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Abstract. JavaScript web applications (apps) are prevalent these days,
and quality assurance of web apps gets even more important. Even
though researchers have studied various analysis techniques and software
industries have developed code analyzers for their own code repositories,
statically analyzing web apps in a sound and scalable manner is chal-
lenging. On top of dynamic features of JavaScript, abundant execution
flows triggered by user events make a sound static analysis difficult.

In this paper, we propose a novel EventHandler (EH)-based static
analysis for web apps using dynamically collected state information.
Unlike traditional whole-program analyses, the FH-based analysis inten-
tionally analyzes partial execution flows using concrete user events. Such
analyses surely miss execution flows in the entire program, but they ana-
lyze less infeasible flows reporting less false positives. Moreover, they can
finish analyzing partial flows of web apps that whole-program analyses
often fail to finish analyzing, and produce partial bug reports. Our exper-
imental results show that the FH-based analysis improves the precision
dramatically compared with a state-of-the-art JavaScript whole-program
analyzer, and it can finish analysis of partial execution flows in web apps
that the whole-program analyzer fails to analyze within a timeout.

Keywords: JavaScript + Web applications - Event analysis
Static analysis

1 Introduction

Web applications (apps) written in HTML, CSS, and JavaScript have become
prevalent, and JavaScript is now the 7th most popular programming lan-
guage [22]. Because web apps can run on any platforms and devices that provide
any browsers, they are being used widely. The overall structure of web apps
is specified in HTML, which is represented as a tree structure via Document
Object Model (DOM) APIs. CSS describes visual effects like colors, positions,
and animation of contents of the web app, and JavaScript handles events trig-
gered by user interaction. JavaScript code can change the status of the web app
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by interoperation with HTML and CSS, load other JavaScript code dynamically,
and access device-specific features via APIs provided by underlying platforms.
JavaScript is the de facto standard language for web programming these days.

To help developers build high-quality web apps, researchers have studied var-
ious analysis techniques and software industries have developed in-house static
analyzers. Static analyzers such as SAFE [12,15], TAJS [2,10], and WALA [19]
analyze JavaScript web apps without concretely executing them, and dynamic
analyzers such as Jalangi [20] utilize concrete values obtained by actually exe-
cuting the apps. Thus, static analysis results aim to cover all the possible execu-
tion flows but they often contain infeasible execution flows, and dynamic anal-
ysis results contain only real execution flows but they often struggle to cover
abundant execution flows. Such different analysis results are meaningful for dif-
ferent purposes: sound static analysis results are critical for verifying absence
of bugs and complete dynamic analysis results are useful for detecting gen-
uine bugs. In order to enhance the quality of their own software, IT companies
develop in-house static analyzers like Infer from Facebook [4] and Tricorder from
Google [18].

However, statically analyzing web apps in a sound and scalable manner is
extremely challenging. Especially because JavaScript, the language that handles
controls of web apps, is totally dynamic, purely static analysis has various limita-
tions. While JavaScript can generate code to execute from string literals during
evaluation, such code is not available for static analyzers before run time. In
addition, dynamically adding and deleting object properties, and treating prop-
erty names as values make statically analyzing them difficult [17]. Moreover,
since execution flows triggered by user events are abundant, statically analyzing
them often incurs analysis performance degradation [16].

Among many challenges in statically analyzing JavaScript web apps, we
focus on analysis of event-driven execution flows in this paper. Most existing
JavaScript static analyzers are focusing on analysis of web apps at loading time
and they over-approximate event-driven execution flows to be sound. In order
to consider all possible event sequences soundly, they abstract the event-driven
semantics in a way that any events can happen in any order. Such a sound
event modeling contains many infeasible event sequences, which lead to unnec-
essary operations computing imprecise analysis results. Thus, the state-of-the-art
JavaScript static analyzers often fail to analyze event flows in web apps.

In this paper, we propose a novel EventHandler-based (EH-based) static anal-
ysis for web apps using dynamically collected state information. First, we present
a new analysis unit, an FH. While traditional static analyzers perform whole-
program analysis covering all possible execution flows, the EH-based analysis
aims to analyze partial execution flows triggered by user events more precisely.
In other words, unlike the whole-program analysis that starts analyzing from
a single entry point of a given program, the FH-based analysis considers each
event function call triggered by a user event as an entry point. Because the
EH-based analysis enables a subset of the entire execution flows to be analyzed
at a time, it can analyze less infeasible execution flows than the whole-program



EventHandler-Based Analysis Framework for Web Apps 131

analysis, which balances soundness and precision. Moreover, since it considers a
smaller set of execution flows, it may finish analysis of web apps that the whole-
program analysis fails to analyze within a reasonable timeout. Second, in order
to analyze each event function call in arbitrary call contexts, we present a hybrid
approach to construct an abstract heap for the event function call. More specifi-
cally, to analyze each event function body, the analyzer should have information
about non-local variables. Thus, for each event function, we construct a conser-
vative abstract initial heap that holds abstract values of non-local variables by
abstraction of dynamically collected states.

