
A Formal Framework for Incremental
Model Slicing

Gabriele Taentzer1 , Timo Kehrer2 , Christopher Pietsch3(B) ,
and Udo Kelter3

1 Philipps-Universität Marburg, Marburg, Germany
2 Humboldt-Universität zu Berlin, Berlin, Germany

3 University of Siegen, Siegen, Germany
cpietsch@informatik.uni-siegen.de

Abstract. Program slicing is a technique which can determine the sim-
plest program possible that maintains the meaning of the original pro-
gram w.r.t. a slicing criterion. The concept of slicing has been transferred
to models, in particular to statecharts. In addition to the classical use
cases of slicing adopted from the field of program understanding, model
slicing is also motivated by specifying submodels of interest to be fur-
ther processed more efficiently, thus dealing with scalability issues when
working with very large models. Slices are often updated throughout spe-
cific software development tasks. Such a slice update can be performed
by creating the new slice from scratch or by incrementally updating the
existing slice. In this paper, we present a formal framework for defining
model slicers that support incremental slice updates. This framework
abstracts from the behavior of concrete slicers as well as from the concrete
model modification approach. It forms a guideline for defining incremen-
tal model slicers independent of the underlying slicer’s semantics. Incre-
mental slice updates are shown to be equivalent to non-incremental ones.
Furthermore, we present a framework instantiation based on the concept
of edit scripts defining application sequences of model transformation
rules. We implemented two concrete model slicers for this instantiation
based on the Eclipse Modeling Framework.

1 Introduction

Program slicing as introduced by Weiser [1] is a technique which determines
those parts of a program (the slice) which may affect the values of a set of
(user-)selected variables at a specific point (the slicing criterion). Since the sem-
inal work of Weiser, which calculates a slice by utilizing static data and control
flow analysis and which primarily focuses on assisting developers in debugging,
a plethora of program slicing techniques addressing a broad range of use cases
have been proposed [2].

With the advent of Model-Driven Engineering (MDE) [3], models rather than
source code play the role of primary software development artifacts. Similar use
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 3–20, 2018.
https://doi.org/10.1007/978-3-319-89363-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_1&domain=pdf
http://orcid.org/0000-0002-3975-5238
http://orcid.org/0000-0002-2582-5557
http://orcid.org/0000-0002-3413-0810
http://orcid.org/0000-0003-2052-4912


4 G. Taentzer et al.

cases as known from program slicing must be supported for model slicing [4–6]. In
addition to classical use cases adopted from the field of program understanding,
model slicing is often motivated by scalability issues when working with very
large models [7,8], which has often been mentioned as one of the biggest obstacles
in applying MDE in practice [9,10]. Modeling frameworks such as the Eclipse
Modeling Framework (EMF) and widely-used model management tools do not
scale beyond a few tens of thousands of model elements [11], while large-scale
industrial models are considerably larger [12]. As a consequence, such models
cannot even be edited in standard model editors. Thus, the extraction of editable
submodels from a larger model is the only viable solution to support an efficient
yet independent editing of huge monolithic models [8]. Further example scenarios
in which model slices may be constructed for the sake of efficiency include model
checkers, test suite generators, etc., in order to reduce runtimes and memory
consumption.

Slice criteria are often modified during software development tasks. This
leads to corresponding slice updates (also called slice adaptations in [8]). During
a debugging session, e.g., the slicing criterion might need to be modified in order
to closer inspect different debugging hypotheses. The independent editing of
submodels is another example of this. Here, a slice created for an initial slicing
criterion can turn out to be inappropriate, most typically because additional
model elements are desired or because the slice is still too large. These slice
update scenarios have in common that the original slicing criterion is modified
and that the existing slice must be updated w.r.t. the new slicing criterion.

Model slicing is faced with two challenging requirements which do not exist or
which are of minor importance for traditional program slicers. First, the increas-
ing importance and prevalence of domain-specific modeling languages (DSMLs)
as well as a considerable number of different use cases lead to a huge number of
different concrete slicers, examples will be presented in Sect. 2. Thus, methods
for developing model slicers should abstract from a slicer’s concrete behavior
(and thus from concrete modeling languages) as far as possible. Ideally, model
slicers should be generic in the sense that the behavior of a slicer is adapt-
able with moderate configuration effort [7]. Second, rather than creating a new
slice from scratch for a modified slicing criterion, slices must often be updated
incrementally. This is indispensable for all use cases where slices are edited by
developers since otherwise these slice edits would be blindly overwritten [8]. In
addition, incremental slice updating is a desirable feature when it is more effi-
cient than creating the slice from scratch. To date, both requirements have been
insufficiently addressed in the literature.

In this paper, we present a fundamental methodology for developing model
slicers which abstract from the behavior of a concrete slicer and which support
incremental model slicing. To be independent of a concrete DSML and use cases,
we restrict ourselves to static slicing in order to support both executable and
non-executable models. We make the following contributions:

1. A formal framework for incremental model slicing which can function as a
guideline for defining adaptable and incremental model slicers (s. Sect. 3).



A Formal Framework for Incremental Model Slicing 5

This framework is based on graph-based models and model modifications and
abstracts from the behavior of concrete slicers as well as from the concrete
model modification approach. Within this framework we show that incremen-
tal slice updates are equivalent to non-incremental ones.

