To summarize the results of the paper:

– The above A. is the wanted result of modal characterization of complete weak
bisimilarity.

– The two new logics in A. and B. are both sub-logics of the known logic men-
tioned in above 3, hence showing a clear picture of the sub-logic relationships
of the corresponding characterization results.

– For finite-state systems, we also use the modal characterization to show a
reduction from the problem of checking equality of complete weak bisimilar-
ity to the problem of checking equality of ordinary weak bisimilarity, thus
provide a decision procedure for the problem of checking equality of finite-
state systems with respect to complete weak bisimilarity.
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The rest of the paper is organized as follows. Section 2 presents the defini-
tions of the equalities, i.e. weak bisimilarity, complete weak bisimilarity, branch-
ing bisimilarity, and branching bisimilarity with explicit divergence. Section 3
studies the relationships of the modal logic characterizations of the equalities.
Section 4 studies reductions for decision problems concerning finite-state pro-
cesses. Section 5 concludes.

2 Bisimulations and Divergence

In this section, after settling some necessary preliminaries, we introduce the main
equivalence relation, i.e. complete weak bisimilarity, together with some related
equivalences like branching bisimilarity and branching bisimilarity with explicit
divergence.

Definition 1 (Labeled transition systems). A labeled transition system (or
LTS) is a triple A = 〈S,A,−→〉 where:

– S is a set of states, A is a set of actions, −→⊆ S × (A ∪ {τ}) × S is the
transition relation. τ is the silent action which is assumed not in A. An
element (s, α, t) of −→, usually written as s

α−→ t, is called a transition;
– A finite run of A is a finite, nonempty alternating sequence of states and

actions: ρ = s0α0s1α1 . . . sn−1αn−1sn which begins with a state and ends
with a state, such that for 0 ≤ i < n, si

αi−→ si+1. We also say that ρ is a
finite run from s0 to sn;

– For ρ = s0α0s1α1 . . . sn−1αn−1sn, define Act(ρ) = α0α1 . . . αn−1, and
length(ρ) = n;

– An infinite run of A is an infinite, alternating sequence of states and actions:
ρ = s0α0s1α1 . . . which begins with a state, such that for all for i = 0, 1, . . .,
si

αi−→ si+1. We also say that ρ is an infinite run from s0;
– A (finite or infinite) τ -run of A is a (finite or infinite) run of A in which all

actions are τ ’s.

For a finite sequence of actions l ∈ (A ∪ {τ})∗, let ̂l ∈ A∗ be the sequence
obtained by deleting all τ ’s from l.

We use standard notations for multi-step τ transitions, and the so-called
double-arrow transitions: write s =⇒ s′ if there is a finite τ -run from s to s′;
write s

α=⇒ s′ if there exist t, t′ such that s =⇒ t, t
α−→ t′, t′ =⇒ s′. Note the

important difference between s =⇒ s′ and s
τ=⇒ s′: the former means that from

s to s′ there is a finite τ -run (could be a τ -run with zero length), while the latter
means that from s to s′ there is a finite τ -run with non-zero length. Thus s =⇒ s
holds for all s ∈ S, while s

τ=⇒ s holds only when s is on a τ -loop consisting of

one or more τ -transitions. Also for l ∈ (A ∪ {τ})∗ we will write s
̂l=⇒ s′ if there

is a finite run ρ from s to s′ with Act(ρ) = l. Note that s
ε=⇒ s′ means exactly

s =⇒ s′, where ε is the empty string.
Next, we review the well-known notions of weak bisimulation, weak bisimi-

larity [9], and branching bisimulation, branching bisimilarity [12].
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Definition 2 (Weak and branching bisimulations). Let A = 〈S,A,−→〉 be an
LTS. A binary relation R ⊆ S × S is a weak bisimulation if it is symmetric and
moreover for all (s, t) ∈ R the following holds:

whenever s
α−→ s′, then there exists t′ such that t

α̂=⇒ t′ and (s′, t′) ∈ R.

A binary relation R ⊆ S × S is a branching bisimulation if it is symmetric and
moreover for all (s, t) ∈ R the following holds:

whenever s
α−→ s′, then either α = τ , and there exists t′ such that t =⇒ t′

and (s, t′), (s′, t′) ∈ R, or there exist t′, t′′ such that t =⇒ t′, t′ α−→ t′′ and
(s, t′), (s′, t′′) ∈ R.

Now define two relations ≈,≈b as follows:

≈ =
⋃{R | R is a weak bisimulation},

≈b =
⋃{R | R is a branching bisimulation}.

The notions of weak and branching bisimulations enjoy some nice properties
as stated in the following Lemmas 1 and 2, which then lead to the important
Theorem 1 that justifies Definition 2.

