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Macrophage Activation Syndrome
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Abbreviations

AIDS	� Acquired immunodeficiency 
syndrome

APC	 Antigen-presenting cell
CsA	 Cyclosporine A
CTL	 Cytotoxic T lymphocyte
CTLA-4	�� Cytotoxic T-lymphocyte-associated 

protein 4
DIC	� Disseminated intravascular 

coagulopathy
EBV	 Epstein-Barr virus
fHLH	� Familial hemophagocytic 

lymphohistiocytosis
FSTL-1	 Follistatin-like 1
G-CSF	�� Granulocyte colony-stimulating 

factor
GM-CSF	� Granulocyte-macrophage colony-

stimulating factor
HAV	 Hepatitis A virus
HBV	 Hepatitis B virus
HCV	 Hepatitis C virus
HIV	 Human immunodeficiency virus
HLH	� Hemophagocytic 

lymphohistiocytosis

HS	 HScore
HSCT	 Hematopoietic stem cell transplant
ICU	 Intensive care unit
IFN-γ	 interferon-gamma
IL	 Interleukin
IL-18BP	 Interleukin-18-binding protein
IL-1Ra	 Interleukin-1 receptor antagonist
IVIg	 Intravenous immunoglobulin
MAS	 Macrophage activation syndrome
NK cell	 Natural killer cell
sCD163	 Soluble haptoglobin receptor
sCD25	� Soluble interleukin-2 receptor alpha 

chain
sHLH	� Secondary hemophagocytic 

lymphohistiocytosis
sJIA	 Systemic juvenile idiopathic arthritis
SLE	 Systemic lupus erythematosus
Th1	 T-helper 1
TLR	 Toll-like receptor
TNF	 Tumor necrosis factor
USA	 United States of America
XLP	� X-linked lymphoproliferative 

disease

�Introduction

HLH/MAS is thought to be a multisystem inflam-
matory disorder resulting from a pro-inflammatory 
“cytokine storm” from excessively activated 
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lymphocytes and macrophages [1]. Hemo
phagocytic syndromes are divided into primary 
and secondary forms. Primary cases are rare (1 in 
50,000 live births), commonly present in the first 
year of life, and are often triggered by infection 
[2]. They include familial, or primary, forms of 
hemophagocytic lymphohistiocytosis (fHLH) that 
have specific genetic homozygous or compound 
heterozygous loss-of-function mutations in 
perforin-mediated cytolytic pathway proteins 
(e.g., PRF1, STX11, UNC13D, UNC18-2) 
employed by CD8 T cells and natural killer (NK) 
cells [3–6]. Children with certain immunodefi-
ciency syndromes, such as Chédiak-Higashi syn-
drome, type II Hermansky-Pudlak syndrome, and 
type II Griscelli syndrome [7], have associated 
genetic defects in cytolysis and are also at risk for 
developing fHLH.  Specific X-linked immuno
deficiencies (signaling-lymphocytic-activation-
molecule-associated protein (SAP) and X-linked 
inhibitor of apoptosis (XIAP) deficiencies) are 
also associated with Epstein-Barr virus (EBV) 
triggered HLH [8–10].

Acquired or secondary forms of HLH 
(sHLH) are usually associated with conditions 
that cause chronic immune dysregulation, such 
as rheumatologic diseases [e.g., systemic juve-
nile idiopathic arthritis (sJIA), systemic lupus 
erythematosus (SLE)] and certain malignancies 
(e.g., leukemias, lymphomas). Infectious 
agents, particularly EBV and other herpesvirus 
family members, may be the sHLH trigger, 
although identifiable infections are not always 
present [7]. In addition, up to 40% of sHLH and 
macrophage activation syndrome (MAS) 
patients have been found to possess heterozy-
gous (some dominant negative) mutations in 
known fHLH genes. Thus, some investigators 
consider MAS, sHLH, and fHLH to lie on a 
spectrum of disease [11].

In the clinical setting, the distinction between 
primary and secondary forms of HLH is less 
clear and even considered artificial by some. It 
was initially used to differentiate the primary, 
more fatal, infantile presentations from the sec-
ondary forms, which were considered to present 
later in life and to have better prognoses. 
However, it is now known that primary genetic 

forms can present later in life, even during 
adulthood [12, 13]. Furthermore, in some stud-
ies, only 40% of primary HLH cases are found 
to have recognized genetic mutations. Moreover, 
both primary and secondary HLH are known to 
be precipitated by infections [14, 15]. Finally, as 
mentioned previously, many patients with sHLH 
have heterozygous mutations in known fHLH-
associated genes, thus blurring the distinction 
between fHLH and sHLH. Regardless of termi-
nology, the individual patient needs to be treated 
appropriately. At present, most clinicians would 
agree that clear-cut infantile cases of fHLH will 
need bone marrow transplantation, typically 
preceded by an aggressive chemotherapeutic 
regimen which includes etoposide and cortico-
steroids. In addition, identified infectious trig-
gers should also be treated appropriately. For all 
other children and adults with HLH, the most 
appropriate treatment remains unclear. 
Etoposide is quite toxic, often leading to pancy-
topenia itself and increasing the risk of second-
ary sepsis as well as increased risk of secondary 
malignancies [14, 16]. Novel approaches have 
been anecdotally reported to dampen the overly 
exuberant immune response and control the 
cytokine storm and associated multiorgan dys-
function. Most notably, targeting of specific 
pro-inflammatory cytokines [e.g., interleukin-1 
(IL-1) and interferon-gamma (IFN-γ)] seems 
promising and lacks the toxicity associated with 
traditional chemotherapeutic approaches [17, 
18].

