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Abstract. Variational systems allow effective building of many custom
variants by using features (configuration options) to mark the variable
functionality. In many of the applications, their quality assurance and
formal verification are of paramount importance. Family-based model
checking allows simultaneous verification of all variants of a variational
system in a single run by exploiting the commonalities between the vari-
ants. Yet, its computational cost still greatly depends on the number of
variants (often huge).

In this work, we show how to achieve efficient family-based model
checking of CTL� temporal properties using variability abstractions and
off-the-shelf (single-system) tools. We use variability abstractions for
deriving abstract family-based model checking, where the variability
model of a variational system is replaced with an abstract (smaller)
version of it, called modal featured transition system, which preserves
the satisfaction of both universal and existential temporal properties,
as expressible in CTL�. Modal featured transition systems contain
two kinds of transitions, termed may and must transitions, which are
defined by the conservative (over-approximating) abstractions and their
dual (under-approximating) abstractions, respectively. The variability
abstractions can be combined with different partitionings of the set of
variants to infer suitable divide-and-conquer verification plans for the
variational system. We illustrate the practicality of this approach for
several variational systems.

1 Introduction

Variational systems appear in many application areas and for many reasons.
Efficient methods to achieve customization, such as Software Product Line Engi-
neering (SPLE) [8], use features (configuration options) to control presence and
absence of the variable functionality [1]. Family members, called variants of a
variational system, are specified in terms of features selected for that particular
variant. The reuse of code common to multiple variants is maximized. The SPLE
method is particularly popular in the embedded and critical system domain
(e.g. cars, phones). In these domains, a rigorous verification and analysis is very
important. Among the methods included in current practices, model checking [2]
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is a well-studied technique used to establish that temporal logic properties hold
for a system.

Variability and SPLE are major enablers, but also a source of complexity.
Obviously, the size of the configuration space (number of variants) is the lim-
iting factor to the feasibility of any verification technique. Exponentially many
variants can be derived from few configuration options. This problem is referred
to as the configuration space explosion problem. A simple “brute-force” appli-
cation of a single-system model checker to each variant is infeasible for realistic
variational systems, due to the sheer number of variants. This is very ineffective
also because the same execution behavior is checked multiple times, whenever it
is shared by some variants. Another, more efficient, verification technique [5,6]
is based on using compact representations for modelling variational systems,
which incorporate the commonality within the family. We will call these repre-
sentations variability models (or featured transition systems). Each behavior in
a variability model is associated with the set of variants able to produce it. A
specialized family-based model checking algorithm executed on such a model,
checks an execution behavior only once regardless of how many variants include
it. These algorithms model check all variants simultaneously in a single run and
pinpoint the variants that violate properties. Unfortunately, their performance
still heavily depends on the size and complexity of the configuration space of
the analyzed variational system. Moreover, maintaining specialized family-based
tools is also an expensive task.

In order to address these challenges, we propose to use standard, single-
system model checkers with an alternative, externalized way to combat the con-
figuration space explosion. We apply the so-called variability abstractions to a
variability model which is too large to handle (“configuration space explosion”),
producing a more abstract model, which is smaller than the original one. We
abstract from certain aspects of the configuration space, so that many of the con-
figurations (variants) become indistinguishable and can be collapsed into a single
abstract configuration. The abstract model is constructed in such a way that if
some property holds for this abstract model it will also hold for the concrete
model. Our technique extends the scope of existing over-approximating vari-
ability abstractions [14,19] which currently support the verification of universal
properties only (LTL and ∀CTL). Here we construct abstract variability models
which can be used to check arbitrary formulae of CTL�, thus including arbitrary
nested path quantifiers. We use modal featured transition systems (MFTSs) for
representing abstract variability models. MFTSs are featured transition systems
(FTSs) with two kinds of transitions, must and may, expressing behaviours that
necessarily occur (must) or possibly occur (may). We use the standard conser-
vative (over-approximating) abstractions to define may transitions, and their
dual (under-approximating) abstractions to define must transitions. Therefore,
MFTSs perform both over- and under-approximation, admitting both univer-
sal and existential properties to be deduced. Since MFTSs preserve all CTL�
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properties, we can verify any such properties on the concrete variability model
(which is given as an FTSs) by verifying these on an abstract MFTS. Any
model checking problem on modal transitions systems (resp., MFTSs) can be
reduced to two traditional model checking problems on standard transition sys-
tems (resp., FTSs). The overall technique relies on partitioning and abstracting
concrete FTSs, until the point we obtain models with so limited variability (or,
no variability) that it is feasible to complete their model checking in the brute-
force fashion using the standard single-system model checkers. Compared to the
family-based model checking, experiments show that the proposed technique
achieves performance gains.

2 Background

In this section, we present the background used in later developments.

Modal Featured Transition Systems. Let F = {A1, . . . , An} be a finite set
of Boolean variables representing the features available in a variational system.
A specific subset of features, k ⊆ F, known as configuration, specifies a variant
(valid product) of a variational system. We assume that only a subset K ⊆ 2F of
configurations are valid. An alternative representation of configurations is based
upon propositional formulae. Each configuration k ∈ K can be represented by a
formula: k(A1) ∧ . . . ∧ k(An), where k(Ai) = Ai if Ai ∈ k, and k(Ai) = ¬Ai if
Ai /∈ k for 1 ≤ i ≤ n. We will use both representations interchangeably.