Lemma 1. If {Ri | i ∈ I} is a set of weak bisimulations, then
⋃{Ri | i ∈ I}

is a weak bisimulation. If {Ri | i ∈ I} is a set of branching bisimulations, then
⋃{Ri | i ∈ I} is a branching bisimulation.

For two binary relations R1, R2, we write R1 · R2 for the composition of R1

and R2, i.e. R1 · R2 = {(s, t) | ∃u.(s, u) ∈ R1, (u, t) ∈ R2}.

Lemma 2. If R1, R2 are weak bisimulations, then R1 · R2 ∪ R2 · R1 is also a
weak bisimulation. If R1, R2 are branching bisimulations, then R1 · R2 ∪ R2 · R1

is also a branching bisimulation.

The proofs of the above two lemmas directly follow from Definition 2 (Note
that we modified the conditions for branching bisimulation as in [11]). With the
above two lemmas, it is routine to prove the following theorem, which justifies
the definitions of ≈ and ≈b.

Theorem 1. ≈ is an equivalence relation, and it is the largest weak bisimula-
tion. ≈b is an equivalence relation, and it is the largest branching bisimulation.

With Theorem 1, ≈ and ≈b are usually called weak bisimilarity and branching
bisimilarity respectively.

It is well-known that neither ≈ nor ≈b preserves divergence, i.e. it is possible
for two states s and t such that s ≈ t while there is an infinite τ -run from s but
no infinite τ -run from t.

In order to obtain divergence preserving relations, we can adopt the approach
used in [12] by introducing the following definition.
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Definition 3 (Weak and branching bisimulation with explicit divergence). Let
A = 〈S,A,−→〉 be an LTS. A state s ∈ S is said divergent with respect to an
equivalence relation ≡, written s ⇑≡, if from s there is an infinite τ -run ρ such
that all the states on ρ are ≡-equivalent to s.

An equivalence relation ≡ on S is called a weak bisimulation with explicit
divergence if ≡ is a weak bisimulation and moreover whenever s ≡ t it holds that
s ⇑≡ if and only if t ⇑≡.

An equivalence relation ≡ on S is called a branching bisimulation with
explicit divergence if ≡ is a branching bisimulation and moreover whenever s ≡ t
it holds that s ⇑≡ if and only if t ⇑≡.

Now define two relations ≈�,≈�
b as follows:

≈� =
⋃{≡ | ≡ is a weak bisimulation with explicit divergence},

≈�
b =

⋃{≡ | ≡ is a branching bisimulation with explicit divergence}.

≈� and ≈�
b are called weak bisimilarity with explicit divergence and branching

bisimilarity with explicit divergence respectively.

At this point, let us see a non-trivial example of branching bisimulation with
explicit divergence. Define ≡sc, the strongly connected relation, such that s ≡sc t
if and only if s =⇒ t and t =⇒ s. That is s ≡sc t just in case s and t can reach
each other by performing τ actions. It only takes a second to check that ≡sc is
an equivalence relation. Moreover we have:

Proposition 1. ≡sc is a branching bisimulation with explicit divergence.

The following lemma is easy to prove.

Lemma 3. If ≡ is a weak bisimulation with explicit divergence, then ≡ preserves
divergence, i.e. whenever s ≡ t then there is an infinite τ -run from s if and only
if there is one from t.

With this lemma, we can show that ≈� preserves divergence as follows. If ρ is an
infinite τ -run from s and s ≈� t, then there is a weak bisimulation with explicit
divergence ≡ such that s ≡ t, then by Lemma 3 there is an infinite τ -run from t,
thus ≈� preserves divergence. One is tempting to say that with Lemma 3, ≈�

obviously preserves divergence, since ≈� is a weak bisimulation with explicit
divergence. However, to apply Lemma 3 in this way, we first have to prove that
≈� is a weak bisimulation with explicit divergence, and at least for the moment
we do not know if this is indeed the case.

Thus, as the definitions of ≈ and ≈b are justified by Theorem1, the definitions
of ≈� and ≈�

b also need justification. That is to say we need to confirm that ≈�

as defined is indeed the largest weak bisimulation with explicit divergence and,
≈�

b the largest branching bisimulation with explicit divergence (as it is stated
in the definition we even do not know whether ≈� and ≈�

b are equivalence
relations!). But this time the task is not as easy, since we no longer have the
corresponding lemmas available as Lemmas 1 and 2 for Theorem 1. As a matter of
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fact this implies that we do not know whether the notion of weak bisimulation
with explicit divergence is a fixed-point of some monotonic functions on the
complete lattice of equivalence relations, and hence the Knaster-Tarski fixed-
point theorem is not applicable in this case. Thus we need to find a different
way to justify Definition 3. For the time being we have the following obvious
lemma, which clarifies the justification task.