Despite advances in the current treatment 
protocols, the cure rate for HLH is low. 
Untreated cases of fHLH have a median sur-
vival of less than 2–6  months after diagnosis 
[19]. In a nationwide registry of pediatric 
patients with HLH in Korea, the 5-year overall 
survival rate was 68% (38% in the familial 
group and 81% in the presumed secondary 
group) [20]. The prognosis for cases of sHLH 
varies depending on the underlying etiology, 
for example, the mortality rate is reported to be 
lower in cases associated with rheumatic dis-
eases (8–22%) and greater when it is associated 
with malignancy. The median overall survival 
is about 36–67% [21–23].
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�Pathophysiology and Cytokine 
Storm

MAS/HLH develops as a “cytokine storm” which 
is often triggered by infectious, rheumatologic, 
and oncologic diseases [24]. Although not well 
defined, the pro-inflammatory cytokines associ-
ated with MAS/HLH likely include IL-1, IL-6, 
IL-12, IL-18, IFN-γ, and tumor necrosis factor 
(TNF) [25, 26] (Table 14.1). Also IL-27, macro-
phage colony-stimulating factor (M-CSF), and 
granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) may be increased [27–29]. 
Furthermore, chemokines, such as IL-8/CXCL8, 
MIG/CXCL9, IP10/CXCL10, I-TAC/CXCL11, 
MCP-1/CCL2, MIP-1α/CCL3, and MIP-1β/
CCL4, have been reported to be increased [26, 
30–32]. Both cytokines and chemokines activate 
the immune system, perpetuating the ongoing 

cytokine storm. On the other arm, levels of anti-
inflammatory cytokines, such as IL-10 and 
IL-18-binding protein (IL-18BP), are also 
increased but might not be sufficient to terminate 
the ongoing inflammation [33, 34]. Mazodier 
et  al. described a discrepancy between the 
increase in IL-18 and its antagonist IL-18BP that 
lead to abnormally high levels of free IL-18 [33]. 
Similarly, the natural antagonist to IL-1, IL-1 
receptor antagonist (IL-1Ra), has been noted to 
be elevated during MAS/HLH, and a recombi-
nant form of IL-1Ra has been reported by several 
groups to be an effective therapy for MAS/HLH/
cytokine storm syndrome [35–37].

The etiology of the cytokine storm is not 
entirely clear. Since fHLH is associated with bial-
lelic defects in gene products involved in the per-
forin-mediated cytolytic pathway used by NK 
cells and CD8 T lymphocytes [48, 49], the inabil-
ity to clear the antigenic stimulus and thus turn off 
the inflammatory response has been hypothesized 
to result in hypercytokinemia [50]. Recently, the 
inability of CD8 T cells and NK cells to lyse anti-
gen-presenting cells (APCs) via the perforin-
mediated cytolytic pathway was shown to prolong 
(by fivefold) the engagement time between the 
lytic lymphocyte and the APC.  This prolonged 
interaction resulted in increased levels of pro-
inflammatory cytokines. For up to 40% of sHLH 
cases, single-copy mutations in these same perfo-
rin pathway genes have been reported. Some of 
the mutants have been demonstrated to act as 
complete or partial dominant-negative mutants 
[51–53], resulting in sHLH in older children and 
adults [53, 54], the oldest reported case being a 
62-year-old patient [55]. One heterozygous muta-
tion in RAB27A identified in two unrelated sHLH 
patients was shown to act in a partial dominant-
negative fashion and delayed cytolytic granule 
polarization to the immunologic synapse between 
NK cells and their target cells. This was also asso-
ciated with an increase in IFN-γ production, mim-
icking the situation described for homozygous 
defects in perforin or granzyme B.  Moreover, 
increased IL-6 production has been shown to 
decrease cytolytic activity of NK cells, further 
exacerbating the lytic defect and resultant produc-
tion of pro-inflammatory cytokines.

Table 14.1  Cytokines in HLH and their potential roles 
[38–47]

Cytokine/
chemokine Related features of HLH
TNF Fever, cachexia, neurological symptoms, 

depression of hematopoiesis, elevated 
transaminases, hypoalbuminemia, 
hypofibrinogenemia, 
hypertriglyceridemia, disseminated 
intravascular coagulopathy (DIC), 
suppression of natural killer (NK) cell 
activity

IL-1 Fever, depression of hematopoiesis, 
coagulopathy due to plasminogen 
activation, hyperferritinemia, acute phase 
proteins, T-cell activation

IFN-γ Fever, hemophagocytosis, depression of 
hematopoiesis, DIC, hypoalbuminemia, 
liver damage, hypertriglyceridemia, 
macrophage activation, stimulation of 
antigen presentation, stimulation of CD4 
T-helper 1 (Th1) response