2. An instantiation of this formal framework where incremental model slicers
are specified by model patches. Two concrete model slicers.

2 Motivating Example

In this section we introduce a running example to illustrate two use cases of
model slicing and to motivate incremental slice updates.

Figure 1 shows an excerpt of the system model of the Barbados Car Crash
Crisis Management System (bCMS) [13]. It describes the operations of a police
and a fire department in case of a crisis situation.

Fig. 1. Excerpt of the system model of the bCMS case study [13].

The system is modeled from different viewpoints. The class diagram mod-
els the key entities and their relationships from a static point of view. A
police station coordinator (PS coordinator) and a fire station coordinator (FS
coordinator) are responsible for coordinating and synchronizing the activities
on the police and fire station during a crisis. The interaction of both coordinators
is managed by the respective system classes PSC System and FSC System which
contain several operations for, e.g., establishing the communication between the
coordinators and exchanging crisis details. The state machine diagram models
the dynamic view of the class PSC System, i.e., its runtime behavior, for send-
ing and receiving authorization credentials and crisis details to and from a FSC
System. Initially, the PSC System is in the state Idle. The establishment of the



6 G. Taentzer et al.

communication can be triggered by calling the operation callFScoordinator or
reqComFSC. In the composite state Authorising the system waits for exchang-
ing the credentials of the PS and FS coordinator by calling the operation
sendPScoordinatorCredentials and authFSC, or vice versa. On entering the
composite state ExchangingCrisisDetails, details can be sent by the opera-
tion call sendPSCrisisDetails or details can be received by the operation call
crisisDetailsFSC.

Model Slicing. Model slicers are used to find parts of interest in a given model
M . These parts of M are specified by a slicing criterion, which is basically a set
of model elements or, more formally, a submodel C of M . A slicer extends C
with further model elements of M according to the purpose of the slicer.

We illustrate this with two use cases. Use case A is known as backward slicing
in state-based models [4]. Given a set of states C in a statechart M as slicing
criterion, the slicer determines all model elements which may have an effect
on states in C. For instance, using S.1.0.1 (s. gray state in Fig. 1) as slicing
criterion, the slicer recursively determines all incoming transitions and their
sources, e.g., the transition with the event sendPScoordinatorCredentials and
its source state S.1.0.0, until an initial state is reached.

The complete backward slice is indicated by the blue elements in the lower
part of Fig. 1. The example shows that our general notion of a slicing criterion
may be restricted by concrete model slicers. In this use case, the slicing criterion
must not be an arbitrary submodel of a given larger model, but a very specific
one, i.e., a set of states.

Use case B is the extraction of editable models as presented in [8]. Here,
the slicing criterion C is given by a set of requested model elements of M . The
purpose of this slicer is to find a submodel which is editable and which includes
all requested model elements. For example, if we use the blue elements in the
lower part of Fig. 1 as slicing criterion, the model slice also contains the orange
elements in the upper part of Fig. 1, namely three operations, because events of
a transitions in a statechart represent operations in the class diagram, and the
class containing these operations.

Slice Update. The slicing criterion might be updated during a development
task in order to obtain an updated slice. It is often desirable to update the
slice rather than creating the new slice from scratch, e.g., because this is more
efficient. Let us assume in use case A that the slicing criterion changes from
S.1.0.1 to S.1.1.1. The resulting model slice only differs in the contained
regions of the composite state Authorising. The upper region and its contained
elements would be removed, while the lower region and its contained elements
would be added. Next we could use the updated model slice from use case A as
slicing criterion in use case B. In the related resulting model slice, the opera-
tion sendPScoordinatorCredentials would then be replaced by the operation
authFSC.



A Formal Framework for Incremental Model Slicing 7

3 Formal Framework

We have seen in the motivating example that model slicers can differ consider-
ably in their intended purpose. The formal framework we present in the following
defines the fundamental concepts for model slicing and slice updates. This frame-
work uses graph-based models and model modifications [14]. It shall serve as a
guideline how to define model slicers that support incremental slice updates.

3.1 Models as Graphs

Considering models, especially visual models, their concrete syntax is distin-
guished from their abstract one. In Fig. 1, a UML model is shown in its concrete
representation. In the following, we will reason about their underlying structure,
i.e., their abstract syntax, which can be considered as graph. The abstract syntax
of a modeling language is usually defined by a meta-model which contains the
type information about nodes and edges as well as additional constraints. We
assume that a meta-model is formalized by an attributed graph; model graphs
are defined as attributed graphs being typed over the meta-model. This typing
can be characterized by an attributed graph morphism [15]. In addition, graph
constraints [16] may be used to specify additional requirements. Due to space
limitations, we do not formalize constraints in this paper.

Definition 1 (Typed model graph and morphism). Given two attributed
graphs M and MM , called model and meta-model, the typed model (graph) of
M is defined as MT = (M, typeM ) with typeM : M → MM being an attributed
graph morphism, called typing morphism1. Given two typed models M and N ,
an attributed graph morphism f : M → N is called typed model morphism if
typeN ◦ f = typeM .

Fig. 2. Excerpt of a typed model graph.