We recall the basic definition of a transition system (TS) and a modal tran-
sition system (MTS) that we will use to describe behaviors of single-systems.

Definition 1. A transition system (TS) is a tuple T = (S,Act, trans, I, AP,L),
where S is a set of states; Act is a set of actions; trans ⊆ S×Act×S is a transi-
tion relation; I ⊆ S is a set of initial states; AP is a set of atomic propositions;
and L : S → 2AP is a labelling function specifying which propositions hold in a
state. We write s1

λ−−→s2 whenever (s1, λ, s2) ∈ trans.

An execution (behaviour) of a TS T is an infinite sequence ρ = s0λ1s1λ2 . . .

with s0 ∈ I such that si
λi+1−→ si+1 for all i ≥ 0. The semantics of the TS T ,

denoted as [[T ]]TS , is the set of its executions.
MTSs [26] are a generalization of transition systems that allows describ-

ing not just a sum of all behaviors of a system but also an over- and under-
approximation of the system’s behaviors. An MTS is a TS equipped with two
transition relations: must and may. The former (must) is used to specify the
required behavior, while the latter (may) to specify the allowed behavior of a
system.

Definition 2. A modal transition system (MTS) is represented by a tuple M =
(S,Act, transmay, transmust, I, AP,L), where transmay ⊆ S × Act × S describe
may transitions of M; transmust ⊆ S ×Act×S describe must transitions of M,
such that transmust ⊆ transmay.
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The intuition behind the inclusion transmust ⊆ transmay is that transitions
that are necessarily true (transmust) are also possibly true (transmay). A may-
execution in M is an execution with all its transitions in transmay; whereas a
must-execution in M is an execution with all its transitions in transmust. We
use [[M]]may

MTS to denote the set of all may-executions in M, whereas [[M]]must
MTS

to denote the set of all must-executions in M.
An FTS describes behavior of a whole family of systems in a superimposed

manner. This means that it combines models of many variants in a single mono-
lithic description, where the transitions are guarded by a presence condition that
identifies the variants they belong to. The presence conditions ψ are drawn from
the set of feature expressions, FeatExp(F), which are propositional logic formulae
over F: ψ ::= true | A ∈ F | ¬ψ | ψ1∧ψ2. The presence condition ψ of a transition
specifies the variants in which the transition is enabled. We write [[ψ]] to denote
the set of variants from K that satisfy ψ, i.e. k ∈ [[ψ]] iff k |= ψ.

Definition 3. A featured transition system (FTS) represents a tuple F =
(S,Act, trans, I, AP,L, F, K, δ), where S,Act, trans, I, AP , and L are defined as
in TS; F is the set of available features; K is a set of valid configurations; and
δ : trans → FeatExp(F) is a total function decorating transitions with presence
conditions (feature expressions).

The projection of an FTS F to a variant k ∈ K, denoted as πk(F), is the TS
(S,Act, trans′, I, AP,L), where trans′ = {t ∈ trans | k |= δ(t)}. We lift the
definition of projection to sets of configurations K

′ ⊆ K, denoted as πK′(F), by
keeping the transitions admitted by at least one of the configurations in K

′. That
is, πK′(F), is the FTS (S,Act, trans′, I, AP,L, F, K′, δ), where trans′ = {t ∈
trans | ∃k ∈ K

′.k |= δ(t)}. The semantics of an FTS F , denoted as [[F ]]FTS ,
is the union of behaviours of the projections on all valid variants k ∈ K, i.e.
[[F ]]FTS = ∪k∈K[[πk(F)]]TS .

We will use modal featured transition systems (MFTS) for representing
abstractions of FTSs. MFTSs are variability-aware extension of MTSs.

Definition 4. A modal featured transition system (MFTS) represents a
tuple MF = (S,Act, transmay, transmust, I, AP,L, F, K, δmay, δmust), where
transmay and δmay : transmay → FeatExp(F) describe may transitions of
MF ; transmust and δmust : transmust → FeatExp(F) describe must transi-
tions of MF .

The projection of an MFTS MF to a variant k ∈ K, denoted as πk(MF),
is the MTS (S,Act, trans′may, trans′must, I, AP,L), where trans′may = {t ∈
transmay | k |= δmay(t)}, trans′must = {t∈ transmust | k |= δmust(t)}. We define
[[MF ]]may

MFTS = ∪k∈K[[πk(MF)]]may
MTS , and [[MF ]]must

MFTS = ∪k∈K[[πk(MF)]]must
MTS .

Example 1. Throughout this paper, we will use a beverage vending machine as a
running example [6]. Figure 1 shows the FTS of a VendingMachine family. It
has five features, and each of them is assigned an identifying letter and a color.
The features are: VendingMachine (denoted by letter v, in black), the mandatory
base feature of purchasing a drink, present in all variants; Tea (t, in red), for
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Fig. 1. The FTS for VendingMachine.
(Color figure online)

1

start

2 3

5

7 8
pay change open

take

so
da

serveSoda

Fig. 2. π{v,s}(VendingMachine)

serving tea; Soda (s, in green), for serving soda, which is a mandatory feature
present in all variants; CancelPurchase (c, in brown), for canceling a purchase
after a coin is entered; and FreeDrinks (f , in blue) for offering free drinks. Each
transition is labeled by an action followed by a feature expression. For instance,
the transition 1© free/f−−−→ 3© is included in variants where the feature f is enabled.