Lemma 4. ≈� (≈�
b ) is the largest weak (branching) bisimulation with explicit

divergence if and only if the largest weak (branching) bisimulation with explicit
divergence exists.

Justification of the definition of ≈�
b can be found in [13,14], while not in

[12] where it was introduced the first time. While a justification for ≈�
b might

be taken as granted, a justification for ≈� may seem to be more necessary.
This is because in a weak bisimulation equivalence relation, unlike branching
bisimulation, an infinite τ -run from a process may be matched by an infinite
τ -run from a related process in a way that the sequences of equivalence classes
passed through by the two runs may not be the same. So one needs to be more
careful in dealing with ≈�. According to Lemma 4, in order to prove that ≈�

is a weak bisimulation with explicit divergence we only need to show that the
largest weak bisimulation with explicit divergence exists. This approach was
taken in [10], where two relations called complete weak bisimilarity and complete
branching bisimilarity were constructed and proved to be the largest weak bisim-
ulation with explicit divergence and largest branching bisimulation with explicit
divergence respectively. In this paper, for self containment we will present a
justification of the definition of ≈� in the next section, by using the logical
characterization result. For the convenience of names, in the paper we will freely
use the name of complete weak (branching) bisimilarity as synonym for weak
(branching) bisimilarity with explicit divergence.

3 Modal Characterization

The main aims of this section is to look for a modal logic characterization of
complete weak bisimilarity ≈�, and study its relationship with logic characteri-
zations of other bisimulation equivalences. For that, we first review some of the
existing logic characterization results.

In [2] a modal logic, later known as Hennessy-Milner logic (HML), was intro-
duced and proved that two given processes are equivalent under weak bisimu-
larity ≈ if and only if they satisfy the same set of HML formulas. This is the
so-called Hennessy-Milner theorem. The key constructor in HML is the weak
possibility modality 〈〈u〉〉F , which asserts that after the observation of u some
state with property F is reached. In [6], the weak possibility modality was refined
to an until modality in the form of F1〈α〉F2, meaning that there is a finite τ -run
such that all the states on it satisfy F1, and the last state can perform an α action
and arrives at a state satisfying F2, and it was proved that the refined logic char-
acterizes branching bisimilarity ≈b, just as HML characterizes weak bisimilarity.
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In [5] the weak possibility modality was refined to a just-before modality in the
form of F1{α}F2, meaning that there is a finite τ -run such that the last state
satisfies F1 and can perform an α action and arrives at a state satisfying F2,
and it was proved that the refined logic, named Φjb, also characterizes branching
bisimilarity ≈b. In [13], Φjb was further extended to the logic Φ�

jb with a diver-
gence modality in the form of ΔF , meaning that there is an infinite τ -run on
which eventually all the states satisfy F , and it was proved that Φ�

jb characterizes
branching bisimilarity with explicit divergence ≈�

b .
As the starting point of the work of this paper, we describe a modal logic

HMLbΔ which is basically Φ�
jb with a derived operator 〈〈u〉〉. The set of formulas

of HMLbΔ is defined by the following syntax of BNF rules:

F ::=
∧

i∈I Fi ¬F F1{u}F2 〈〈u〉〉F ΔF

where I is an index set which could be infinite, {u} (with u ∈ A ∪ {ε}) is the
just-before modality introduced in [5], 〈〈u〉〉 is the usual weak possibility modality
as in [9], and Δ is the divergence modality introduced in [13].

Definition 4. Let A = 〈S,A,−→〉 be an LTS. The satisfaction relation |=
between states and formulas of HMLbΔ is defined by induction on the struc-
ture of formulas as follows:

1. s |= ∧

i∈I Fi if, for all i ∈ I, s |= Fi;
2. s |= ¬F if s |= F does not hold;
3. s |= F1{u}F2 if there exist t, t′ ∈ S such that t |= F1, t

′ |= F2, s =⇒ t and
(t u−→ t′ (when u ∈ A) or t

τ−→ t′ (when u = ε)) or there is t ∈ S such that
t |= F1, t |= F2, s =⇒ t and u = ε;

4. s |= 〈〈u〉〉F if there is t ∈ S such that s
u=⇒ t and t |= F ;

5. s |= ΔF if there is an infinite τ -run σ from s such that σ = sτs1τs2 . . . siτ . . .
and there is n > 0 such that si |= F for all i ≥ n (in other words, there are
only finitely many positions on σ where F does not hold).