IL-18 Liver pathology, prolonged exposure 
suppression of NK cell activity

IL-10 Suppression of T-cell activation, 
inhibition of Th1 cytokine production, 
regulation of hemophagocytosis, 
modulation of immune-mediating 
pathology

IL-6 Fever, anemia, acute phase proteins, renal 
impairment, T-cell activation and 
infiltration, suppression of NK cell 
activity

14  Macrophage Activation Syndrome
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In a healthy individual, exposure of most 
cells to many intracellular pathogens will nor-
mally initiate an inflammatory cascade, fre-
quently leading to release of Th1 cytokines 
(IFN-γ, TNF) that will activate macrophages, 
NK cells, and cytolytic T cells. NK and cyto-
lytic T cells release granules that contain perfo-
rin and granzymes [49]. Perforin is a key 
cytolytic protein that causes osmotic lysis of the 
target cell [56] and is also necessary for the 
uptake of granzymes by the target cell that will 
then catalyze cleavage of multiple protein sub-
strates, including caspases which then trigger 
cell apoptosis. All the genetic defects described 
in fHLH involve either inadequate levels of per-
forin itself or improper granule exocytosis lead-
ing to impaired apoptosis of the target cell, 
improper removal of the stimulating antigen, 
and ultimately ongoing inflammation.

However, other pathways lacking cytolytic 
pathway gene defects can lead to the final end-
point of HLH or MAS.  In a murine model of 
MAS, it was shown that repeated stimulation of 
toll-like receptor 9 (TLR9) produced MAS on a 
normal genetic background, without exogenous 
antigen. Interestingly, the TLR9-induced MAS 
model was IFN-γ dependent in some aspects of 
disease; however, lymphocytes were not required 
for the pathogenesis [57]. On the other hand, a 
state of inflammation may also reduce the lytic 
capacity of NK cells and CD8 T cells [58–60], 
resulting in cytokine storm due to frustrated 
phagocytosis. This was illustrated in a study 
where T-cell-directed immunotherapy for refrac-
tory leukemia resulted in cytokine storm and an 
MAS-like presentation [61]. All the aforemen-
tioned pathways have led to the proposal that 
MAS is due to a combination of genetic predis-
position and a hyperinflammatory state reducing 
cytolytic function, put into action by a trigger 
(e.g., infection, cancer, immunodeficiency, auto-
immunity, and autoinflammation) [19, 53, 62–
64]. At some point a threshold level of 
hypercytokinemia is reached at which the body is 
incapable of balancing the cytokine storm with 
anti-inflammatory products, such as IL-10, 
IL-1Ra, IL-18BP, and others. This is then 
believed to trigger the multiorgan dysfunction 
resulting in clinical HLH.

�Clinical Picture

Initial symptoms of HLH/MAS are usually non-
specific. The cardinal feature is unremitting 
high fever. However, therapeutic targeting of 
pro-inflammatory cytokines (e.g., IL-1, IL-6) to 
treat underlying rheumatic diseases that often 
result in MAS (e.g., sJIA) makes fever not an 
absolute finding in all cases. This is attributed to 
the powerful antipyretic effect of biologics such 
as inhibitors of IL-1, IL-6, and TNF. On exami-
nation, many patients have hepatomegaly, sple-
nomegaly, or both, and up to 50% of MAS/HLH 
patients have central nervous system involve-
ment ranging from mild confusion to seizures or 
frank coma [65]. Different forms of rash can 
occur, often erythematous or purpuric. Patients 
can have progressive hepatic dysfunction and 
ultimately multiorgan failure. DIC-like features 
are often present and are partly explained by 
liver dysfunction, fibrinogen consumption, and 
thrombocytopenia [66]. This highlights the 
challenges in distinguishing microbial sepsis-
induced DIC from HLH in the intensive care 
unit (ICU). Despite the similarities these two 
conditions share in clinical presentations, they 
are frequently treated differently: broad spec-
trum antibiotics (sepsis) versus immunosup-
pression (HLH), respectively [67]. As HLH is 
not a diagnosis of exclusion, and infections are 
common triggers of HLH, it is important to treat 
both infection and, if present, the associated 
cytokine storm of HLH.

�Classification Criteria

MAS/HLH can be difficult to diagnose, especially 
in the early stages where it can be easily misdiag-
nosed as shock or multiorgan dysfunction due to 
sepsis. In addition, MAS may be confused with an 
underlying disease flare, as in the case of 
sJIA.  Because MAS can have a high mortality 
rate in children with sJIA (∼8–22%) [68–70], 
sensitive diagnostic criteria are needed to assist 
with early detection, allowing for appropriate and 
timely therapy. Because of the different diseases 
associated with MAS/HLH, different diagnostic 
and classification criteria have been proposed 
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over the years, such as HLH-04, SLE-MAS crite-
ria, the HScore, and the novel 2016 criteria for 
MAS complicating sJIA (Table  14.2). Some of 
these criteria are disease specific (e.g., sJIA, SLE) 

and can be both sensitive and specific, whereas 
others encompass all potential HLH-associated 
diagnoses, but tend to have lower sensitivities 
overall. Clinically, and outside of clinical trials, 