We formally present the mechanism as a framework, EHA, parameterized by
a dynamic event generator and a static whole-program analyzer. After describ-
ing the high-level structure of EHA, we present its prototype implementa-
tion, EHAGAFg, instantiated with manual event generation and a state-of-the-art
JavaScript static analyzer SAFE. Our experimental results show that EHASARg
indeed reports less false positives than SAFE, and it can finish analysis of parts
of web apps that SAFE fails to analyze within the timeout of 72 h.

Our paper makes the following contributions:

— We propose EHA, a bug detection framework that performs static analysis
for each event handler as an entry point using an abstraction of dynamically
collected states as an initial heap.

— We present EHAGARe, an instantiation of EHA with manual event generation
and SAFE, which is applicable to real-world web apps.

— We evaluate EHAZAFE in terms of analysis coverage and precision.

The remainder of this paper is organized as follows. We first explain the
concrete semantics of event handlers in web apps, describe how existing whole-
program analyzers handle events in a sound but unscalable manner, and present
an overview of our approach using concrete code examples in Sect. 2. We describe
EHA and its prototype implementation in Sect.3 and Sect. 4, respectively. We
evaluate the EHA instance using real-world web apps in Sect. 5, discuss related
work in Sect. 6, and conclude in Sect. 7 with future work.

2 Analyses of Event Handlers

2.1 Event Handlers in Web Apps

Web apps may receive events from their execution environments like browsers
or from users'. When a web app receives an event, it reacts to the event by
executing JavaScript code registered as a handler (or a listener) of the event.
An event handler consists of three components: an event target, an event type,
and a callback function. An event target may be any DOM object like Element,
window, and XMLHttpRequest. An event type is a string representation of the event
action type such as "load", "click", and "keydown". Finally, a callback function
is a JavaScript function to be executed when its corresponding event occurs.

! http://www.w3schools.com/js/js_events.asp.
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Fig. 1. (a) A conservative modeling of event control flows (b) Modeling in TAJS [9]

Users execute web apps by triggering various events, thus we consider
sequences of events triggered by users as user inputs to web apps. During exe-
cution, a set of event handlers that can be executed by a user may vary. First,
because event handlers are dynamically registered to and removed from DOM
objects, executable event handlers for an event change at run time. For example,
when a DOM object has only the following event handler registered:

(A, "click", function f(){ B.addEventListener("click", function g(O{}); })

if a user clicks the target A, a new event handler becomes registered, which
makes two handlers executable. Second, changes in DOM states of a web app
also change a set of executable event handlers for an event. For instance, an
event target may be removed from document via DOM API calls, which makes
the detached event target inaccessible from users. Also, events may not be cap-
tured depending on their capturing/bubbling options and CSS style settings of
visibility or display. In addition, it is a common practice to manipulate CSS
styles like the following:

— HTMLElement.style.opacity = O;
— HTMLElement.style.zIndex = n;

to hide an element such as a button under another element, making it inaccessible
from users. These various features affect event sequences that users can trigger
and event handlers that are executed accordingly.

2.2 Analysis of Event Handlers in Whole-Program Analyzers

Most existing whole-program JavaScript analyzers handle event handlers in a
sound but unscalable manner as illustrated in Fig. 1(a). They first analyze top-
level code that is statically available in a given web app; event handlers may be
registered during the analysis of top-level code. Then, after the “exit block of
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top-level code” node, they analyze code initiated by event handlers in any order
as denoted by the “trigger all event handlers” node in any number of times.
According to this modeling of event control flows, all possible event sequences
that occur after loading the top-level code are soundly analyzed. Note that even
though whole-program analyzers use this sound event modeling, the analyzers
themselves may not be sound because of other features like dynamic code gener-
ation. However, because registered event handlers may be removed during eval-
uation and they may be even inaccessible due to some CSS styles as discussed
in Sect.2.1, the event modeling in Fig.1(a) may contain too many infeasible
event sequences that are impossible in concrete executions. Analysis with lots of
infeasible event sequences involves unnecessary computation that wastes anal-
ysis time, and often results in imprecise analysis results. Such a conservative
modeling of event control flows indeed reports many false positives [16].