First note that this logic can express some interesting properties of infinite
behaviours of processes. For example, Δtrue asserts the existence of an infinite
τ -run, where true is a short hand for

∧

i∈∅ Fi (which is the first formula of
HMLbΔ according to the BNF rules). The logic is basic, however it might be
more expressive than one expect due to the use of infinite conjunction with the
construction

∧

i∈I Fi when I is an infinite set.
As usual we will write binary conjunction F1 ∧F2 for

∧

i∈{1,2} Fi, and binary
disjunction F1 ∨ F2 for ¬∧

i∈{1,2} ¬Fi. For two HMLbΔ formulas F1, F2, we say
that F1 and F2 are equivalent logic formulas, written F1 ⇔ F2, if for any process
s of any LTS it holds that s |= F1 if and only if s |= F2.

The following proposition shows that 〈〈u〉〉 is a derived operator in the sense
that it can be defined in terms of the just-before operator {u}.
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Proposition 2. For any HMLbΔ formula F and a �= τ , the following equiva-
lences hold:

1. 〈〈ε〉〉F ⇔ true{ε}F ;
2. 〈〈a〉〉F ⇔ true{a}(true{ε}F ).

Proof. Immediately follows from Definition 4. ��
We write HMLb for the sub-logic of HMLbΔ which consists of formulas con-

structed without the divergence modality Δ. Then HML, the normal Hennessy-
Milner logic, is a sub-logic of HMLb consisting of formulas constructed without
the just-before modality {u}. With the result in Proposition 2 that 〈〈u〉〉 is a
derived operator of {u}, then the following is a theorem which immediately
follows from the characterization result for Φ�

jb in [13].

Theorem 2 (HMLbΔ characterization of ≈�
b ). Let s, t be two states. Then

s ≈�
b t if and only if s and t satisfy the same set of HMLbΔ formulas.

Likewise, the following is a theorem immediately follows from the character-
ization result for Φjb in [5].

Theorem 3 (HMLb characterization of ≈b). Let s, t be two states. Then s ≈b t
if and only if s and t satisfy the same set of HMLb formulas.

The following is the famous Hennessy-Milner theorem, which can be found
in Chap. 10 of [9].

Theorem 4 (HML characterization of ≈). Let s, t be two states. Then s ≈ t if
and only if s and t satisfy the same set of HML formulas.

The last three theorems give modal logic characterizations for ≈�
b ,≈b and

≈ respectively, still missing is a modal logic characterization for ≈�. Consider-
ing that HMLb is the extension of HML by the just-before modality and that
HMLbΔ is the extension of HML by the just-before and the divergence modal-
ity, an obvious attempt is to extend HML with the divergence modality and
hopefully that will give us a logic which characterizes ≈�. However it turns out
that the divergence construction ΔF is not preserved by ≈�, as the following
example shows.
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Example 1. The drawing shows an LTS P = 〈S,A,−→〉 where A = {ai | i ≥ 0},
S = {si | i ≥ 0} ∪ {ti | i ≥ 0}, and the transition relation is as follows:

– for each i ≥ 0, if i is even then there are exactly three transitions out of si:
si

ai−→ si, si
τ−→ si+1, si

τ−→ si+2;
if i is odd then there are exactly two transitions out of si:
si

ai−→ si, si
τ−→ si+1.

– for each i ≥ 0, there are exactly two transitions out of ti:
ti

ai−→ ti, ti
τ−→ ti+1.

Now define ≡ to be the following relation:

{(si, si) | i ≥ 0} ∪ {(ti, ti) | i ≥ 0} ∪ {(si, ti) | i ≥ 0} ∪ {(ti, si) | i ≥ 0}.

The following facts about ≡ are easy to verify:

1. ≡ is an equivalence relation;
2. ≡ is a weak bisimulation;
3. for every s ∈ S, whenever s

τ−→ t then s �≡ t. Hence whenever s ≡ t then
s ⇑≡ if and only if t ⇑≡.

Thus ≡ is a weak bisimulation with explicit divergence, and s0 ≈� t0. In the
following we show that there is an HML formula F such that ΔF is satisfied by
s0 and not by t0.

Let Fk be the following formula:

(〈〈a2k〉〉true ∧ 〈〈a2k+1〉〉true) ∨ (¬〈〈a2k〉〉true ∧ ¬〈〈a2k+1〉〉true).

That is, Fk asserts that the pair of actions a2k and a2k+1 are either both
enabled or both disabled. It is clear that Fk holds for every state of S except
s2k+1 and t2k+1. Thus

∧{Fk | k ≥ 0} holds on every even numbered position
(i.e. s0, t0, s2, t2, . . .) while does not hold on every odd numbered position (i.e.
s1, t1, s3, t3, . . .).