Example 1 (Typed model graph). The left-hand side of Fig. 2 shows the model
graph of an excerpt from the model depicted in Fig. 1. The model graph is

1 In the following, we usually omit the adjective “attributed”.



8 G. Taentzer et al.

typed over the meta-model depicted on the right-hand side of Fig. 2. It shows a
simplified excerpt of the UML meta-model. Every node (and edge) of the model
graph is mapped onto a node or edge of the type graph by the graph morphism
type : M → MM .

Typed models and morphisms as defined above form the category AGraphsATG

in [15]. It has various properties since it is an adhesive HLR category using a class
M of injective graph morphisms with isomorphic data mapping, it has pushouts
and pullbacks where at least one morphism is in M. These constructions can
be considered as generalized union and intersection of models being defined
component-wise on nodes and edges such that they are structure-compatible.
These constructions are used to define the formal framework.

3.2 Model Modifications

If we do not want to go into any details of model transformation approaches,
the temporal change of models is roughly specified by model modifications. Each
model modification describes the original model, an intermediate one after hav-
ing performed all intended element deletions, and the resulting model after hav-
ing performed all element additions.

Definition 2 (Model modification). Given two models M1 and M2, a
(direct) model modification M1 =⇒ M2 is a span of injective morphisms
M1

m1←− Ms
m2−→ M2.

1. Two model modifications M1
m11←− M12

m12−→ M2 and M2
m22←− M23

m23−→ M3

are concatenated to model modification M1
m13←− M13

m33−→ M3 with (m13,m33)
being the pullback of m12 and m22 (intersecting M12 and M23).

2. Given two direct model modifications m : M1
m1←− Ms

m2−→ M2 and p : P1
p1←−

Ps
p2−→ P2, p can be embedded into m, written e : p → m, if there are

injective morphisms (also called embeddings) e1 : P1 → M1, es : Ps → Ms,
and e2 : P2 → M2 with e1 ◦ p1 = m1 ◦ es and e2 ◦ p2 = m2 ◦ es.

3. A sequence M0 =⇒ M1 =⇒ . . . =⇒ Mn of direct model modifications is called
model modification and is denoted by M0

∗=⇒ Mn.
4. There are five special kinds of model modifications:

(a) Model modification M
idM←− M

idM−→ M is called identical.
(b) Model modification ∅ ←− ∅ −→ ∅ is called empty.
(c) Model modification ∅ ←− ∅ −→ M is called model creation.
(d) Model modification M ←− ∅ −→ ∅ is called model deletion.
(e) M2

m2←− Ms
m1−→ M1 is called inverse modification to M1

m1←− Ms
m2−→ M2.

In a direct model modification, model Ms characterizes an intermediate
model where all deletion actions have been performed but nothing has been
added yet. To this end, Ms is the intersection of M1 and M2.



A Formal Framework for Incremental Model Slicing 9

Fig. 3. Excerpt of a model modification

Example 2 (Direct model modification). Figure 3 shows a model modification
using our running example. While Fig. 3(a) focuses on the concrete model syn-
tax, Fig. 3(b) shows the changing abstract syntax graph. Figure 3(a) depicts
an excerpt of the composite state Authorising. The red transition is deleted
while the green state and transitions are created. The model modification
m : M1

m1←− Ms
m2−→ M2 is illustrated in Fig. 3(b). The red elements represent

the set of nodes (and edges) M1 \ m1(Ms) to be deleted. The set M2 \ m2(Ms)
describing the nodes (and edges) to be created is illustrated by the green ele-
ments. All other nodes (and edges) represent the intermediate model Ms.

The double pushout approach to graph transformation [15] is a special kind
of model modification:

Definition 3 (Rule application). Given a model G and a model modification
r : L

l←− K
r−→ R, called rule, with injective morphism m : L → G, called

match, the rule application G =⇒r,m H is defined by the following two pushouts:

L K R

G D H

(PO1) (PO2)m m′

Model H is constructed in two passes: (1)
D := G \ m(L \ l(K)), i.e., erase all model
elements that are to be deleted; (2) H :=
D ∪ m′(R \ r(K)) such that a new copy of
all model elements that are to be created is
added.

Note that the first pushout above exists if G\m(L\l(K)) does not yield dangling
edges [15]. It is obvious that the result of a rule application G =⇒r H is a direct
model modification G

g←− D
h−→ H.

3.3 Model Slicing

In general, a model slice is an interesting part of a model comprising a given
slicing criterion. It is up to a concrete slicing definition to specify which model
parts are of interest.



10 G. Taentzer et al.

Definition 4 (Model slice). Given a model M and a slicing criterion C with
a morphism c : C → M . A model slice S = Slice(M, c) is a model S such that
there are two morphisms m : S → M and e : C → S with m ◦ e = c.

Note that each model slice S = Slice(M, c) induces a model modification
C

idC←− C
e−→ S.

Fig. 4. Excerpt of two model slices

Example 3 (Model slice). Figure 4 depicts an excerpt of the model graph of
M depicted in Fig. 1 and the two slices Sback = Slice(M, cback) and Sedit =
Slice(M, cedit). Sback is the backward slice as informally described in Sect. 2.
Cback = {S.1.0.1} is the first slice criterion. The embedding cback(Cback) is rep-
resented by the gray-filled element while embedding mback(Sback) is represented
by the blue-bordered elements. Model eback(Cback) is illustrated by the gray-filled
state having a blue border and Sback \ eback(Cback) by the green-filled elements
having a blue border.