Table 14.2  Published criteria for MAS and HLH

HLH-2004 diagnostic

2009 preliminary diagnostic 
guidelines for MAS 
complicating cSLE

2005 preliminary 
diagnostic guidelines for 
MAS complicating sJIA

2016 classification criteria 
for MAS complicating 
sJIA

a.   Molecular diagnosis
b.  Diagnostic criteria
 � •  Fever
 � •  Splenomegaly
 � • � Cytopenia (at least 

two of three lineages:
 � • � Hemoglobin 

<90 gm/l,
 � •  Platelets <100 × 109/l,
 � • � Neutrophils <1.0 × 

109/l
 � • � Hypertriglyceridemia 

and/or
 � • � Hypofibrinogenemia 

(triglycerides 
≥265 mg/dl, 
fibrinogen ≤1.5 gm/l)

 � • � Hemophagocytosis 
BM, spleen, or lymph 
nodes

 � • � Low or absent NK 
cell activity

 � •  Ferritin ≥500 ng/ml
 � • � Soluble 

CD25 ≥ 2400 units

a.  Clinical criteria
 � •  Fever (>38 C)
 � • � Hepatomegaly (≥3 cm 

below the costal arch)
 � • � Splenomegaly (≥3 cm 

below the costal arch)
 � • � Hemorrhagic 

manifestations
 � • � Central nervous system 

dysfunction
b.  Laboratory criteria
 � • � Cytopenia affecting two 

or more cell lineages 
(WBC ≤4.0 × 109/l, 
hemoglobin ≤90 gm/l or 
platelet count ≤150 × 
109/l)

 � • � Increased AST 
(>40 units/l)

 � • � Increased LDH 
(>567 units/l)

 � •  Hypofibrinogenemia
 � •  (fibrinogen ≤1.5 gm/l)
 � • � Hypertriglyceridemia 

(triglycerides 
>178 mg/dl)

 � • � Hyperferritinemia 
(ferritin >500 mg/l)

a.  Laboratory criteria
 � • � Decreased platelet 

count (≤262 × 109/l)
 � • � Elevated levels of 

AST (>59 U/l)
 � • � Decreased WBC 

count (≤4.0 × 109/l)
 � • � Hypofibrinogenemia 

(≤2.5 g/l)
b.  Clinical criteria
 � • � Central nervous 

system dysfunction
 � •  Hemorrhages
 � • � Hepatomegaly 

(≥3 cm below the 
costal arch)

A febrile patient with 
known or suspected sJIA 
is classified as having 
MAS if the following 
criteria are met:
Ferritin >684 ng/ml and 
any two of the following:
 � • � Platelet count ≤181 

× 109/l
 � •  AST >48 U/l
 � • � Triglycerides 

>156 mg/dl
 � • � Fibrinogen 

≤360 mg/dl

Implementation
The diagnosis of HLH can 
be established in the 
presence of a molecular 
diagnosis consistent with 
HLH or by meeting five of 
eight clinical and 
laboratory diagnostic 
criteria

The diagnosis of MAS 
requires the simultaneous 
presence of at least one 
clinical criterion and at least 
two laboratory criteria. Bone 
marrow aspiration for 
evidence of macrophage 
hemophagocytosis may be 
required only in doubtful 
cases

The diagnosis of MAS 
requires the presence of 
at least two laboratory 
criteria or the presence of 
at least one laboratory 
criterion and one clinical 
criterion.
Bone marrow aspiration 
for evidence of 
macrophage 
hemophagocytosis may 
be required only in 
doubtful cases

See above
Laboratory abnormalities 
should not be otherwise 
explained by the patient’s 
condition, such as 
concomitant immune-
mediated 
thrombocytopenia, 
infectious hepatitis, 
visceral leishmaniasis, or 
familial hyperlipidemia

Adapted from Henter et al. [11], Ravelli et al. [71], Parodi et al. [72], Ravelli et al. [73]
AST aspartate aminotransferase, BM bone marrow, HLH hemophagocytic lymphohistiocytosis, jSLE juvenile systemic 
lupus erythematosus, LDH lactate dehydrogenase, MAS macrophage activation syndrome, NK natural killer, sJIA sys-
temic juvenile idiopathic arthritis, WBC white blood cells

14  Macrophage Activation Syndrome



156

the various criteria are useful for clinicians to 
strongly consider MAS/HLH diagnostically so 
that appropriate therapy can be initiated as soon as 
possible to result in optimal outcomes.