Now Δ
∧{Fk | k ≥ 0} is satisfied by s0 but not by t0. To see that, note that

from s0 there is an infinite τ -run σ = s0τs2τ . . . s2kτ . . . and every state on σ
satisfies

∧{Fk | k ≥ 0}, while the only infinite τ -run from t0 is t0τt1τ . . ., on
which there are infinitely many states that do not satisfy

∧{Fk | k ≥ 0}. ��
Thus, we need to find a different divergence modality. For that we introduce

the weak divergence modality Δε into HMLbΔ, by extending the BNF rules as
follows:

F :: = . . . | ΔεF.

And then add the following interpretation into Definition 4.

6. s |= ΔεF if there is an infinite τ -run σ from s such that for every state s′ on
σ it holds that s′ =⇒ t for some t |= F .
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The following is a depiction of the condition for s |= ΔεF .

Proposition 3. For any HMLbΔ formula F , the following equivalence holds:

ΔεF ⇔ Δ〈〈ε〉〉F.

Proof. Immediately follows from Definition 4 together with the above interpre-
tation for ΔεF . ��

This proposition shows that Δε is a derived operator of Δ and 〈〈ε〉〉, and
that with Δε added into HMLbΔ the expressiveness of the extended logic does
not increase. So we still call the logic HMLbΔ after extending with Δε, and we
write HMLΔε for the sub-logic where the only modalities allowed are the weak
possibility modality 〈〈u〉〉 and the weak divergence modality Δε. With the new
divergence modality we can obtain another sub-logic HMLbΔε in which Δε is
allowed but not Δ.

Given a sub-logic L of HMLbΔ, it induces an equivalence relation ≡L on
states such that s ≡L t if and only if s and t satisfy the same set of formulas in the
sub-logic. We call ≡L the equivalence induced by L. The following is a summary
of the sub-logics of HMLbΔ that we concerned about and the corresponding
induced equivalences:

1. Let ≡�
b be the equivalence induced by HMLbΔ;

2. Let ≡b be the equivalence induced by HMLb;
3. Let ≡w be the equivalence induced by HML;
4. Let ≡�ε

w be the equivalence induced by HMLΔε;
5. Let ≡�ε

b be the equivalence induced by HMLbΔε.

In the rest of this section we will show that HMLΔε characterizes ≈�, i.e.
≈� coincides with ≡�ε

w . To prove ≈�⊆≡�ε
w , we show that for every weak bisim-

ulation with explicit divergence ≡ it holds that ≡⊆≡�ε
w (Lemma 5). To prove

≡�ε
w ⊆≈�, we show that ≡�ε

w is a weak bisimulation with explicit divergence
(Lemma 8).

Example 1 shows what ΔF is not preserved by ≈�, while the following lemma
guarantees that ΔεF is preserved by ≈�. Here we omit the proof.

Lemma 5. Let ≡ be a weak bisimulation with explicit divergence, F be an
HMLΔε formula. If s ≡ t and s |= F , then t |= F . Thus if ≡ is a weak bisimu-
lation with explicit divergence then ≡⊆≡�ε

w .
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Lemma 6. Let s =⇒ t. Then

1. whenever t |= F1{u}F2 then s |= F1{u}F2;
2. whenever t |= 〈〈u〉〉F then s |= 〈〈u〉〉F ;
3. whenever t |= ΔεF then s |= ΔεF .

Proof. We only prove 3. With the similar idea we can prove 1 and 2.
Suppose t |= ΔεF . Thus from t there is an infinite τ -run ρ such that for each

state t′ on ρ there exists t′′ with t′ =⇒ t′′ and t′′ |= F . Now since s =⇒ t, by
adding a prefix to ρ we can easily obtain an infinite run ρ′ with starting state s
such that for each state t′ on ρ′ there exists t′′ with t′ =⇒ t′′ and t′′ |= F , hence
s |= ΔεF . ��

The following is the so-called stuttering lemma for ≡�ε
w .

Lemma 7. If s =⇒ s′, s′ =⇒ t, and s ≡�ε
w t then s ≡�ε

w s′.

Proof. In this case we only need to prove the following: for any HMLΔε formula
F , it holds that s |= F if and only if s′ |= F . We carry out the proof by induction
on the structure of F .

For
∧

i∈I Fi, we have the following sequence of equivalences: s |= ∧

i∈I Fi

iff s |= Fi for every i ∈ I (by definition of |=) iff s′ |= Fi for every i ∈ I (by
induction hypothesis) iff s′ |= ∧

i∈I Fi (by definition of |=). In the same way we
can prove it for the case ¬F .