By combining various features, a number of variants of this VendingMa-
chine can be obtained. Recall that v and s are mandatory features. The set
of valid configurations is thus: K

VM = {{v, s}, {v, s, t}, {v, s, c}, {v, s, t, c}, {v,
s, f}, {v, s, t, f}, {v, s, c, f}, {v, s, t, c, f}}. In Fig. 2 is shown the basic version
of VendingMachine that only serves soda, which is described by the con-
figuration: {v, s} (or, as formula v ∧ s ∧¬t ∧¬c ∧¬f), that is the projection
π{v,s}(VendingMachine). It takes a coin, returns change, serves soda, opens a
compartment so that the customer can take the soda, before closing it again.

Figure 3 shows an MTS. Must transitions are denoted by solid lines, while
may transitions by dashed lines. �


CTL� Properties. Computation Tree Logic� (CTL�) [2] is an expressive tem-
poral logic for specifying system properties, which subsumes both CTL and LTL
logics. CTL� state formulae Φ are generated by the following grammar:

Φ ::= true | a ∈ AP | ¬a | Φ1 ∧ Φ2 | ∀φ | ∃φ, φ ::= Φ | φ1 ∧ φ2 | ©φ | φ1Uφ2

where φ represent CTL� path formulae. Note that the CTL� state formulae Φ
are given in negation normal form (¬ is applied only to atomic propositions).
Given Φ ∈ CTL�, we consider ¬Φ to be the equivalent CTL� formula given in
negation normal form. Other derived temporal operators (path formulae) can be
defined as well by means of syntactic sugar, for instance: ♦φ = trueUφ (φ holds
eventually), and �φ = ¬∀♦¬φ (φ always holds). ∀CTL� and ∃CTL� are subsets
of CTL� where the only allowed path quantifiers are ∀ and ∃, respectively.

We formalise the semantics of CTL� over a TS T . We write [[T ]]sTS for the
set of executions that start in state s; ρ[i] = si to denote the i-th state of the
execution ρ; and ρi = siλi+1si+1 . . . for the suffix of ρ starting from its i-th state.

Definition 5. Satisfaction of a state formula Φ in a state s of a TS T , denoted
T , s |= φ, is defined as (T is omitted when clear from context):
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(1) s |= a iff a ∈ L(s); s |= ¬a iff a /∈ L(s),
(2) s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2,
(3) s |= ∀φ iff ∀ρ ∈ [[T ]]sTS. ρ |= φ; s |= ∃φ iff ∃ρ ∈ [[T ]]sTS. ρ |= φ

Satisfaction of a path formula φ for an execution ρ of a TS T , denoted T , ρ |= φ,
is defined as (T is omitted when clear from context):

(4) ρ |= Φ iff ρ[0] |= Φ,
(5) ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2; ρ |= ©φ iff ρ1 |= φ; ρ |= (φ1Uφ2) iff

∃i≥0.
(
ρi |= φ2 ∧ (∀0≤j ≤ i−1. ρj |= φ1)

)

A TS T satisfies a state formula Φ, written T |= Φ, iff ∀s0 ∈ I. s0 |= Φ.

Definition 6. An FTS F satisfies a CTL� formula Φ, written F |= Φ, iff all its
valid variants satisfy the formula: ∀k∈K. πk(F) |= Φ.

The interpretation of CTL� over an MTS M is defined slightly different from
the above Definition 5. In particular, the clause (3) is replaced by:

(3’) s |= ∀φ iff for every may-execution ρ in the state s of M, that is ∀ρ ∈
[[M]]may,s

MTS , it holds ρ |= φ; whereas s |= ∃φ iff there exists a must-execution
ρ in the state s of M, that is ∃ρ ∈ [[M]]must,s

MTS , such that ρ |= φ.

From now on, we implicitly assume this adapted definition when interpreting
CTL� formulae over MTSs and MFTSs.

Example 2. Consider the FTS VendingMachine in Fig. 1. Suppose that the
proposition start holds in the initial state 1©. An example property Φ1 is:
∀�∀♦start, which states that in every state along every execution all possible
continuations will eventually reach the initial state. This formula is in ∀CTL�.
Note that VendingMachine �|= Φ1. For example, if the feature c (Cancel) is
enabled, a counter-example where the state 1© is never reached is: 1© → 3© →
5© → 7© → 3© → . . .. The set of violating products is [[c]]={{v, s, c}, {v, s, t, c},
{v, s, c, f}, {v, s, t, c, f}} ⊆ K

VM. However, π[[¬c]](VendingMachine) |= Φ1.
Consider the property Φ2: ∀�∃♦start, which describes a situation where

in every state along every execution there exists a possible continuation that
will eventually reach the start state. This is a CTL� formula, which is neither
in ∀CTL� nor in ∃CTL�. Note that VendingMachine |= Φ2, since even for
variants with the feature c there is a continuation from the state 3© back to 1©.