�MAS as a Part of sJIA (sJIA-MAS)

�HLH-2004 Diagnostic Guidelines
Due to the fact that MAS resembles fHLH in its 
clinical presentation, HLH-2004 diagnostic 
guidelines were initially used to diagnose 
MAS. Those guidelines were developed to diag-
nose genetic homozygous/compound heterozy-
gous cases of fHLH [11]. The main deficiencies 
regarding the HLH-2004 criteria for diagnosing 
MAS in patients with sJIA are due to the underly-
ing inflammatory nature of sJIA versus fHLH. In 
active sJIA, one would expect elevated levels of 
white blood cell counts, platelets, and fibrinogen 
as part of the inflammatory process. Accordingly, 
a drop in their levels, which could still be in the 
normal limits as regards to the HLH-2004 crite-
ria, should raise the suspicion of MAS. Also the 
underlying inflammatory process leads to ele-
vated levels of ferritin [74]; therefore, the cutoff 
of ferritin >500 ng/ml in the HLH-2004 guide-
lines makes it difficult to distinguish MAS com-
plicating sJIA from an sJIA flare. Adding to the 
shortcomings of HLH-2004 guidelines overall 
are the lack of availability and timely results of 
certain criteria, such as NK cell activity or sCD25 
levels in many centers [25, 75, 76].

�Preliminary Diagnostic Criteria for MAS 
Complicating sJIA
Eventually, preliminary diagnostic criteria were 
introduced for sJIA-MAS comparing it to sJIA 
flare [71], which yielded better results in identi-
fying MAS among sJIA patients when compared 
to HLH-2004 diagnostic guidelines [77]. 
However, these new criteria had their own short-
comings. The study that led to the criteria devel-
opment was lacking in some important laboratory 
parameters, including some of the important 
MAS markers such as ferritin, lactate dehydroge-
nase, and triglycerides [25, 75, 76]. Moreover, 

they were based on a relatively small sampling of 
patients, and they were not validated. These 
shortcomings were an impetus to develop new 
sJIA-specific MAS criteria.

�2016 Classification Criteria 
for Macrophage Activation Syndrome 
Complicating Systemic Juvenile 
Idiopathic Arthritis
The deficiencies in the previous guidelines have 
pushed for the development of more accurate cri-
teria for sJIA-MAS. Recently, novel classification 
criteria have been introduced. These were the 
result of an international collaborative effort com-
bining expert consensus, evidence compiled from 
the medical literature, and analysis of real patients. 
The development of the 2016 criteria was con-
ducted under the auspices of the European League 
Against Rheumatism, the American College of 
Rheumatology, and the Paediatric Rheumatology 
International Trials Organization [73]. Based on 
the common consensus that clinical criteria of 
MAS are often delayed and/or difficult to distin-
guish from an underlying disease flare, the 2016 
sJIA-MAS criteria are based primarily on labora-
tory parameters with fever as the only clinical cri-
terion [76]. These criteria are relatively simple yet 
proved to be both highly sensitive and specific. 
However, the criteria are not ideal in the setting of 
children with sJIA who are being actively treated 
with IL-1 or IL-6 blockade. Ultimately, simple 
criteria that are not necessarily disease specific 
but maintain high sensitivity and specificity for 
establishing an MAS/HLH diagnosis are needed.

�MAS as Part of Systemic Lupus 
Erythematosus (SLE-MAS)

Childhood SLE (cSLE) cases complicated by 
MAS have been reported with increasing 
frequency in the recent years. As an SLE disease 
flare itself often results in pancytopenia, diagnos-
tic criteria for MAS in the setting of SLE are 
complicated. Accordingly, it has been suggested 
that cSLE-MAS may be under-recognized [78]. 
Preliminary guidelines for SLE-MAS were 
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proposed in 2009. A study was conducted based 
on a multinational survey and data analyzing 38 
patients with cSLE-MAS [72]. Patients who had 
evidence of macrophage hemophagocytosis on 
bone marrow aspiration were considered to have 
definite MAS, and those who did not were con-
sidered to have probable MAS.  The sensitivity, 
specificity, and the area under the receiver operat-
ing characteristic curve of various clinical and 
laboratory parameters were compared in SLE 
patients with MAS versus patients with active 
juvenile SLE without MAS. The best diagnostic 
performance was obtained using the simultane-
ous presence of any one or more clinical criteria 
and any two or more laboratory criteria, which 
had a sensitivity of 92.1% and a specificity of 
90.9% (Table 14.2). The demonstration of mac-
rophage hemophagocytosis in the bone marrow 
aspirate was considered necessary for confirma-
tion of doubtful cases only. Those results have 
led to the practical recommendation that in the 
clinical setting, MAS should be suspected in a 
patient with cSLE presenting with unexplained 
fever and cytopenia associated with hyperferri-
tinemia. Both HLH-2004 criteria and preliminary 
diagnostic guidelines for sJIA-MAS were tested 
in the study but were found to be inaccurate for 
detecting cSLE-MAS.  Interestingly, about two-
thirds of the patients with cSLE-MAS developed 
it within 1  month of SLE diagnosis. The fre-
quency of ICU admission was 43.7%, and the 
mortality rate was 11.4%.