For 〈〈u〉〉F , suppose s |= 〈〈u〉〉F . Then t |= 〈〈u〉〉F by s ≡�ε
w t, then it imme-

diately follows that s′ |= 〈〈u〉〉F by s′ =⇒ t and Lemma 6. On the other hand,
suppose s′ |= 〈〈u〉〉F , then s |= 〈〈u〉〉F immediately follows by s =⇒ s′ and
Lemma 6. In the same way we can prove it for the case ΔεF . ��
Lemma 8. ≡�ε

w is a weak bisimulation with explicit divergence.

Proof. To prove that ≡�ε
w is a weak bisimulation with explicit divergence, we

need to establish the following:

1. ≡�ε
w is an equivalence relation;

2. ≡�ε
w is a weak bisimulation;

3. if s ≡�ε
w t, then s ⇑≡�ε

w
iff t ⇑≡�ε

w
.

It is obvious that ≡�ε
w is an equivalence relation. The way to prove that ≡�ε

w

is a weak bisimulation is exactly the same as the way to prove that ≡w is a weak
bisimulation [9]. We prove 3. in the following.

First, let us note that for a pair of states s, t with s �≡�ε
w t, by the definition

of ≡�ε
w there exists an HMLΔε formula F s

t , which is often called a distinguishing
formula of s and t, such that s |= F s

t and t �|= F s
t .

Suppose s ≡�ε
w t, and s ⇑≡�ε

w
, then there is an infinite τ -run ρ from s with

all the states on it ≡�ε
w -equivalent to s. We construct the following formula F s

∧

{F s
u | t

τ=⇒ u, u �≡�ε
w s}.
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Clearly s |= F s. Moreover s |= ΔεF
s, since for any state s′ on ρ, there is s′′ such

that s′ =⇒ s′′ and s′′ |= F s (just take s′′ to be s′, thus s′ =⇒ s′, and s′ |= F s by
s′ ≡�ε

w s). Now because t ≡�ε
w s, thus t |= ΔεF

s. In the following we will show
that t |= ΔεF

s implies t ⇑≡�ε
w

.
Since t |= ΔεF

s, there is an infinite τ -run σ from t such that for any state t′

on σ there exists t′′ with t′ =⇒ t′′ and t′′ |= F s. Now we will show that if t′ is a
state on ρ then t′ ≡�ε

w t.
Note that the construction of F s guarantees the following property:

if t =⇒ t′ and t′ |= F s then t′ ≡�ε
w t.

To see that, let t
τ=⇒ t′. Suppose t′ �≡�ε

w t, then t′ �≡�ε
w s, which implies t′ �|= F s

because in this case F s
t′ , which is a distinguishing formula of s and t′, is one of

the conjuncts of F s, and t′ �|= F s
t′ .

Now for any state t′ on σ, since t =⇒ t′ and t′ =⇒ t′′ for some t′′ with
t′′ |= F s, and by the above property of F s we know that t′′ ≡�ε

w t, then by
Lemma 7 t′ ≡�ε

w t, thus σ is the infinite τ -run that we are looking for. ��
At last, we can state the modal characterization theorem for ≈�.

Theorem 5. (HMLΔε characterization of ≈�) ≡�ε
w coincides with ≈�, that is

for any pair of states s and t, s ≈� t if and only if s and t satisfy the same set
of HMLΔε formulas.

Proof. By Lemma 5, ≈�⊆≡�ε
w , and by Lemma 8 ≡�ε

w is a weak bisimulation
with explicit divergence, hence ≡�ε

w ⊆≈�. ��
And at the same time we obtain the following theorem which justifies the

definition of ≈�.

Theorem 6. ≈� is a weak bisimulation with explicit divergence, and it is the
largest weak bisimulation with explicit divergence.

Proof. By Lemmas 5 and 8, ≡�ε
w is the largest weak bisimulation with explicit

divergence. By Theorem 5 ≈� is the same as ≡�ε
w , hence ≈� is the largest weak

bisimulation with explicit divergence. ��
Perhaps a little surprise is the following new modal characterization result

for branching bisimilarity with explicit divergence ≈�
b .

Theorem 7 (HMLbΔε characterization of ≈�
b ). Let s, t be two states. Then

s ≈�
b t if and only if s and t satisfy the same set of HMLbΔε formulas.

Proof. Here we give the following sketch.
Suppose s ≈�

b t and s |= F for some HMLbΔε formula F , just note that by
Proposition 3 there is an HMLbΔ formula F ′ with F ′ ⇔ F , then s |= F ′ and by
Theorem 2 t |= F ′ thus t |= F .