To reduce the amount of infeasible event sequences to analyze, TAJS uses
a refined modeling of event control flows as shown in Fig. 1(b). Among various
event handlers, this modeling distinguishes “load event handlers” and analyzes
them before all the other event handlers. While this modeling is technically
unsound because non-load events may precede load events [15], most web apps
satisfy this modeling in practice. Moreover, because load event handlers often
initialize top-level variables, the event modeling in Fig. 1(a) often produces false
positives by analyzing non-load event functions before load event functions ini-
tialize top-level variables. On the contrary, the TAJS modeling reduces such
false positives by analyzing load event handlers before non-load event handlers.
Although the TAJS modeling distinguishes a load event, the over-approximation
of the other event handler calls still brings analysis precision and scalability
issues.

2.3 Analysis of Event Handlers in FH-Based Analyzers

To alleviate the analysis precision and scalability problem due to event modeling,
we propose the EHA framework, which aims to analyze a subset of execution flows
within a limited time budget to detect bugs in partial execution flows rather
than to analyze all execution flows. EHA presents two key points to achieve the
goal. First, it slices the entire execution flows by using each event handler as an
individual entry point, which amounts to consider a given web app as a collection
of smaller web apps. This slicing brings the effect of breaking the loop structures
in existing event modelings shown in Fig. 1. Second, in order to analyze sliced
event control flows in various contexts, EHA constructs an initial abstract heap
of each entry point that contains necessary information to analyze a given event
control flow by abstracting dynamically collected states. More specifically, EHA
takes two components—a dynamic event generator and a static analyzer—and
collects concrete values of non-local variables of event functions via the dynamic
event generator, and abstracts the collected values using the static analyzer.
Let us compare static, dynamic, and EH-based analyses with an example. We
assume that a top-level code registers three event handlers: I, a, and b where [
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denotes a load event handler, which precedes the others and runs once. In addi-
tion, a and b simulate a pop-up and its close button, respectively. Thus, we can
represent possible event sequences as a regular expression: [(ab)*a?. For a given
event sequence lababa, Fig. 2 represents the event flows analyzed by each analy-
sis technique. A conservative static analysis contains infeasible event sequences
like the ones starting with a or b, whereas a dynamic analysis covers only short
prefixes out of infinitely many flows. The EFH-based analysis slices the web app
into three handler units: [, a, and b. Hence, there is no loop in the event model-
ing; each handler considers every prefix of the given event sequence that ends with
itself. For example, the handler a considers la, laba, and lababa as possible event
sequences. Moreover, instead of abstracting the evaluation result of each sequence
separately and merging them, it first merges the evaluation result of each sequence
just before the handler a—1I, lab, and labab—and uses its abstraction as the initial
heap of analyzing a, which analyzes more event flows.

& ——-H-H-}]

=3
o
(<]
o

H
+]
]
]
-]

[ ]

(b)

—
o
~

Fig. 2. Event flows analyzed by (a) static, (b) dynamic, and (c) EH-based analyses.
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3 Technical Details

This section discusses the EHA framework, which composes of five phases as
shown in Fig. 3. Boxes denote modules and ellipses denote data. EHA takes three
inputs: a web app (Web App) to analyze and find bugs in it, and two modules
to use as its components—a dynamic event sequence generator (Event Generator)
and a static analyzer (Static Analyzer). During the first instrumentation phase,
Instrumentor inserts code that dynamically collects states into the input web app.
Then, during the execution phase, the Instrumented Web App runs on a browser
producing Collected States. One of the input module Event Generator repeatedly
receives states of the running web app and sends user events to it during this
phase. In the third unit building phase, Unit Web App Builder constructs a small
Unit Web App for each event handler from Collected States. After analyzing the set
of Unit Web Apps by another input module Static Analyzer in the static analysis
phase, Alarm Aggregator summarizes the resulting set of Bug Reports and generates
a Final Bug Report for the original input Web App in the final alarm aggregation
phase. We now describe each phase in more detail.