Let Sback be the slicing criterion for the slice Sedit, i.e. Cedit = Sback and
cedit(Cedit) = mback(Sback). Sedit is the extracted editable submodel introduced
in Sect. 2 by use case B. Its embedding medit(Sedit) is represented by the blue and
orange-bordered elements. Model eedit(Cedit) is illustrated by the blue-bordered
elements and Sedit \ eedit(Cedit) by the green-filled elements having an orange
border.

3.4 Incremental Slice Update

Throughout working with a model slice, it might happen that the slice crite-
rion has to be modified. The update of the corresponding model slice can be
performed incrementally. Actually, modifying slice criteria can happen rather
frequently in practice by, e.g., editing independent submodels of a large model
in cooperative work.



A Formal Framework for Incremental Model Slicing 11

Definition 5 (Slice update construction). Given a model slice S1 =
Slice(M,C1 → M) and a direct model modification c = C1

c1←− Cs
c2−→ C2,

slice S2 = Slice(M,C2 → M) can be constructed as follows:

1. Given slice S1 we deduce the model modification C1

idC1←− C1
e1−→ S1 and take

its inverse modification: S1
e1←− C1

idC1−→ C1.
2. Then we take the given model modification c for the slice criterion.

3. And finally we take the model modification C2

idC2←− C2
e2−→ S2 induced by slice

S2.

All model modifications are concatenated yielding the direct model modification
S1

e1◦c1←− Cs
e2◦c2−→ S2 called slice update construction (see also Fig. 6).

Example 4 (Slice update example). Figure 5 illustrates a slice update construc-
tion with Sedit = Slice(M,Cedit → M) being the extracted submodel of our pre-
vious example illustrated by the red-dashed box. The modification c : Cedit

cedit←−
Cs

cedit′−→ Cedit′ of the slicing criterion is depicted by the gray-filled elements. The
red-bordered elements represent the set Cs\cedit(Cedit) of elements removed from
the slicing criterion. The green-bordered elements form the set Cs \ cedit′(Cedit′)
of elements added to the slicing criterion. Sedit′ = Slice(M,Cedit′ → M) is
the extracted submodel represented by the green-dashed box. Consequently, the
slice is updated by deleting all elements in Sedit \eedit(cedit(Cs)), represented by
the red-bordered and red- and white-filled elements, and adding all elements in
Sedit′ \eedit′(cedit′(Cs)), represented by the green-bordered and green- and white-
filled elements. Note that the white-filled elements are removed and added again.
This motivated us to consider incremental slice updates defined below.

Fig. 5. Excerpt of an (incremental) slice update.



12 G. Taentzer et al.

Definition 6 (Incremental slice update). Given M and C1 → M1 as in
Definition 4 as well as a direct model modification C1

c1←− Cs
c2−→ C2, model

slice S1 = Slice(M,C1 → M) is incrementally updated to model slice S2 =
Slice(M,C2 → M) yielding a direct model modification S1

s1←− Ss
s2−→ S2, called

incremental slice update from S1 to S2, with s1 and s2 being the pullback of
m1 : S1 → M and m2 : S2 → M (see also Fig. 6).

Example 5 (Incremental slice update example). Given Sedit and Sedit′ of our
previous example. Furthermore, given the model modification Sedit

sedit←− Ss
sedit′−→

Sedit′ whereby Ss is isomorphic to the intersection of Sedit and Sedit′ in M ,
i.e. ms : Ss → medit(Sedit) ∩ medit′(Sedit′) with ms being an isomorphism due
to the pullback construction. Ss is illustrated by the elements contained in the
intersection of the red- and green-dashed box in Fig. 5. In contrast to the slice
update construction of the previous example the white-filled elements are not
affected by the incremental slice update.

C1 Cs C2

S1 Ss S2

M

c1 c2

s1 s2

e1 es

ms

e2

m1 m2

Fig. 6. Incremental slice update

Ideally, the slice update construction in
Definition 5 should not yield a different
update than the incremental one. However,
this is not the case in general since the incre-
mental update keeps as many model ele-
ments as possible in contrast to the update
construction in Definition 5 In any case,
both update constructions should be com-
patible with each other, i.e., should be in an
embedding relation, as stated on the follow-
ing proposition.

Proposition 1 (Compatibility of slice update constructions). Given M

and C1 as in Definition 4 as well as a direct model modification C1
c1←− Cs

c2−→
C2, the model modification resulting from the slice update construction in Def-
inition 5 can be embedded into the incremental slice update from S1 to S2 (see
also Fig. 6).

Proof idea: Given an incremental slice update S1
s1←− Ss

s2−→ S2, it is the
pullback of m1 : S1 → M and m2 : S2 → M . The slice update construction
yields m1 ◦ e1 ◦ c1 = m2 ◦ e2 ◦ c2. Due to pullback properties there is a unique
embedding e : Cs → Ss with s1 ◦ e = e1 ◦ c1 and s2 ◦ e = e2 ◦ c2.2

4 Instantiation of the Formal Framework

In this section, we present an instantiation of our formal framework which is
inspired by the model slicing tool introduced in [8]. The basic idea of the app-
roach is to create and incrementally update model slices by calculating and
applying a special form of model patches, introduced and referred to as edit
script in [17].
2 This proof idea can be elaborated to a full proof in a straight forward manner.