�Generic MAS Criteria/HScore

In 2014, Fardet et  al. developed and partially 
validated a diagnostic score for the broader cat-
egory of reactive hemophagocytic syndrome 
(HS), called the HScore [79], which can be used 
to estimate an individual’s risk of having reac-
tive hemophagocytic syndrome, or HLH.  This 
score was created and tested using a multicenter 
retrospective cohort of 312 patients scrutinizing 
10 explanatory variables that were issued from a 
previous Delphi survey involving 24 HLH 
experts from 13 countries [80]. After showing 

positive associations of each variable with an 
HLH diagnosis, multivariate logistic regression 
was used to assess their independent contribu-
tions to the outcome. Following calculating each 
variable’s threshold value, the coefficients result-
ing from multiple logistic regression analysis 
were used to assign score points to each one. The 
performance of the score was assessed using 
developmental and validation data sets. The 
HScore revealed excellent diagnostic perfor-
mance and discriminative ability in both devel-
opmental and validation data sets. The probability 
of having HLH ranged from <1% with an HScore 
of ≤90 to >99% with an HScore of ≥250.

The HScore has some limitations including 
the heterogeneity of the underlying diseases (a 
high proportion had cancer-associated HLH), 
the retrospective manner of the data collection, 
and the small sample size (only 10% of the 
entire study population) of the validation data 
set. As the study included only adults with reac-
tive HLH, the applicability in children, particu-
larly those with sJIA-MAS, is questionable. 
Adding to its limitations in pediatric cases, 
some of the criteria in the HScore might not be 
practically applicable in children. For example, 
the definition of the item, “Known underlying 
immunosuppression,” lists some medications 
that are used infrequently in children with sJIA, 
such as cyclosporine A and azathioprine, and at 
the same time it does not mention the newer 
more widely used cytokine antagonists that have 
been associated with the occurrence of MAS 
[25, 81, 82]. Moreover, bone marrow aspirates 
in a search for hemophagocytosis are not fre-
quently performed in children with sJIA-MAS, 
as it is not considered mandatory in either the 
HLH-2004 guidelines [11] or the preliminary 
MAS guidelines [71]. In fact, absence of hemo-
phagocytosis does not rule out MAS, and the 
procedure should not delay appropriate therapy. 
Furthermore, the underlying inflammatory 
nature of sJIA that is associated with marked 
thrombocytosis makes the threshold level for 
the platelet count (110,000/mm3) too low for 
identifying MAS in the setting of sJIA. It is the 
relative drop in platelets count, rather than an 
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absolute decrease below a certain threshold, that 
is more useful to make an early diagnosis [77]. 
Thus, the HScore is likely more valuable in 
diagnosing adults with HLH, particularly those 
with associated leukemias and lymphomas.

�New Biomarkers
A new promising laboratory marker of MAS is 
soluble CD163 (sCD163). Its expression is 
restricted to the macrophage/monocyte lineage 
only, unlike ferritin and soluble CD25 (IL-2 
receptor α-chain), which are produced by a num-
ber of tissues and cell types, including the liver, 
spleen, heart, kidney, and T cells under a variety 
of nonspecific inflammatory conditions. sCD163 
has been mainly evaluated in MAS, where com-
bination testing of sCD25 and sCD163 identified 
patients with subclinical MAS [83]. Further stud-
ies to evaluate its role in HLH not associated with 
autoimmune diseases are required. Moreover, 
like sCD25, the testing is not currently available 
in a timely fashion in most centers around the 
world.

Another novel biomarker, follistatin-related 
protein 1 (FSTL-1) was reported by Gorelik et al. 
to be elevated in active sJIA with higher levels 
during MAS.  FSTL-1 levels correlated with 
sCD25 and ferritin levels, and FSTL-1 normal-
ized after treatment. Perhaps more importantly, 
Gorelik et  al. also reported that in their small 
cohort (28 sJIA patients) a ferritin to ESR 
ratio > 80 had the highest sensitivity and specific-
ity (100% and 100%, respectively) in distinguish-
ing between MAS and new-onset sJIA disease 
flare [84]. As ferritin rises due to inflammation in 
MAS/HLH, and the ESR tends to drop as fibrino-
gen (an important driver of high ESRs) is con-
sumed during coagulopathy, a simple ratio of 
ferritin to ESR may prove to be a simple and 
valuable tool in getting clinicians to consider a 
diagnosis of MAS/HLH in their febrile hospital-
ized patients.

Although the serum IL-18 level is also not 
routinely available clinically, it may also serve 
as a distinguishing biomarker for sJIA patients 
who develop MAS.  Comparing cytokine pat-
terns between sJIA-MAS patients, EBV-HLH, 
Kawasaki disease, and healthy age-matched 

controls, Shimizu et al. reported that IL-18 con-
centrations during sJIA-MAS were signifi-
cantly higher compared to the others, and they 
correlated with measures of disease activity 
(CRP, ferritin, LDH, and other cytokines). In 
addition, serum neopterin and sTNF-RII levels 
were significantly higher during MAS com-
pared to sJIA flares [85]. Other reports also 
showed that IL-18 levels were significantly 
elevated in sJIA [86, 87] and the patients with 
high levels were more likely to develop MAS 
[88]. Furthermore, sphingomyelinase was 
found to be elevated in HLH cases [89]. Thus, a 
variety of new biomarkers may help identify 
MAS among sJIA patients.