Inst (h = <head>) = h.addChildFront(<script src="helper" />)
Inst (function f(---) b) = function f(---){
var envld = getNewEnvId(); var nonlocals = {z}:x1 ---};
pushCallStack(); collectState(nonlocals); b; popCallStack(); }
Inst (return x;) = { var retVal = z; popCallStack(); return retVal; }
Inst (catch(e){ b }) = { popCallStack(); b}
Inst (x =€) = x =e; update(z’,z)
Inst (z ®) = z @ ; update(z’,z, D)
Inst (& x) = @ z; update(a’,z)

Fig. 4. Instrumentation rules (partial)

Instrumentation Phase. The first phase instruments a given web app so that the
instrumented web app can record dynamically collected states during execution.
Figure4 presents the instrumentation rules for the most important cases where
the unary operator @ is either ++ or —-. For presentation brevity, we abuse the
notation and write z’ to denote the string representation of a variable name x.
The Inst function converts necessary JavaScript language constructs to others
that perform dynamic logging. For example, for each function declaration of f,
Inst inserts four statements before the function body and one statement after
the function body to keep track of non-local variables of the function f.

Ezecution Phase. The execution phase runs an instrumented web app on a
browser using events generated by Event Generator. Because EHA is parameter-
ized by the input Event Generator, it may be an automated testing tool or manual
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efforts. The following definitions formally specify the concepts being used in the
execution phase and the rest of this section:

Ezecution o € S* State s€S=PxH ProgramPoint p € P
Heap heH=A—-0 Address Qz € A Object 0=F—-V
Field zelF Value V=V, ¥ A Primitive Value Vy

An execution of a web app o is a sequence of states that are results of evaluation
of the web app code. We omit how states change according to the evaluation of
different language constructs, but focus on which states are collected during exe-
cution. A state s is a pair of a program point p denoting the source location of the
code being evaluated and a heap h denoting a memory status. A heap is a map
from addresses to objects. An address is a unique identifier assigned whenever an
object is created, and an object is a map from fields to values. A field is an object
property name and a value is either a primitive value or an address that denotes
an object. For presentation brevity, we abuse Object to represent Environment as
well, which is a map from variables to values. Then, EHA collects states at event
callback entries during execution:

Collected States(c) = {s | s € o s.t. s is at an event callback entry}

the program points of which are function entries and the call stack depths are 1.

Unit Building Phase. As shown in Fig. 3, this phase constructs a set of sliced
unit web apps using dynamically collected states. More specifically, it divides
the collected states into FH units, and then for each EH unit u, it constructs
an initial summary 3% that contains merged values about non-local variables
from the states in u. As discussed in Sect. 2.1, an event handler consists of three
components: an event target, an event type, and a callback function. Thus, we
design an EH unit u with an abstract event target ¢, an event type 7, and a
program point p:

uwel = AbsEventTarget x EventType x P
¢ € AbsEventTarget = DOMTreePosition ¥ A
T € FventType

While we use the same concrete event types and program points for EHs, we
abstract concrete event targets to maintain a modest number of event targets. We
assume the static analyzer expresses analysis results as summaries. A summary
§ is a map from a pair of a program point and a context to an abstract heap:

§€ S =P x Context — H c € Context

where Contezt is parameterized by an input static analyzer of EHA.

For each dynamically collected state s = (p, h) with an event target o and
an event type 7 both contained in h, Unit Web App Builder calculates an FH unit
u as follows:

u = ay(s) = (a(0), 7, p)

DOMTreePosition(o)  if o is attached on DOM
where a,(0) = .

0 otherwise
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where DOM TreePosition(o) represents the DOM tree position of o in terms of
sequences of child indices from the root node of DOM. Then, it constructs an
initial summary for each unit u, 5%, as follows:

§u(p,c) = Eqifit if p is the global entry point A ¢ =¢
e 1l otherwise

The initial summary maps all pairs of program points and contexts to the heap
bottom Ly denoting no information, but it keeps a single map from a pair of the
global entry program point and the empty context € to the initial abstract heap
hiM® = | |, ap(h;) where s; € Collected States A as(s;) =u A s; = (p;, hi). The
initial abstract heap for a unit u is a join of all abstraction results of the heaps
in the collected states that are mapped to the same u. The heap abstraction ay,
and the abstract heap join | | are parameterized by the input static analyzer.