A Formal Framework for Incremental Model Slicing 13

4.1 Edit Scripts as Refinements of Model Modifications

An edit script ΔM1⇒M2 specifies how to transform a model M1 into a model
M2 in a stepwise manner. Technically, this is a data structure which comprises
a set of rule applications, partially ordered by an acyclic dependency graph. Its
nodes are rule applications and its edges are dependencies between them [17].
Models are represented as typed graphs as in Definition 1, rule applications
are defined as in Definition 3. Hence, the semantics of an edit script is a set
of rule application sequences taking all possible orderings of rule applications
into account. Each sequence can be condensed into the application of one rule
following the concurrent rule construction in, e.g., [15]. Hence, an edit script
ΔM1⇒M2 induces a set of model modifications of the form M1

m1←− Ms
m2−→ M2.

Given two models M1 and M2 as well as a set R of transformation rules for
this type of models, edit scripts are calculated in two basic steps [17]:

First, the corresponding elements in M1 and M2 are calculated using a model
matcher [18]. A basic requirement is that such a matching can be formally rep-
resented as a (partial) injective morphism c : M1 → M2. If so, the matching
morphism c yields a unique model modification m : M1

⊇←− Ms
m2−→ M2 (up to

isomorphism) with m2 = c|Ms
. This means that Ms always has to be a graph.

Second, an edit script is derived. Elementary model changes can be directly
derived from a model matching; elements in M1 and M2 which are not involved
in a correspondence can be considered as deleted and added, respectively [19].
The approach presented in [17] partitions the set of elementary changes such that
each partition represents the application of a transformation rule of the given
set R of transformation rules [20], and subsequently calculates the dependencies
between these rule applications [17], yielding an edit script ΔM1⇒M2 . Sequences
of rule applications of an edit script do not contain transient effects [17], i.e.,
pairs of change actions which cancel out each other (such as creating and later
deleting one and the same element). Thus, no change actions are factored out
by an edit script.

4.2 Model Slicing Through Slice-Creating Edit Scripts

Edit scripts are also used to construct new model slices. Given a model M and
a slicing criterion C, a slice-creating edit script Δε⇒S is calculated which, when
applied to the empty model ε, yields the resulting slice S. The basic idea to
construct Δε⇒S is to consider the model M as created by an edit script Δε⇒M

applied to the empty model ε and to identify a sub-script of Δε⇒M which (at
least) creates all elements of C. The slice creating edit script Δε⇒S consists of
the subgraph of the dependency graph of the model-creating edit script Δε⇒M

containing (i) all nodes which create at least one model element in C, and (ii) all
required nodes and connecting edges according to the transitive closure of the
“required” relation, which is implied by dependencies between rule applications.

Since the construction of edit scripts depends on a given set R of transfor-
mation rules, a basic applicability condition is that all possible models and all
possible slices can be created by rules available in R. Given that this condition is



14 G. Taentzer et al.

satisfied, model slicing through slice-creating edit scripts indeed behaves accord-
ing to Definition 4, i.e., a slice S = Slice(M,C → M) is obtained by applying
Δε⇒S to the empty model: The resulting slice S is a submodel of M and a super-
model of C. As we will see in Sect. 5, the behavior of a concrete model slicer and
thus its intended purpose is configured by the transformation rule set R.

4.3 Incremental Slicing Through Slice-Updating Edit Scripts

To incrementally update a slice S1 = Slice(M,C1 → M) to become slice S2 =
Slice(M,C2 → M), we show that the approach presented in [8] constructs a
slice-updating edit script ΔS1⇒S2 which, if applied to the current slice S1, yields
S2 in an incremental way.

Similar to the construction of slice-creating edit scripts, the basic idea is to
consider the model M as model-creating edit script Δε⇒M . The slice-updating
edit script must delete all elements in the set S1 \ S2 from the current slice S1,
while adding all model elements in S2 \ S1. It is constructed as follows: Let PS1

and PS2 be the sets of rule applications which create all the elements in S1 and
S2, respectively. Next, the sets Prem and Padd of rule applications in Δε⇒M are
determined with Prem = PS1 \ PS2 and Padd = PS2 \ PS1 . Finally, the resulting
edit script ΔS1⇒S2 contains (1) the rule applications in set Padd, with the same
dependencies as in Δε⇒M , and (2) for each rule application in Prem, its inverse
rule application with reversed dependencies as in Δε⇒M . By construction, there
cannot be dependencies between rule applications in both sets, so they can be
executed in arbitrary order.

In addition to the completeness of the set R of transformation rules for a
given modeling language (s. Sect. 4.2), a second applicability condition is that,
for each rule r in R, there must be an inverse rule r−1 which reverts the effect
of r. Given that these conditions are satisfied and a slice-updating edit script
ΔS1⇒S2 can be created, its application to S1 indeed behaves according to the
incremental slice update as in Definition 6. This is so because, by construction,
none of the model elements in the intersection of S1 and S2 in M is deleted by
the edit script ΔS1⇒S2 . Consequently, none of the elements in the intersection
of C1 and C2 in M , which is a subset of S1 ∩ S2, is deleted.