For the other direction, we prove that ≡�ε

b is a branching bisimulation with
explicit divergence. We can prove that ≡�ε

b is a branching bisimulation in the
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same way to prove that ≡b is a branching bisimulation as the proof of Theorem3
in [5]. Suppose s ≡�ε

b t and there is an infinite τ -run from s with all the states
on the run in the same ≡�ε

b -equivalence class of s, we can prove that there is an
infinite τ -run from t with all the states on the run in the same ≡�ε

b -equivalence
class of t as we prove it for ≡�ε

w in Lemma 8, with the help of a lemma similar
to Lemma 7 with ≡�ε

b in place of ≡�ε
w . ��

By Theorems 2 and 7, HMLbΔ and HMLbΔε both characterize ≈�
b . Now

the results about the relationships of various bisimulation equivalence relations
and the logics can be summarized as the above lattice shaped diagrams, where
on the left the equality on the higher end of an edge is included in the equality
on the lower end of the edge, and on the right the logic on the lower end of an
edge is a sub-logic of the one on the higher end of the edge, and the dotted lines
represent the logic characterization results.

4 Divergence in Finite State Systems

The motivating problem of this section is the problem of checking complete weak
bisimilarity for finite-state processes:

given an LTS 〈S,A,−→〉 and two states s, t ∈ S, where S and A are finite
sets, decide whether s ≈� t.

We will show that this problem can be solved by reducing it to the problem of
checking weak bisimilarity for finite-state processes which can be solved by a
well-known partition algorithm [7]:

given an LTS 〈S,A,−→〉 and two states s, t ∈ S, where S and A are finite
sets, decide whether s ≈ t.

The reduction is as follows. Let P = 〈S,A,−→〉 be a finite-state labeled
transition system, i.e. both S and A are finite sets, δ be an action not in A. Then
we can construct a new finite-state LTS Pδ = 〈̂S, ̂A,−→′〉 where ̂S = {ŝ |s ∈ S},
̂A = A ∪ {δ}, −→′= {(ŝ, α, ŝ′) | s

α−→ s′} ∪ {(ŝ, δ, ŝ) | s
τ=⇒ s}.
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The idea of the reduction is pretty straightforward: in a finite-state system,
the existence of an infinite τ -run from a state s is equivalent to the existence of
a so-called looping state s′ such that s =⇒ s′ and s′ τ=⇒ s′, and then the looping
states can be marked by a particular new action δ. Thus the transitions of the
constructed system Pδ is like the original system P except that every looping
state s is indicated by a new transition ŝ

δ−→ ′ŝ. In the following when there will
cause no confusion we will simply write ŝ

α−→ t̂ instead of ŝ
α−→ ′t̂ for s, t ∈ S.

Now to complete the reduction, we will show that for any s, t ∈ S, it holds
that s ≈� t if and only if ŝ ≈ t̂. Then in order to check whether s ≈� t we only
need to check whether ŝ ≈ t̂. For any s, t ∈ S, in order to show that s ≈� t
if and only if ŝ ≈ t̂, we can show that ≡⊆ S × S is a weak bisimulation with
explicit divergence if and only if ≡̂ = {(ŝ, t̂) | s ≡ t} is a weak bisimulation.
However, with the logic characterization results of the last section, here we will
take a different approach which reveals essential properties of the reduction
construction as stated in the following Theorems 8 and 9 and allows us to obtain
more general results as stated in the following Theorem10.

We define a translation function which maps every HMLbΔ formula F to
another HMLbΔ formula F . The function is inductively defined on the structure
of the formula as follows:

∧

i∈I Fi =
∧

i∈I Fi ¬F = ¬F

F1{u}F2 = F1{u}F2 (u �= δ) F1{δ}F2 = ¬true
〈〈u〉〉F = 〈〈u〉〉F (u �= δ) 〈〈δ〉〉F = ¬true

ΔF = true{δ}F ΔεF = 〈〈δ〉〉F
Theorem 8. If F is an HMLbΔ formula, then F is an HMLb formula. Moreover
if F is an HMLΔε formula, then F is an HML formula.

For a finite-state LTS P = 〈S,A,−→〉, let Pδ = 〈̂S,A,−→′〉 be the finite-
state LTS constructed above, s ∈ S. Then for any HMLbΔ formula F , it holds
that s |= F if and only if ŝ |= F .

The proof, which is omitted here, is a routine induction on the structure of the
formulas. Here we just explain the idea behind the translation function from
which one can see the rationale behind Theorem 8. The key is to understand
why F1{δ}F2 is translated to ¬true. As we have pointed out above, δ is an
action which is not in A and which is used in the reduction to mark divergence.
That implies that any process s from P is not capable of an δ action, hence the
property F1{δ}F2 will never be satisfied by any process from P. That is why
F1{δ}F2 is translated to ¬true. For the same reason 〈〈δ〉〉F is also translated to
¬true.