Static Analysis Phase. Now, the static analysis phase analyzes each sliced unit
web app one by one, and detects any bugs in it. Let us call the static analyzer
that EHA takes as its input SA. Without loss of generality, let us assume that SA
performs a whole-program analysis to compute the analysis result S¢in,1 with the
initial summary §; by computing the least fixpoint of a semantics transfer func-
tion F: 855001 = leastFix A8.(5r Ug F(é)) and then reports alarms for possible
bugs in it. We call an instance of EHA that takes SA as its input static analyzer
EHAsa. Then, for each EH unit u, EHAga performs an EH-based analysis to com-
pute its analysis result 5¢;,,, with the initial summary 5% constructed during the
unit building phase by computing the least fixpoint of the same semantics transfer
function F: 8%, = leastFix \3.(8% Ug F(3)). Tt also reports alarms for possible
bugs in each unit .

Alarm Aggregation Phase. The final phase combines all bug reports from sliced
unit web apps and constructs a final bug report. Because source locations of bugs
in a bug report from a unit web app are different from those in an original input
web app, Alarm Aggregator resolves such differences. Since a single source location
in the original web app may appear multiple times in differently sliced unit web
apps, Alarm Aggregator also merges bug reports for the same source locations.

4 Implementation

This section describes how we implemented concrete data representation and
each module in dark boxes in Fig. 3 in our prototype implementation.

Instrumentor. The main idea of instrumentor is similar to that of Jalangi [20],
a JavaScript dynamic analysis framework, and we implemented the rules
(partially) shown in Fig. 4. An instrumented web app collects states during exe-
cution by stringifying them and writing them on files. Dynamically collected infor-
mation may be ordinary JavaScript values or built-in objects of JavaScript engines
or browsers, which are often implemented in non-JavaScript, native languages.
Because such built-in values are inaccessible from JavaScript code, we omit their
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values in the collected states. On the contrary, ordinary JavaScript values are
stringified in JSON format. A primitive value is stringified by JSON.stringify and
stored in ValueMap. An object value is stored in two places—its pointer in Storage
and its pointer identifier in ValueMap—and its property values are also recur-
sively stringified and stored in StorageMap. The stringified document, ValueMap, and
StorageMap are written in files at the end of execution, and Unit Web App Builder con-
verts them to states in the unit building phase.

DOMTokenList = (){}; ... |[«~—modeling code for built-in objects
_obj1= _handler(){...}; ... [«——object declaration

if (_BoolTop) { _obj3[prop] = ...;

else { _obj3[prop] = ...; <+«——object property initialization
_handler = _obj1;
target f —Obj.zf «—variable declaration/initialization
_argument = _obj3;

_handler.apply(_target, _argument);  |«—callback function call

Fig. 5. Contents in a JavaScript file of a unit web app

Unit Web App Builder. In our prototype implementation, the unit web app
builder parses the collected states as in JSON format and constructs a unit web
app as multiple HTML files and one JavaScript file. A single JavaScript file
contains all the information to build an initial abstract heap as Fig.5. It con-
tains modeling code for built-in objects on the top, declares objects recorded in
StorageMap and initializes their properties, and then declares and initializes non-
local variables, which are all the information needed to build an initial abstract
heap. At the bottom, the handler function is being called.

Starting from the above 3 variables— handler, _target, and _arguments—
we can fill in contents of a unit web app using the collected states. For each
variable, we get its value from the collected states and construct a corresponding
JavaScript code. When the value of a variable is a primitive value, create a
corresponding code fragment as a string literal. For an object value, get the
value from StorageMap using its pointer id, and repeat the process for its property
values. For a function object value, repeat the process for its non-local variables.

Alarm Aggregator. The alarm aggregator maintains a mapping between different
source locations and eliminates duplicated alarms. It should map between loca-
tions in the original web app and in sliced unit web apps. Our implementation
keeps track of corresponding AST nodes in different web apps, and utilizes the
information for mapping locations. It identifies duplicated alarms by string com-
parison of their bug messages and locations after mapping the source locations.
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5 Experimental Evaluation
In this section, we evaluate EHAZAFE, an instantiation of EHA with manual event
generation and SAFE [12], to answer the following research questions:

In the case of providing dynamic events as many as possible,

— RQ1. Full Coverage: How many event flows does the EH-based analysis
cover compared with the whole-program analysis?

— RQ2. Precision: How precise is the FH-based analysis compared with the
whole-program analysis?

— RQ3. Scalability: What is the execution time of each phase in the analyses?

— RQA4. Partial Coverage: How many event flows does the FH-based analysis
cover for timeout analyses?

5.1 Experimental Setup

We studied 8 open-source game web apps [8], which were used in the evaluation
of SAFE. They have various buttons and show event-dependent behaviors. The
first two columns of Table1l show the names and lines of code of the apps,
respectively. The first four apps do not use any JavaScript libraries, and the
remaining apps use the jQuery library version 2.0.3. They are all cross-platform
apps that can run on Chrome, Chrome-extension, and Tizen environments.