�Genetic Associations

Genetic HLH has been commonly classified into 
two groups: fHLH which are a group of autoso-
mal recessive disorders, and immunodeficiency 
syndromes related HLH.  Of the immunodefi-
ciency syndromes, Chediak-Higashi, Griscelli, 
and Hermansky-Pudlak are associated with a 
variable degree of albinism/hypopigmentation of 
the skin or hair and platelet dysfunction which 
can assist in identifying potential cases of HLH 
(Table 14.3) [2, 90–92]. Interestingly, up to 40% 
of sHLH cases possess heterozygous mutations 
in these same fHLH-associated gene products. 
Thus, the overall underlying genetic risk for 
sHLH may be rather striking.

In addition to underlying inflammatory states 
(e.g., sJIA, leukemia) and genetic predispositions 
(e.g., perforin deficiency), infections (some from 
the commensal human microbiome) are fre-
quently significant contributing factors in lower-
ing the threshold required to develop a cytokine 
storm syndrome capable of resulting in HLH/
MAS (Table 14.4). HLH has been associated with 
a vast variety of infections, with EBV as the most 
commonly reported trigger. Both familial (fHLH) 
and sporadic or secondary (sHLH) cases of HLH 
are often precipitated by acute infections. It is also 
important to note that an underlying precipitating 
infection for HLH can be masked, as the HLH 
clinical picture can mimic an infectious process or 
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Table 14.3  Genetic associations with HLH

HLH type Chromosome Gene Protein Function
Familial HLH
fHLH1 9q21.3–22 Unknown Unknown Unknown
fHLH2 10q22 PRF1 Perforin Apoptosis and cytotoxicity
fHLH3 17q25.1 UNC13D Mammalian 

uncoordinated-13–4 
(Munc13–4)

Exocytosis of granules

fHLH4 6q24 STX11 Syntaxin11 Generation of granules 
with SNAP23

fHLH5 19p13.3–2 STXBP2 Mammalian 
uncoordinated-18–2 
(Munc18–2)

Vesicle fusion

Immunodeficiency
CD27 deficiency 12p13 CD27 TNF receptor superfamily 7 

(TNFRSF7)
Lymphocyte costimulatory 
molecule

Chediak-Higashi 1q42.1–2 LYST Lysosomal trafficking 
regulator

Transport of lysosomes

Griscelli, type 2 15q21 RAB27A Ras-related protein Rab-27A Granule exocytosis
Hermansky-Pudlak, 
type 2

5q14.1 AP3B1 AP-3 complex subunit beta-1 AP3βchain: traffic from 
Golgi to granules

Hermansky-Pudlak, 
type 9

15q21.1 BLOC1S6 Biogenesis of lysosome-
related organelles complex 1 
subunit 6

Intracellular vesicle 
trafficking

ITK deficiency 5q33.3 ITK IL-2-inducible T-cell kinase T-cell development, 
proliferation, and 
differentiation

NLRC4 mutation 
(autoinflammation 
with recurrent MAS)

2p22.3 NLRC4 NOD-like receptor family, 
caspase recruitment 
domain-containing 4

Caspase recruitment and 
innate immune response

IL-2R-gamma 
deficiency

10p15–14 IL2RA IL-2R T-cell activation and 
regulation

SCID (common γ 
chain def)

Xq13 IL-2RG IL-2R T-cell activation and 
regulation

Wiskott-Aldrich Xp11.23–22 WAS Wiskott-Aldrich syndrome 
protein (WASp)

Cytoskeleton

X-linked 
lymphoproliferative 
(XLP) type 1

Xq25 SH2D1A SH2 domain-containing 
protein 1A(SAP)

Activation of lymphocytes

X-linked 
lymphoproliferative 
(XLP) type 2

Xq25 XIAP Baculoviral IAP repeat-
containing protein 4 (BIRC4)

Inhibition of apoptosis

ADA deficiency 20q13.11 ADA Adenosine deaminase Metabolism of purine 
nucleosides

PNP deficiency 14q13.1 PNP Purine nucleoside 
phosphorylase

Metabolism of purine 
nucleosides

DiGeorge syndrome 22q11.2 DCGR Unknown Various
XL-O-EDA-ID Xq28 NEMO NEMO protein Inflammation, immunity, 

cell survival, and signaling 
pathways

XLA Xq21.3-q22 BTK BTK protein B-cell maturation and 
proliferation

(continued)
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Table 14.3  (continued)

HLH type Chromosome Gene Protein Function
Hyper-IgD syndrome 12q24 MVK Mevalonate kinase Isoprenoid and sterol 

synthesis
Lysinuric protein 
intolerance

14q11.2 SLC7A7 Light subunit of a cationic 
amino acid transporter

Transport of amino acid

Multiple sulfatase def. 3p26 SUMF1 FGE Transcriptional activation 
of sulfatase

Methylmalonic 
aciduria (cobalamin 
deficiency) cblC type, 
with homocystinuria

1p34.1 MMACHC Methylmalonic aciduria and 
homocystinuria type C 
protein

Binding and intracellular 
trafficking of cobalamin

Holt-Oram syndrome 12q24.1 TBX5 T-box 5 protein Promotes cardiomyocyte 
differentiation

XMEN syndrome Xq21.1 MAGT1 Magnesium transporter 1 T-cell activation via T-cell 
receptor