Consider the ∃CTL� property Φ3: ∃�∃♦start, which states that there exists
an execution such that in every state along it there exists a possible continuation
that will eventually reach the start state. The witnesses are 1© → 2© → 3© →
5© → 7© → 8© → 1© . . . for variants that satisfy ¬c, and 1© → 3© → 5© → 7© →
3© → 4© → 1© . . . for variants with c. �
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3 Abstraction of FTSs

We now introduce the variability abstractions which preserve full CTL and its
universal and existential properties. They simplify the configuration space of
an FTSs, by reducing the number of configurations and manipulating presence
conditions of transitions. We start working with Galois connections1 between
Boolean complete lattices of feature expressions, and then induce a notion of
abstraction of FTSs. We define two classes of abstractions. We use the standard
conservative abstractions [14,15] as an instrument to eliminate variability from
the FTS in an over-approximating way, so by adding more executions. We use
the dual abstractions, which can also eliminate variability but through under-
approximating the given FTS, so by dropping executions.

Domains. The Boolean complete lattice of feature expressions (propositional
formulae over F) is: (FeatExp(F)/≡, |=,∨,∧, true, false,¬). The elements of the
domain FeatExp(F)/≡ are equivalence classes of propositional formulae ψ ∈
FeatExp(F) obtained by quotienting by the semantic equivalence ≡. The order-
ing |= is the standard entailment between propositional logics formulae, whereas
the least upper bound and the greatest lower bound are just logical disjunction
and conjunction respectively. Finally, the constant false is the least, true is the
greatest element, and negation is the complement operator.

Conservative Abstractions. The join abstraction, αjoin, merges the control-
flow of all variants, obtaining a single variant that includes all executions occur-
ring in any variant. The information about which transitions are associated with
which variants is lost. Each feature expression ψ is replaced with true if there
exists at least one configuration from K that satisfies ψ. The new abstract set of
features is empty: αjoin(F) = ∅, and the abstract set of valid configurations is a
singleton: αjoin(K) = {true} if K �= ∅. The abstraction and concretization func-
tions between FeatExp(F) and FeatExp(∅), forming a Galois connection [14,15],
are defined as:

αjoin(ψ) =

{
true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(ψ) =

{
true if ψ is true
∨

k∈2F\K k if ψ is false

The feature ignore abstraction, αfignore
A , introduces an over-approximation by

ignoring a single feature A∈F. It merges the control flow paths that only differ
with regard to A, but keeps the precision with respect to control flow paths that
do not depend on A. The features and configurations of the abstracted model are:
αfignore

A (F) = F\{A}, and αfignore
A (K) = {k[lA �→ true] | k ∈ K}, where lA denotes

a literal of A (either A or ¬A), and k[lA �→ true] is a formula resulting from k by

1 〈L, ≤L〉 −−−→←−−−
α

γ 〈M, ≤M 〉 is a Galois connection between complete lattices L (concrete
domain) and M (abstract domain) iff α : L → M and γ : M → L are total functions
that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all l ∈ L, m ∈ M . Here �L and �M are
the pre-order relations for L and M , respectively. We will often simply write (α, γ)
for any such Galois connection.
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substituting true for lA. The abstraction and concretization functions between
FeatExp(F) and FeatExp(αfignore

A (F)), forming a Galois connection [14,15], are:

αfignore
A (ψ) = ψ[lA �→ true] γfignore

A (ψ′) = (ψ′ ∧ A) ∨ (ψ′ ∧ ¬A)

where ψ and ψ′ need to be in negation normal form before substitution.

Dual Abstractions. Suppose that 〈FeatExp(F)/≡, |=〉, 〈FeatExp(α(F))/≡, |=〉are
Boolean complete lattices, and 〈FeatExp(F)/≡, |=〉 −−→←−−

α

γ
〈FeatExp(α(F))/≡, |=〉 is

a Galois connection. We define [9]: α̃ = ¬ ◦ α ◦ ¬ and γ̃ = ¬ ◦ γ ◦ ¬ so that

〈FeatExp(F)/≡, 〉 −−→←−−
α̃

γ̃
〈FeatExp(α(F))/≡, 〉 is a Galois connection (or equiva-

lently, 〈FeatExp(α(F))/≡, |=〉 −−→←−−
γ̃

α̃ 〈FeatExp(F)/≡, |=〉). The obtained Galois con-

nections (α̃, γ̃) are called dual (under-approximating) abstractions of (α, γ).
The dual join abstraction, α̃join, merges the control-flow of all variants,

obtaining a single variant that includes only those executions that occur in all
variants. Each feature expression ψ is replaced with true if all configurations from
K satisfy ψ. The abstraction and concretization functions between FeatExp(F)
and FeatExp(∅), forming a Galois connection, are defined as: α̃join = ¬◦αjoin ◦¬
and γ̃join = ¬ ◦ γjoin ◦ ¬, that is:

α̃join(ψ) =

{
true if ∀k ∈ K.k |= ψ

false otherwise
γ̃ join(ψ) =

{∧
k∈2F\K(¬k) if ψ is true

false if ψ is false

The dual feature ignore abstraction, ˜
αfignore

A , introduces an under-
approximation by ignoring the feature A ∈ F, such that the literals of A
(that is, A and ¬A) are replaced with false in feature expressions (given in
negation normal form). The abstraction and concretization functions between
FeatExp(F) and FeatExp(αfignore

A (F)), forming a Galois connection, are defined

as: ˜
αfignore

A = ¬ ◦ αfignore
A ◦ ¬ and ˜

γfignore
A = ¬ ◦ γfignore

A ◦ ¬, that is:

˜
αfignore

A (ψ) = ψ[lA �→ false] ˜
γfignore

A (ψ′) = (ψ′ ∨ ¬A) ∧ (ψ′ ∨ A)

where ψ and ψ′ are in negation normal form.

Abstract MFTS and Preservation of CTL�. Given a Galois connection
(α, γ) defined on the level of feature expressions, we now define the abstrac-
tion of an FTS as an MFTS with two transition relations: one (may) preserving
universal properties, and the other (must) existential properties. The may tran-
sitions describe the behaviour that is possible, but not need be realized in the
variants of the family; whereas the must transitions describe behaviour that has
to be present in any variant of the family.

Definition 7. Given the FTS F = (S,Act, trans, I, AP,L, F, K, δ), we define the
MFTSα(F) = (S,Act, transmay, transmust, I, AP,L, α(F), α(K), δmay, δmust) to
be its abstraction, where δmay(t) = α(δ(t)), δmust(t) = α̃(δ(t)), transmay = {t ∈
trans | δmay(t) �= false}, and transmust = {t ∈ trans | δmust(t) �= false}.
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Note that the degree of reduction is determined by the choice of abstraction and
may hence be arbitrary large. In the extreme case of join abstraction, we obtain
an abstract model with no variability in it, that is αjoin(F) is an ordinary MTS.

Example 3. Recall the FTS VendingMachine of Fig. 1 with the set of valid
configurations K

VM (see Example 1). Figure 3 shows αjoin(VendingMachine),
where the allowed (may) part of the behavior includes the transitions that are
associated with the optional features c, f , t in VendingMachine, whereas the
required (must) part includes the transitions associated with the mandatory
features v and s. Note that αjoin(VendingMachine) is an ordinary MTS with
no variability. The MFTS αfignore

{t,f} (π[[v ∧ s]](VendingMachine)) is shown in [12,
Appendix B], see Fig. 8. It has the singleton set of features F = {c} and limited
variability K = {c,¬c}, where the mandatory features v and s are enabled. �


From the MFTS (resp., MTS) MF , we define two FTSs (resp., TSs) MFmay

and MFmust representing the may- and must-components of MF , i.e. its may
and must transitions, respectively. Thus, we have [[MFmay]]FTS = [[MF ]]may

MFTS

and [[MFmust]]FTS = [[MF ]]must
MFTS .

We now show that the abstraction of an FTS is sound with respect to CTL�.
First, we show two helper lemmas stating that: for any variant k ∈ K that can
execute a behavior, there exists an abstract variant k′ ∈α(K) that executes the
same may-behaviour; and for any abstract variant k′ ∈α(K) that can execute a
must-behavior, there exists a variant k∈K that executes the same behaviour2.

Lemma 1. Let ψ ∈ FeatExp(F), and K be a set of valid configurations over F.

(i) Let k ∈ K and k |= ψ. Then there exists k′ ∈ α(K), such that k′ |= α(ψ).
(ii) Let k′ ∈ α(K) and k′ |= α̃(ψ). Then there exists k ∈ K, such that k |= ψ.

Lemma 2

(i) Let k ∈ K and ρ ∈ [[πk(F)]]TS ⊆ [[F ]]FTS. Then there exists k′ ∈ α(K), such
that ρ ∈ [[πk′(α(F))]]may

MTS ⊆ [[α(F)]]may
MFTS is a may-execution in α(F).

(ii) Let k′ ∈ α(K) and ρ ∈ [[πk′(α(F))]]must
MTS ⊆ [[α(F)]]must

MFTS be a must-execution
in α(F). Then there exists k ∈ K, such that ρ ∈ [[πk(F)]]TS ⊆ [[F ]]FTS.

As a result, every ∀CTL� (resp., ∃CTL�) property true for the may- (resp.,
must-) component of α(F) is true for F as well. Moreover, the MFTS α(F)
preserves the full CTL�.

Theorem 1 (Preservation results). For any FTS F and (α, γ), we have:

(∀CTL�) For every Φ ∈ ∀CTL�, α(F)may |= Φ =⇒ F |= Φ.
(∃CTL�) For every Φ ∈ ∃CTL�, α(F)must |= Φ =⇒ F |= Φ.
(CTL�) For every Φ ∈ CTL�, α(F) |= Φ =⇒ F |= Φ.

2 Proofs of all lemmas and theorems in this section can be found in [12, Appendix A].
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Abstract models are designed to be conservative for the satisfaction of prop-
erties. However, in case of the refutation of a property, a counter-example is
found in the abstract model which may be spurious (introduced due to abstrac-
tion) for some variants and genuine for the others. This can be established by
checking which variants can execute the found counter-example.
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Fig. 3. αjoin(VendingMachine).