Also, we can define a translation function which maps every HMLb formula
F to an HMLbΔ formula F . The function is inductively defined on the structure
of the formula as follows:

∧

i∈I Fi =
∧

i∈I Fi ¬F = ¬F

F1{u}F2 = F1{u}F2 (u �= δ) F1{δ}F2 = Δ(F1 ∧ F2)
〈〈u〉〉F = 〈〈u〉〉F (u �= δ) 〈〈δ〉〉F = ΔεF
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Theorem 9. If F is an HMLb formula, then F is an HMLbΔ formula. Moreover
if F is an HML formula, then F is an HMLΔε formula.

For a finite-state LTS P = 〈S,A,−→〉, let Pδ = 〈̂S,A,−→′〉 be the finite-
state LTS constructed above, s ∈ S. Then for any HMLb formula F , it holds
that s |= F if and only if ŝ |= F .

Now we obtain the following theorem which guarantees the correctness of
our reduction.

Theorem 10. For a finite-state LTS P = 〈S,A −→〉, let Pδ = 〈̂S,A,−→′〉 be
the finite-state LTS constructed above. Then for s, t ∈ S:

1. s ≈� t if and only if ŝ ≈ t̂;
2. s ≈�

b t if and only if ŝ ≈b t̂.

Proof. Here we only prove 1. The way to prove 2. is the same. Since ≈� coin-
cides with ≡�ε

w and ≈ coincides with ≡w, to prove 1. we only need to prove that
s ≡�ε

w t if and only if ŝ ≡w t̂.
Suppose s ≡�ε

w t. If ŝ |= F for some HML formula F , then by Theorem 9, F
is an HMLΔε formula and s |= F . Then by the condition that s ≡�ε

w t, we have
t |= F , and again by Theorem9, t̂ |= F . Thus ŝ ≡w t̂.

Suppose ŝ ≡w t̂. If s |= F for some HMLΔε formula F , then by Theorem8,
F is an HML formula and ŝ |= F . Then by the condition that ŝ ≡ t̂, we have
t̂ |= F , and again by Theorem8, t |= F . Thus s ≡�ε

w t. ��
Theorem 8 also suggests a simple solution to the model checking problem for

HMLbΔ (which can have many solutions). The model checking problem here is
to ask, for any given state s of a fnite-state LTS P and any given finite HMLbΔ
formula F (finite in the sense that only finite conjunctions are allowed in F ),
how to decide whether s |= F holds or not. By Theorem8, this problem can be
reduced to the problem of deciding if ŝ |= F holds or not, which comes with
simple decision procedures because here ŝ is a state in the finite-state LTS Pδ

and F is a finite HMLb formula.

5 Conclusion

To summarize, by introducing a new divergence modality, the weak divergence
modality Δε, we obtain logic characterization results for two divergence sensitive
bisimulation equivalence relations. One is the first modal logic characterization
for complete weak bisimilarity ≈�, and the other is a new modal logic character-
ization for branching bisimilarity with explicit divergence ≈�

b . With these new
characterization results we showed a clear picture of the sub-logic relationships
of various logic characterization results. By using these new characterization
results, we provide reductions from the divergence sensitive equality checking
problems and model checking problems to the divergence blind equality check-
ing problems and model checking problems respectively for finite-state systems.
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Complete weak bisimilarity ≈� was first defined in [10], which is a refinement
of weak bisimilarity ≈ [9] by taking divergence behavior into account. Since
this is a relatively new equivalence relation, the logic characterization problem
and equality checking problem for finite-state systems have not been treated
before this paper. The relation ≈�

b was defined in [12] which is a refinement of
branching bisimilarity ≈b [12]. In [15], the equality checking problem of stutter
equivalence on Kripke structures is solved by a reduction to the equality checking
problem of divergence blind stutter equivalence problem. Stutter equivalence
and divergence blind stutter equivalence are the Kripke structure versions of
branching bisimilarity with explicit divergence and branching bisimilarity. The
reduction presented in Sect. 4 is inspired by the reduction in [15].

The study of modal logic characterization of bisimulation equivalence rela-
tions was initiated by Hennessy and Milner in [2]. For branching bisimilarity,
modal characterization results were studied in [5,6], where different modalities
for branching structures were used. In [6], besides the extension of Hennessy-
Milner logic with the until operator mentioned earlier in the paper, two other
logics were proposed to characterize branching bisimilarity. One is another exten-
sion of Hennessy-Milner logic which exploits the power of backward modalities.
The other is CTL∗ without the next-time operator interpreted over all paths,
not just over maximal ones. In [13] a modal logic was proposed to character-
ize branching bisimilarity with explicit divergence by combining modalities for
branching bisimilarity in [5] and a divergence modality Δ. In [14], an extension of
CTL∗ without the next operator is proposed which also characterizes branching
bisimilarity with explicit divergence.
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