To perform experiments, we instantiated EHA with two inputs. As an
Event Generator input, we chose manual event generation by one undergraduate
researcher who was ignorant of EHA. He was instructed to explore behaviors of
web apps as much as possible, and he could check the number of functions being
called during execution as a guidance. In order to make execution environments
simple enough to reproduce multiple times, we collected dynamic states from
a browser without any cached data. As a Static Analyzer input, we use SAFE

Table 1. Analysis coverage of SAFE and EHAGRF:.

App LoC | #Analyzed Handler Ftn | #Analyzed Ftn Total
(Id) App name Both | SAFE | EHASRF: | Both | SAFE | EHAGRR:
only | only only | only

(01) HangOnMan 1326 | 20 0 11 67 3 19 89
(02) MakeAMonster 1405 | 22 0 5 63 5 7 75
(03) Mancala 1546 | 28 0 4 67 4 5 76
(04) Rabbit 1403 | 34 0 2 76 22 2 100
(05) Bubblewrap 7220 | - - 8 - - 10 10
(06) CountingBeads 6949 | - - 9 - - 11 11
(07) MemoryGameForOlderKids | 6955 | - - 7 - - 9 9
(08) WordsSwarm 7557 | - - 9 - - 48 48
Total 34363104 |0 55 273 | 34 111 418
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because it can analyze the most JavaScript web apps among existing analyz-
ers via the state-of-the-art DOM tree abstraction [14,15] and it supports a bug
detector [16]. We ran the apps with Chrome on a 2.9 GHz quad-core Intel Core
i7 with 16 GB memory in the execution phase. The other phases are conducted
on Ubuntu 16.04.1 with intel Core i7 and 32 GB memory.

5.2 Answers to RQs

Answer to RQ1. For the analysis coverage, we measured the numbers of analyzed
functions and true positives by SAFE and EHAgAre. Because SAFE could not
analyze 4 apps that use jQuery within the timeout of 72 h, we considered only
the other apps for SAFE.

Table 1 summarizes the result of analyzed functions. The 3rd to the 5th
columns show the numbers of registered event handler functions analyzed by
both, SAFE only, and EHAZafe only, respectively. Similarly, the 6th to the
8th columns show the numbers of functions analyzed by both, SAFE only, and
EHAZARE only, respectively. When we compare only the registered event handler
functions among all the analyzed functions, EHAGARg outperforms SAFE. Even
though SAFE was designed to be sound, it missed some behaviors. Our investi-
gation showed that the causes of the unsoundness were due to incomplete DOM
modeling. For the numbers of analyzed functions, the analyses covered more than
75% of the functions in common. EHAgAFE analyzed more functions for the first
3 subjects than SAFE due to missing event registrations caused by incomplete
DOM modeling in SAFE. On the other hand, SAFE analyzed more functions for
the 4th subject because EHAGARg missed flows during the execution phase. We
studied the analysis result of the 4th subject in more detail, and found flows that
resume previously suspended execution by using cached data in a localStorage
object. EHAZAFE could not analyze the flows because it does not contain cached
data, while SAFE could use a sound modeling of localStorage. Lastly, EHASARe
did not miss any true positives that SAFE detected, and EHAZArg could detect
four more true positives in common functions as shown in Table 2, which implies
that EHAGAFe analyzed execution flows in those functions that SAFE missed.
We explain Table 2 in more detail in the next answer.

Answer to RQ2. To compare the analysis precision, we measured the numbers
of false positives (FPs) in alarm reports by SAFE and EHAZAre. Note that
true positives (TPs) may not be considered as “bugs” by app developers. For
example, while SAFE reports a warning when the undefined value is implicitly
converted to a number because it is a well-known error-prone pattern, it may be
an intentional behavior of a developer. Thus, TPs denote they are reproducible
in concrete executions while FPs denote it is impossible to reproduce them in
feasible executions. Similarly for RQ1, we compare the analysis precision for four
apps that do not use jQuery.

Tables 2 and 3 categorize alarms in three categories: alarms reported by both
SAFE and EHAGAFE, alarms in functions commonly analyzed by both, and alarms
in functions that are analyzed by only one. Table 2 shows numbers of TPs and
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Table 2. Alarms reported by SAFE and EHAZRR:.