Let Φ be a CTL� formula which is not in ∀CTL� nor in ∃CTL�, and let MF
be an MFTS. We verify MF |= Φ by checking Φ on two FTSs MFmay and
MFmust, and then we combine the obtained results as specified below.

Theorem 2. For every Φ ∈ CTL� and MFTS MF , we have:

MF |= Φ =

{
true if

(
MFmay |= Φ ∧ MFmust |= Φ

)

false if
(
MFmay �|= Φ ∨ MFmust �|= Φ

)

Therefore, we can check a formula Φ which is not in ∀CTL� nor in ∃CTL� on
α(F) by running a model checker twice, once with the may-component of α(F)
and once with the must-component of α(F). On the other hand, a formula Φ
from ∀CTL� (resp., ∃CTL�) on α(F) is checked by running a model checker only
once with the may-component (resp., must-component) of α(F).

The family-based model checking problem can be reduced to a num-
ber of smaller problems by partitioning the set of variants. Let the subsets
K1, K2, . . . , Kn form a partition of the set K. Then: F |= Φ iff πKi

(F) |= Φ
for all i = 1, . . . , n. By using Theorem 1 (CTL�), we obtain the following result.

Corollary 1. Let K1, K2, . . . , Kn form a partition of K, and (α1,γ1), . . . ,
(αn,γn) be Galois connections. If α1(πK1(F)) |= Φ, . . . , αn(πKn

(F)) |= Φ, then
F |= Φ.

Therefore, in case of suitable partitioning of K and the aggressive αjoin abstrac-
tion, all αjoin(πKi

(F))may and αjoin(πKi
(F))must are ordinary TSs, so the family-

based model checking problem can be solved using existing single-system model
checkers with all the optimizations that these tools may already implement.
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Example 4. Consider the properties introduced in Example 2. Using the TS
αjoin(VendingMachine)may we can verify Φ1 = ∀�∀♦start (Theorem 1,
(∀CTL�)). We obtain the counter-example 1© → 3© → 5© → 7© → 3© . . ., which
is genuine for variants satisfying c. Hence, variants from [[c]] violate Φ1. On the
other hand, by verifying that αjoin(π[[¬c]](VendingMachine))may satisfies Φ1,
we can conclude by Theorem 1, (∀CTL�) that variants from [[¬c]] satisfy Φ1.

We can verify Φ2 = ∀�∃♦start by checking may- and must-components of
αjoin(VendingMachine). In particular, we have αjoin(VendingMachine)may

|= Φ2 and αjoin(VendingMachine)must |= Φ2. Thus, using Theorem 1, (CTL�)
and Theorem 2, we have that VendingMachine |= Φ2.

Using αjoin(VendingMachine)must we can verify Φ3 = ∃�∃♦start, by
finding the witness 1© → 2© → 3© → 5© → 7© → 8© → 1© . . .. By Theorem 1,
(∃CTL�), we have that VendingMachine |= Φ3. �


4 Implementation

We now describe an implementation of our abstraction-based approach for CTL
model checking of variational systems in the context of the state-of-the-art
NuSMV model checker [3]. Since it is difficult to use FTSs to directly model
very large variational systems, we use a high-level modelling language, called
fNuSMV. Then, we show how to implement projection and variability abstrac-
tions as syntactic transformations of fNuSMV models.

A High-Level Modelling Language. fNuSMV is a feature-oriented extension
of the input language of NuSMV, which was introduced by Plath and Ryan
[28] and subsequently improved by Classen [4]. A NuSMV model consists of a
set of variable declarations and a set of assignments. The variable declarations
define the state space and the assignments define the transition relation of the
finite state machine described by the given model. For each variable, there are
assignments that define its initial value and its value in the next state, which
is given as a function of the variable values in the present state. Modules can
be used to encapsulate and factor out recurring submodels. Consider a basic
NuSMV model shown in Fig. 4a. It consists of a single variable x which is
initialized to 0 and does not change its value. The property (marked by the
keyword SPEC) is “∀♦(x ≥ k)”, where k is a meta-variable that can be replaced
with various natural numbers. For this model, the property holds when k = 0.
In all other cases (for k > 0), a counterexample is reported where x stays 0.

The fNuSMV language [28] is based on superimposition. Features are mod-
elled as self-contained textual units using a new FEATURE construct added to
the NuSMV language. A feature describes the changes to be made to the given
basic NuSMV model. It can introduce new variables into the system (in a section
marked by the keyword INTRODUCE), override the definition of existing variables
in the basic model and change the values of those variables when they are read (in
a section marked by the keyword CHANGE). For example, Fig. 4b shows a FEATURE
construct, called A, which changes the basic model in Fig. 4a. In particular, the
feature A defines a new variable nA initialized to 0. The basic system is changed
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in such a way that when the condition “nA = 0” holds then in the next state
the basic system’s variable x is incremented by 1 and in this case (when x is
incremented) nA is set to 1. Otherwise, the basic system is not changed.