4.4 Implementation

The framework instantiation has been implemented using a set of standard MDE
technologies on top of the widely used Eclipse Modeling Framework (EMF),
which employs an object-oriented implementation of graph-based models in
which nodes and edges are represented as objects and references, respectively.
Edit scripts are calculated using the model differencing framework SiLift [21],
which uses EMF Compare [22] in order to determine the corresponding elements
in a pair of models being compared with each other. A matching determined by
EMF Compare fulfills the requirements presented in Sect. 4.1 since EMF Com-
pare (a) delivers 1:1-correspondences between elements, thus yielding an injective
mapping, and (b) implicitly matches edges if their respective source and target



A Formal Framework for Incremental Model Slicing 15

nodes are matched and if they have the same type (because EMF does not sup-
port parallel edges of the same type in general), thus yielding an edge-preserving
mapping. Finally, transformation rules are implemented using the model trans-
formation language and framework Henshin [23,24] which is based on graph
transformation concepts.

5 Solving the Motivating Examples

In this section, we outline the configurations of two concrete model slicers which
are based on the framework instantiation presented in Sect. 4, and which are
capable of solving the motivating examples introduced in Sect. 2. Each of these
slicers is configured by a set of Henshin transformation rules which are used for
the calculation of model-creating, and thus for the construction of slice-creating
and slice-updating, edit scripts. The complete rule sets can be found at the
accompanying website of this paper [25].

5.1 A State-Based Model Slicer

Two of the creation rules which are used to configure a state-based model slicer
as described in our first example of Sect. 2 are shown in Fig. 7. The rules are
depicted in an integrated form: the left- and right-hand sides of a rule are merged
into a unified model graph following the visual syntax of the Henshin model
transformation language [23].

Fig. 7. Subset of the creation rules for configuring a state-based model slicer

Fig. 8. Slice-creating edit script.

Most of the creation rules
are of a similar form as
the creation rule createPseu-
dostate, which simply creates
a pseudostate and connects
it with an existing container.
The key idea of this slicer
configuration, however, is the
special creation rule creat-
eStateWithTransition, which
creates a state together with
an incoming transition in a



16 G. Taentzer et al.

single step. To support the incremental updating of slices, for each creation
rule an inverse deletion rule is included in the overall set of transformation rules.
Parts of the resulting model-creating edit script using these rules are shown in
Fig. 8. For example, rule application p3 creates the state Idle in the top-level
region of the state machine PSCSystem, together with an incoming transition
having the initial state of the state machine, created by rule application p2, as
source state. Thus, p3 depends on p2 since the initial state must be created first.
Similar dependency relationships arise for the creation of other states which are
created together with an incoming transition.

The effect of this configuration on the behavior of the model slicer is as follows
(illustrated here for the creation of a new slice): If state S.1.0.1 is selected as
slicing criterion, as in our motivating example, rule application p7 is included
in the slice-creating edit script since it creates that state. Implicitly, all rule
applications on which p7 transitively depends on, i.e., all rule applications p1
to p6, are also included in the slice-creating edit script. Consequently, the slice
resulting from applying the slice-creating edit script to an empty model creates
a submodel of the state machine of Fig. 1 which contains a transition path from
its initial state to state S.1.0.1, according to the desired behavior of the slicer.

A current limitation of our solution is that, for each state s of the slicing
criterion, only a single transition path from the initial state to state s is sliced.
This path is determined non-deterministically from the set of all possible paths
from the initial state to state s. To overcome this limitation, rule schemes com-
prising a kernel rule and a set of multi-rules (see, e.g., [26,27]) would have to
be supported by our approach. Then, a rule scheme for creating a state with an
arbitrary number of incoming transitions could be included in the configuration
of our slicer, which in turn leads to the desired effect during model slicing. We
leave such a support for rule schemes for future work.

5.2 A Slicer for Extracting Editable Submodels

In general, editable models adhere to a basic form of consistency which we assume
to be defined by the effective meta-model of a given model editor [28]. The basic
idea of configuring a model slicer for extracting editable submodels, adopted
from [8], is that all creation and deletion rules preserve this level of consistency.
Given an effective meta-model, such a rule set can be generated using the app-
roach presented in [28] and its EMF-/UML-based implementation [29,30].

In our motivating example of Sect. 2, for instance, a consistency-preserving
creation rule createTrigger creates an element of type Trigger and immediately
connects it to an already existing operation of a class. The operation serves
as the callEvent of this trigger and needs to be created first, which leads to
a dependency in a model-creating edit script. Thus, if a trigger is included in
the slicing criterion, the operation serving as callEvent of that trigger will be
implicitly included in the resulting slice since it is created by the slice-creating
edit script.



A Formal Framework for Incremental Model Slicing 17

6 Related Work

A large number of model slicers has been developed. Most of them work only
with one specific type of models, notably state machines [4] and other types of
behavioral models such as MATLAB/Simulink block diagrams [5]. Other sup-
ported model types include UML class diagrams [31], architectural models [32] or
system models defined using the SysML modeling language [33]. None of these
approaches can be transferred to other (domain-specific) modeling languages,
and they do not abstract from concrete slicing specifications.