App Id | Common alarms | Different alarms
Common functions Different functions
SAFE EHASR e SAFE EHASAFe
4TP | #FP 4TP | #FP | #TP | #FP #TP | #FP | #TP | #FP
01 1 3 0 10 3 2 0 0 0 2
02 1 2 0 0 1 8 0 5 0 1
03 1 3 0 30 0 6 0 0 0 2
04 3 7 0 1 0 0 0 0 0 0
05 : - y } } - , y 0 1
06 - - - - - - - - 0 3
07 - - - - - - - - 0 1
08 : } } } } - } } 0 1
Total |6 15 0 41 4 16 0 5 0 11
Table 3. False alarms categorized by causes
Cause Common | Different alarms
alarms [ Common functions | Different functions
SAFE | EHAZRF e SAFE | EHASRFe
Infeasible event flow - 40 - 0 -
ECMAScript 5 1 0 0 0
Object join 0 3 0 0
Handler unit abstraction | - - 3 - 0
Omitted property - - 0 - 2
Absence of DOM model |14 1 10 9
Total 15 41 16 5 11

FPs for each app, and Table 3 further categorizes alarms in terms of their causes.
Out of 21 common alarms, 6 are TPs and 15 are FPs. Among 15 common FPs,
14 are due to absence of DOM modeling and 1 is due to the unsupported getter
and setter semantics. For the functions commonly analyzed by both, they may
report different alarms because they are based on different abstract heaps. We
observed that 40 FPs from SAFE are due to the over-approximated event sys-
tem modeling. Especially, the causes of FPs in the 01 and 03 apps are because
top-level variables are initialized when non-load event handler functions are
called, which implies that the event modeling of Fig.1(b) would have a simi-
lar imprecision problem. On the contrary, EHAZAfe reported only 16 FPs mostly
(10 FPs) due to absence of DOM modeling. The remaining three FPs from object
joins and three FPs by handler unit abstraction are due to inherent problems
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of static analysis that merges multiple values losing precision. Finally, for the
functions analyzed by only one analyzer, all the reported alarms are FPs due to
absence of DOM modeling and omitted properties in the EHASARg implementa-
tion. In short, EHAgAFe could partially analyze more subjects than SAFE, and it
improved the analysis precision by finding four TPs and less FPs for commonly
analyzed functions. Especially, its handler unit abstraction produced three FPs
which are considerably fewer than 40 FPs from over-approximated event mod-

eling in SAFE without missing any TPs.

Answer to RQ3. To compare the analysis scalability, we measured the execution
time of each phase for the both analyzers as summarized in Table4.

Table 4. Execution time (seconds) of each phase for SAFE and EHAZAF:

Id | SAFE EHATZ.
Total Top-Level | Event Loop | Execution Unit build | Static analysis
Total #Call | Ave. Total #EH | #TO | Ave.

01 375.7 8.9 366.8 465.41 | 682 0.68 10.0 33038.4 | 130 9 96.6
02 282.0 8.2 273.8 252.86 | 135 1.87 6.0 6379.7 33 0 70.4
03 850.2 15.5 834.7 82.70 | 168 0.49 2.0 7894.1 | 43 3 68.8
04 1276.6 | 325.3 951.3 302.36 | 589 0.51 2.1 16223.9 95 7 54.2
05 X 137.3 X 1713.61 | 151 11.35 287.2 66238.5 63 | 55 10.4
06 X 86.9 X 383.08 85 4.51 221.5 17257.1 27 9 146.5
o7 X 119.3 X 2836.05 | 242 11.72 348.2 104583.5 94 | 87 7.7
08 X 82.4 X 1074.73 | 146 7.36 | 1158.5 39506.3 41 | 32 33.5
Ave. | 696.1 98.0 606.6 888.85 | 275 3.24 | 254.4 3076.5| 66 |25 76.0

For SAFE, we measured the time took for analyses of the entire code, top-
level code, and event loops: Total = Top-Level + Event Loop. For four subjects
that do not use any JavaScript libraries, the total analysis took at most 1276.6s
among which 951.3s took for analyzing event loops. While SAFE finished ana-
lyzing the top-level code of the other subjects that use jQuery in 137.3s at the
maximum, it could not finish analyzing their entire code within the time of 72
h (259,200 s).

For EHAZARe, because the maximum execution time of the instrumentation
phase and the alarm aggregation phase are 10.3s and 4.9s, respectively, much
smaller than the other phases, the table shows only the other phases. For the
execution phase, we present the overhead to collect states:

EHASAFe (Execution Phase): Total = #Call x Ave.