Classen [4] shows that fNuSMV and FTS are expressively equivalent. He
[4] also proposes a way of composing fNuSMV features with the basic model
to create a single model in pure NuSMV which describes all valid variants.
The information about the variability and features in the composed model is
recorded in the states. This is a slight deviation from the encoding in FTSs,
where this information is part of the transition relation. However, this encoding
has the advantage of being implementable in NuSMV without drastic changes.
In the composed model each feature becomes a Boolean state variable, which is
non-deterministically initialised and whose value never changes. Thus, the initial
states of the composed model include all possible feature combinations. Every
change performed by a feature is guarded by the corresponding feature variable.

For example, the composition of the basic model and the feature A given
in Figs. 4a and b results in the model shown in Fig. 4c. First, a module, called
features , containing all features (in this case, the single one A) is added to the
system. To each feature (e.g. A) corresponds one variable in this module (e.g.
fA). The main module contains a variable named f of type features , so that
all feature variables can be referenced in it (e.g. f.fA). In the next state, the
variable x is incremented by 1 when the feature A is enabled (fA is TRUE ) and
nA is 0. Otherwise (TRUE: can be read as else:), x is not changed. Also, nA is
set to 1 when A is enabled and x is incremented by 1. The property ∀♦(x ≥ 0)
holds for both variants when A is enabled and A is disabled (fA is FALSE ).

Fig. 4. NuSMV models.
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Transformations. We present the syntactic transformations of fNuSMV mod-
els defined by projection and variability abstractions. Let M represent a model
obtained by composing a basic model with a set of features F. Let M contain
a set of assignments of the form: s(v) := case b1 : e1; . . . bn : en; esac, where
v is a variable, bi is a boolean expression, ei is an expression (for 1 ≤ i ≤ n),
and s(v) is one of v, init(v), or next(v). We denote by [[M ]] the FTS for this
model [4].

Let K
′ ⊆ 2F be a set of configurations described by a feature expression ψ′,

i.e. [[ψ′]] = K
′. The projection π[[ψ′]]([[M ]]) is obtained by adding the constraint

ψ′ to each bi in the assignments to the state variables.
Let (α, γ) be a Galois connection from Sect. 3. The abstract α(M)may and

α(M)must are obtained by the following rewrites for assignments in M :

α
(
s(v) :=case b1 :e1; . . . bn :en; esac

)may
=s(v) :=caseαm(b1) :e1; . . . α

m(bn) :en; esac

α
(
s(v) :=case b1 :e1; . . . bn :en; esac

)must
=s(v) :=case α̃(b1) :e1; . . . α̃(bn) :en; esac

The functions αm and α̃ copy all basic boolean expressions other than fea-
ture expressions, and recursively calls itself for all sub-expressions of compound
expressions. For αjoin(M)may, we have a single Boolean variable rnd which
is non-deterministically initialized. Then, αm(ψ) = rnd if α(ψ) = true. We
have: α([[M ]])may = [[α(M)may]] and α([[M ]])must = [[α(M)must]]. For exam-
ple, given the composed model M in Fig. 4c, the abstractions αjoin(M)may and
αjoin(M)must are shown in Figs. 5 and 6, respectively. Note that α̃join(f.fA) =
false, so the first branch of case statements in M is never taken in αjoin(M)must.

Fig. 5. αjoin(M)may Fig. 6. αjoin(M)must

5 Evaluation

We now evaluate our abstraction-based verification technique. First, we show
how variability abstractions can turn a previously infeasible analysis of variabil-
ity model into a feasible one. Second, we show that instead of verifying CTL
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properties using the family-based version of NuSMV [7], we can use variabil-
ity abstraction to obtain an abstract variability model (with a low number of
variants) that can be subsequently model checked using the standard version of
NuSMV.

All experiments were executed on a 64-bit Intel�CoreTM i7-4600U CPU run-
ning at 2.10 GHz with 8 GB memory. The implementation, benchmarks, and all
results obtained from our experiments are available from: https://aleksdimovski.
github.io/abstract-ctl.html. For each experiment, we report the time needed to
perform the verification task in seconds. The BDD model checker NuSMV is
run with the parameter -df -dynamic, which ensures that the BDD package
reorders the variables during verification in case the BDD size grows beyond a
certain threshold.

Synthetic Example. As an experiment, we have tested limits of family-based
model checking with extended NuSMV and “brute-force” single-system model
checking with standard NuSMV (where all variants are verified one by one).
We have gradually added variability to the variational model in Fig. 4. This was
done by adding optional features which increase the basic model’s variable x
by the number corresponding to the given feature. For example, the CHANGE
section for the second feature B is: IF (nB = 0) THEN IMPOSE next(x) := x +
2; next(nB) := next(x) = x + 2?1:nB, and the domain of x is 0..3.

We check the assertion ∀♦(x ≥ 0). For |F| = 25 (for which |K| = 225 variants,
and the state space is 232) the family-based NuSMV takes around 77 min to
verify the assertion, whereas for |F| = 26 it has not finished the task within two
hours. The analysis time to check the assertion using “brute force” with standard
NuSMV ascends to almost three years for |F| = 25. On the other hand, if we
apply the variability abstraction αjoin, we are able to verify the same assertion by
only one call to standard NuSMV on the abstracted model in 2.54 s for |F| = 25
and in 2.99 s for |F| = 26.