The only well-known more generally usable technique which is adaptable to
a given modeling language and slicing specification is Kompren [7]. In contrast
to our formal framework, however, Kompren does not abstract from the con-
crete model modification approach and implementation technologies. It offers
a domain-specific language based on the Kermeta model transformation lan-
guage [34] to specify the behavior of a model slicer, and a generator which gen-
erates a fully functioning model slicer from such a specification. When Kompren
is used in the so-called active mode, slices are incrementally updated when the
input model changes, according to the principle of incremental model transfor-
mation [35]. In our approach, slices are incrementally updated when the slicing
criterion is modified. As long as endogenous model transformations for con-
structing slices are used only, Kompren could be easily extended to become an
instantiation of our formal framework.

Incremental slicing has also been addressed in [36], however, using a notion
of incrementality which fundamentally differs from ours. The technique has been
developed in the context of testing model-based delta-oriented software product
lines [37]. Rather than incrementally updating an existing slice, the approach
incrementally processes the product space of a product line, where each “product”
is specified by a state machine model. As in software regression testing, the goal
is to obtain retest information by utilizing differences between state machine
slices obtained from different products.

In a broader sense, related work can be found in the area of model splitting
and model decomposition. The technique presented in [38] aims at splitting a
model into submodels according to linguistic heuristics and using information
retrieval techniques. The model decomposition approach presented in [39] consid-
ers models as graphs and first determines strongly connected graph components
from which the space of possible decompositions is derived in a second step.
Both approaches are different from ours in that they produce a partitioning of
an input model instead of a single slice. None of them supports the incremental
updating of a model partitioning.

7 Conclusion

We presented a formal framework for defining model slicers that support incre-
mental slice updates based on a general concept of model modifications. Incre-
mental slice updates were shown to be equivalent to non-incremental ones. Fur-
thermore, we presented a framework instantiation based on the concept of edit



18 G. Taentzer et al.

scripts defining application sequences of model transformation rules. This instan-
tiation was implemented by two concrete model slicers based on the Eclipse
Modeling Framework and the model differencing framework SiLift.

As future work, we plan to investigate incremental updates of both the under-
lying model and the slicing criterion. It is also worthwhile to examine the extent
to which further concrete model slicers fit into our formal framework of incre-
mental model slicing. For our own instantiation of this framework, we plan to
cover further model transformation features such as rule schemes and applica-
tion conditions, which will make the configuration of concrete model slicers more
flexible and enable us to support further use cases and purposes.

Acknowledgments. This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593: Design For Future -
Managed Software Evolution.

References

1. Weiser, M.: Program slicing. In: Proceedings of ICSE 1981. IEEE Press (1981)
2. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.

ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)
3. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in prac-

tice. Synth. Lect. Softw. Eng. 1(1), 1–182 (2012)
4. Androutsopoulos, K., Clark, D., Harman, M., Krinke, J., Tratt, L.: State-based

model slicing: A survey. ACM Comput. Surv. 45(4), 36 (2013). https://doi.org/
10.1145/2501654.2501667. Article 53

5. Gerlitz, T., Kowalewski, S.: Flow sensitive slicing for matlab/simulink models. In:
Proceedings of WICSA 2016. IEEE (2016)

6. Samuel, P., Mall, R.: A novel test case design technique using dynamic slicing of
UML sequence diagrams. e-Informatica 2(1), 71–92 (2008)

7. Blouin, A., Combemale, B., Baudry, B., Beaudoux, O.: Kompren: modeling and
generating model slicers. SoSyM 14(1), 321–337 (2015)

8. Pietsch, C., Ohrndorf, M., Kelter, U., Kehrer, T.: Incrementally slicing editable
submodels. In: Proceedings of ASE 2017. IEEE Press (2017)

9. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial context—
Motorola case study. In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS,
vol. 3713, pp. 476–491. Springer, Heidelberg (2005). https://doi.org/10.1007/
11557432_36

10. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment
of MDE in industry. In: Proceedings of ICSE 2011. IEEE (2011)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The grand challenge of scalability for
model driven engineering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol.
5421, pp. 48–53. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
01648-6_5

12. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., et al.: A research roadmap towards
achieving scalability in model driven engineering. In: Proceedings of BigMDE @
STAF 2013. ACM (2013)

13. Capozucca, A., Cheng, B., Guelfi, N., Istoan, P.: OO-SPL modelling of the focused
case study. In: Proceedings of CMA @ MoDELS 2011 (2011)

https://doi.org/10.1145/2501654.2501667
https://doi.org/10.1145/2501654.2501667
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/978-3-642-01648-6_5
https://doi.org/10.1007/978-3-642-01648-6_5


A Formal Framework for Incremental Model Slicing 19

14. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict detection for model
versioning based on graph modifications. In: Ehrig, H., Rensink, A., Rozenberg, G.,
Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 171–186. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15928-2_12

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

16. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rela-
tive to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

17. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model
versioning. In: Proceedings of ASE 2013. IEEE (2013)

18. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: Pro-
ceedings of CVSM @ ICSE 2009. IEEE (2009)

19. Kehrer, T., Kelter, U., Pietsch, P., Schmidt, M.: Adaptability of model comparison
tools. In: Proceedings of ASE 2011. ACM (2012)

20. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic lifting
of model differences in the context of model versioning. In: Proceedings of ASE
2011. IEEE (2011)

21. Kehrer, T., Kelter, U., Ohrndorf, M., Sollbach, T.: Understanding model evolution
through semantically lifting model differences with SiLift. In: Proceedings of ICSM
2012. IEEE Computer Society (2012)

22. Brun, C., Pierantonio, A.: Model differences in the eclipse modeling framework.
UPGRADE Eur. J. Inform. Prof. 9(2), 29–34 (2008)

23. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2_9

24. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy,
M.: Henshin: a usability-focused framework for EMF model transformation devel-
opment. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp.
196–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61470-0_12

25. Taentzer, G., Kehrer, T., Pietsch, C., Kelter, U.: Accompanying website for this
paper (2017). http://pi.informatik.uni-siegen.de/projects/SiLift/fase2018/

26. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. I. World Scientific Publishing Co., Inc., River
Edge (1997)

27. Biermann, E., Ermel, C., Taentzer, G.: Lifting parallel graph transformation con-
cepts to model transformation based on the eclipse modeling framework. Electron.
Commun. EASST 26 (2010)

28. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the spec-
ification of model editing operations from meta-models. In: Van Van Gorp, P.,
Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp. 173–188. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-42064-6_12

29. Rindt, M., Kehrer, T., Kelter, U.: Automatic generation of consistency-preserving
edit operations for MDE tools. In: Proceedings of Demos @ MoDELS 2014. CEUR
Workshop Proceedings, vol. 1255 (2014)

30. Kehrer, T., Rindt, M., Pietsch, P., Kelter, U.: Generating edit operations for pro-
filed UML models. In: Proceedings ME @ MoDELS 2013. CEUR Workshop Pro-
ceedings, vol. 1090 (2013)

https://doi.org/10.1007/978-3-642-15928-2_12
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-319-61470-0_12
http://pi.informatik.uni-siegen.de/projects/SiLift/fase2018/
https://doi.org/10.1007/978-3-319-42064-6_12


20 G. Taentzer et al.

31. Kagdi, H., Maletic, J.I., Sutton, A.: Context-free slicing of UML class models. In:
Proceedings of ICSM 2005. IEEE (2005)

32. Lallchandani, J.T., Mall, R.: A dynamic slicing technique for UML architectural
models. IEEE Trans. Softw. Eng. 37(6), 737–771 (2011)

33. Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., Coq, T.: A SysML-based app-
roach to traceability management and design slicing in support of safety certifica-
tion: framework, tool support, and case studies. Inf. Softw. Technol. 54(6), 569–590
(2012)

34. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with
Kermeta. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE
2009. LNCS, vol. 6491, pp. 201–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18023-1_5

35. Etzlstorfer, J., Kusel, A., Kapsammer, E., Langer, P., Retschitzegger, W., Schoen-
boeck, J., Schwinger, W., Wimmer, M.: A survey on incremental model trans-
formation approaches. In: Pierantonio, A., Schätz, B. (eds.) Proceedings of the
Workshop on Models and Evolution. CEUR Workshop Proceedings, vol. 1090, pp.
4–13 (2013)

36. Lity, S., Morbach, T., Thüm, T., Schaefer, I.: Applying incremental model slicing
to product-line regression testing. In: Kapitsaki, G.M., Santana de Almeida, E.
(eds.) ICSR 2016. LNCS, vol. 9679, pp. 3–19. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-35122-3_1

37. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6_6

38. Struber, D., Rubin, J., Taentzer, G., Chechik, M.: Splitting models using infor-
mation retrieval and model crawling techniques. In: Gnesi, S., Rensink, A. (eds.)
FASE 2014. LNCS, vol. 8411, pp. 47–62. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54804-8_4

39. Ma, Q., Kelsen, P., Glodt, C.: A generic model decomposition technique and its
application to the eclipse modeling framework. SoSyM 14(2), 921–952 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-18023-1_5
https://doi.org/10.1007/978-3-642-18023-1_5
https://doi.org/10.1007/978-3-319-35122-3_1
https://doi.org/10.1007/978-3-319-35122-3_1
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-54804-8_4
https://doi.org/10.1007/978-3-642-54804-8_4
http://creativecommons.org/licenses/by/4.0/

	A Formal Framework for Incremental Model Slicing
	1 Introduction
	2 Motivating Example
	3 Formal Framework
	3.1 Models as Graphs
	3.2 Model Modifications
	3.3 Model Slicing
	3.4 Incremental Slice Update

	4 Instantiation of the Formal Framework
	4.1 Edit Scripts as Refinements of Model Modifications
	4.2 Model Slicing Through Slice-Creating Edit Scripts
	4.3 Incremental Slicing Through Slice-Updating Edit Scripts
	4.4 Implementation

	5 Solving the Motivating Examples
	5.1 A State-Based Model Slicer
	5.2 A Slicer for Extracting Editable Submodels

	6 Related Work
	7 Conclusion
	References