The 6th column presents the numbers of event handler function calls that Event
Generator executed; each event handler function pauses for 3.24s on average.
In order to understand the performance overhead due to the instrumentation,
we measured its slowdown effect by replacing all the instrumented helper func-
tions with a function with the empty body. With the Sunspider benchmark,
Jalangi showed x30 slowdown and EHAZAre showed x178 slowdown on average.
We observed that collecting non-local variables for each function incurs much
performance overhead, and more function calls make more overhead.
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The unit building phase takes time to generate unit web app code. Our
investigation showed that the time heavily depends on the size of collected data.
For the static analysis phase, we measured the analysis time of unit web apps
except timeout (TO):

EHAZRFe (Static Analysis Phase): Total = (#EH — #TO) x Ave. + 1200 x #TO

We analyzed each unit web app with the timeout of 1200s. While the 02 app
has no timeout, the 07 app has 87 timeouts out of 94 unit web apps. On average,
analysis of 38% (25/66) of the unit web apps was timeout. Note that even for
the first four apps that SAFE finished analysis, EHAGAfe had some timeouts.
We conjecture that SAFE finished analysis quickly since it missed some flows
because of unsupported DOM modeling. By contrast, because EHAZAF analyzes
more flows using dynamically collected data, it had several timeouts.

Answer to RQ/4. To see how many event flows EHASARE covers with a limited

time budget, let us consider four apps that SAFE did not finish in 72 h from
Tables 1 and 4. EHAGARe finished 19% (42/225) of the units within the timeout of
1200 s as shown in Table 4, and the average analysis time excluding timeouts was
76.0s. Because it implies that web apps have event flows that can be analyzed in
about 76's, it may be meaningful to analyze such simple event flows quickly first
to find bugs in them. Starting with 42 units, EHAGApe covered 78 functions as
shown in Table 1. While SAFE could not provide any bug reports for four apps

using jQuery, EHAGARe reported 6 alarms from the analzyed functions.

6 Related Work

Researchers have studied event dependencies to analyze event flows more pre-
cisely. Madsen et al. [13] proposed event-based call graphs, which extend tra-
ditional call graphs with behaviors of event handlers such as registration and
trigger of events. While they do not consider analysis of DOM state changes and
event capturing/bubbling behaviors, EHA addresses them by utilizing dynami-
cally collected states. Sung et al. [21] introduced DOM event dependency and
exploited it to test JavaScript web apps. Their tool improved the efficiency of
event testing but it has not yet been applied for static analysis of event loops.

Taking advantage of both static analysis and dynamic analysis is not a new
idea [5]. For JavaScript analysis, researches tried to analyze dynamic features
of JavaScript [7] and DOM values of web apps [23,24] precisely. Alimadadi
et al. [1] proposed a DOM-sensitive change impact analysis for JavaScript web apps.
JavaScript Blended Analysis Framework (JSBAF') [26] collects dynamic traces of
a given app, specializes dynamic features of JavaScript like eval calls and reflec-
tive property accesses utilizing the collected traces. JSBAF analyzes each trace
separately and combines the results, but EHA abstracts the collected states on
each EH first and then analyzes the units to get generalized contexts. Finally, Ko
et al. [11] proposed a tunable static analysis framework that utilizes a light-weight
pre-analysis. Similarly, our work builds an approximation of selected executions by
constructing an initial abstract heap utilizing dynamic information, which enables
to analyze complex event flows although partially.
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7 Conclusion and Future Work

Because existing JavaScript static analyzers conservatively approximate event-
driven flows, even state-of-the-art analyzers often fail to analyze event flows in
web apps within a timeout of several hours. We present EHA, a bug detection
framework that performs a novel FH-based static analysis using dynamically
collected state information. As a general framework, EHA is parameterized by
a way to generate event sequences and a JavaScript static analyzer. We present
EHAGAFE, an instantiation of EHA with manual event generation and the SAFE
JavaScript static analyzer. Our experimental evaluation shows that the FH-
based analysis (EHASARe) reduced false positives reported by the whole-program
analysis (SAFE) due to its over-approximation of the event system modeling.
Moreover, EHAZAFe finished analyzing partial execution flows of the web apps
that SAFE failed to analyze within the timeout of 72h. We plan to inspect the
soundness issues due to the lack of DOM modeling in whole-program analyzers
with systematic ways via dynamic analyses [3,6,25], and to use an automated
testing tool as a dynamic event generator instead of the manual generation.
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