Elevator. The Elevator, designed by Plath and Ryan [28], contains about
300 LOC and 9 independent features: Antiprunk, Empty, Exec, OpenIfIdle,
Overload, Park, QuickClose, Shuttle, and TTFull, thus yielding 29 = 512
variants. The elevator serves a number of floors (which is five in our case) such
that there is a single platform button on each floor which calls the elevator.
The elevator will always serve all requests in its current direction before it stops
and changes direction. When serving a floor, the elevator door opens and closes
again. The size of the Elevator model is 228 states. On the other hand, the
sizes of αjoin(Elevator)may and αjoin(Elevator)must are 220 and 219 states,
resp.

We consider five properties. The ∀CTL property “Φ1 = ∀� (floor =
2 ∧ liftBut5.pressed ∧ direction = up ⇒ ∀[direction = upUfloor = 5]”
is that, when the elevator is on the second floor with direction up and
the button five is pressed, then the elevator will go up until the fifth floor
is reached. This property is violated by variants for which Overload (the
elevator will refuse to close its doors when it is overloaded) is satisfied.
Given sufficient knowledge of the system and the property, we can tailor

https://aleksdimovski.github.io/abstract-ctl.html
https://aleksdimovski.github.io/abstract-ctl.html
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Fig. 7. Verification of Elevator properties using tailored abstractions. We compare
family-based approach vs. abstraction-based approach.

an abstraction for verifying this property more effectively. We call standard
NuSMV to check Φ1 on two models αjoin(π[[Overload]](Elevator))may and
αjoin(π[[¬Overload]](Elevator))may. For the first abstracted projection we obtain
an “abstract” counter-example violating Φ1, whereas the second abstracted pro-
jection satisfies Φ1. Similarly, we can verify that the ∀CTL property “Φ2 =
∀� (floor = 2 ∧ direction = up ⇒ ∀ © (direction = up))” is satisfied only by
variants with enabled Shuttle (the lift will change direction at the first and
last floor). We can successfully verify Φ2 for αjoin(π[[Shuttle]](Elevator))may

and obtain a counter-example for αjoin(π[[¬Shuttle]](Elevator))may. The ∃CTL
property “Φ3 = (OpenIfIdle ∧ ¬QuickClose) =⇒ ∃♦(∃� (door = open))”
is that, there exists an execution such that from some state on the door
stays open. We can invoke the standard NuSMV to verify that Φ3 holds for
αjoin(π[[OpenIfIdle∧¬QuickClose]](Elevator))must. The following two properties are
neither in ∀CTL nor in ∃CTL. The property “Φ4 = ∀� (floor = 1∧idle∧door =
closed =⇒ ∃�(floor = 1 ∧ door = closed))” is that, for any execution globally
if the elevator is on the first floor, idle, and its door is closed, then there is a con-
tinuation where the elevator stays on the first floor with closed door. The satis-
faction of Φ4 can be established by verifying it against both αjoin(Elevator)may

and αjoin(Elevator)must using two calls to standard NuSMV. The property
“Φ5 = Park =⇒ ∀� (floor = 1 ∧ idle =⇒ ∃[idleUfloor = 1])” is satisfied
by all variants with enabled Park (when idle, the elevator returns to the first
floor). We can successfully verify Φ5 by analyzing αjoin(π[[Park]](Elevator))may

and αjoin(π[[Park]](Elevator))must using two calls to standard NuSMV. We can
see in Fig. 7 that abstractions achieve significant speed-ups between 2.5 and 32
times faster than the family-based approach.

6 Related Work and Conclusion

Recently, many family-based techniques that work on the level of variational sys-
tems have been proposed. This includes family-based syntax checking [20,25],
family-based type checking [24], family-based static program analysis [16,17,27],
family-based verification [22,23,29], etc. In the context of family-based model
checking, Classen et al. present FTSs [6] and specifically designed family-based
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model checking algorithms for verifying FTSs against LTL [5]. This approach
is extended [4,7] to enable verification of CTL properties using an family-based
version of NuSMV. In order to make this family-based approach more scalable,
the works [15,21] propose applying conservative variability abstractions on FTSs
for deriving abstract family-based model checking of LTL. An automatic abstrac-
tion refinement procedure for family-based model checking is then proposed in
[19]. The application of variability abstractions for verifying real-time variational
systems is described in [18]. The work [11,13] presents an approach for family-
based software model checking of #ifdef-based (second-order) program families
using symbolic game semantics models [10].

To conclude, we have proposed conservative (over-approximating) and their
dual (under-approximating) variability abstractions to derive abstract family-
based model checking that preserves the full CTL�. The evaluation confirms
that interesting properties can be efficiently verified in this way. In this work, we
assume that a suitable abstraction is manually generated before verification. If
we want to make the whole verification procedure automatic, we need to develop
an abstraction and refinement framework for CTL� properties similar to the one
in [19] which is designed for LTL.
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24. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based
product lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14:1–14:39 (2012).
http://doi.acm.org/10.1145/2211616.2211617
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