Others
IRF5 polymorphisms 7q32.1 IRF5 Interferon regulatory factor 5 Role in the toll-like 

receptor signaling pathway 
and activation of pro-
inflammatory cytokine 
genes

Table 14.4  Infectious triggers of MAS/HLH

Infectious triggers Virus nucleic acid Examples
Viral DNA EBV [93], CMV [94–97], HHV6 [98], HHV-8 [99–101], varicella zoster 

[102], HSV1 [103], HSV2 [104], adenovirus [105, 106], herpes simplex 
[107, 108], parvovirus B19 [109, 110], HBV [111]

RNA Hepatitis A [112, 113]/C [111, 114–116], HIV-1 [117–119], influenza 
H1N1 [54, 120–126], parainfluenza [127], mumps [128], measles [129], 
measles vaccine [130], rubella [131], enterovirus [132], human 
T-lymphotropic virus [133], rotavirus [134]

Zoonotic viruses RNA Flavivirus (dengue fever) [135–138], Crimean-Congo hemorrhagic fever 
virus [139], hantaviruses [140, 141], bunyavirus [142], hepatitis E virus 
[143], influenza A virus H5N1 subtype [144], SARS coronavirus [145]

Bacterial Mycoplasma pneumoniae [146, 147], Salmonella typhi [148], Staphylococcus aureus [149, 
150], Klebsiella pneumoniae [151], Aeromonas hydrophila [151], Fusobacterium sp. [152], 
Chlamydia pneumoniae [153], Legionella pneumophila [152], Mycobacterium tuberculosis 
[154, 155], Mycobacterium bovis—weakened form (bacillus Calmette-Guérin) [156, 157], 
intravesical BCG [158], Acinetobacter baumannii [159], Escherichia coli [160], M. leprae 
[161], Abiotrophia defectiva in endocarditis patient [162]

Zoonotic bacteria Anaplasma phagocytophilum [163], Bartonella henselae [164], Borrelia burgdorferi (Lyme 
disease) [165], Brucella sp. [166–168], Campylobacter sp. [169], Capnocytophaga sp. [170], 
Clostridium sp. [171, 172],Coxiella burnetii [173, 174], Ehrlichia chaffeensis and Ehrlichia 
ewingii [175–177], Leptospira sp. [178, 179], Listeria monocytogenes [180], Mycobacterium 
avium complex [181, 182], Orientia tsutsugamushi [183], Rickettsia spp. [184], Salmonella 
sp. (excluding S. typhi) [185]

Protozoal/zoonotic 
protozoa

Leishmania sp. [186–188], Toxoplasma gondii [189, 190], Babesia sp. [191], Plasmodium 
falciparum [192], Plasmodium vivax [193, 194], Strongyloides stercoralis [152]

Fungal Pneumocystis jiroveci [62], Candida sp. [195], Aspergillus sp. [62], Fusarium verticillioides 
[62]

Zoonotic fungi Cryptococcus neoformans [196], Histoplasma capsulatum [197–199], Penicillium marneffei 
[23, 200, 201]
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an overwhelming septicemia. It is important 
nonetheless to detect and remedy any underlying 
treatable infection in the setting of HLH.

�Virus-Associated Hemophagocytic 
Syndrome

�EBV
Epidemiology  As previously mentioned, EBV is 
the most commonly reported trigger of HLH 
[93], with the highest incidence in East Asia 
[202]. This could be explained by the more 
pathogenic strains of EBV in this part of the 
world [203] and also by the higher prevalence of 
EBV and EBV-infected T cells in Asians [204]. 
EBV-associated HLH (EBV-HLH) cases have 
also been described in the USA and Europe 
[205]. Most EBV-HLH cases occur in apparently 
immunocompetent children and adolescents 
[206]; however, it can also occur in the setting of 
primary/genetic forms (fHLH) [207], immunode-
ficiency disorders (e.g., XLP) [208], and second-
ary forms, including acute infections (e.g., 
infectious mononucleosis) [209] and lymphopro-
liferative disorders (e.g., NK cell and T-cell leu-
kemias and lymphomas) [210].

Pathophysiology  The mechanism by which EBV 
induces HLH has not been fully explained. During 
primary infection, EBV typically infects and rep-
licates in B cells, whereas a function of EBV-
specific cytotoxic T cells is the regulation of the 
infected B cells and the production of memory 
cells. On rare occasions, EBV may infect T cells 
and NK cells via CD21. CD21 is expressed on the 
surface of these cells and induces persistent EBV 
infection, with monoclonal or oligoclonal prolif-
eration resulting in chronic active EBV infection, 
lymphoproliferative disorders, and fulminant 
EBV-HLH [211–213]. Infection of CD8 T cells 
with EBV results in a cytokine storm with the 
release of pro-inflammatory and Th1-type cyto-
kines [214], including TNF and IFN-γ, leading to 
widespread lymphohistiocytic activation [215]. 
The resultant cytokine storm tends to be more 
prominent than those observed in non-EBV-HLH 

[216]. In addition, impaired function of T cells or 
NK cells is thought to provide a phenotypic pre-
sentation of HLH resulting from EBV via any 
genetic mutation involved in the T-cell and/or NK 
cell activation pathways [217, 218].

Diagnosis  Serologic testing can help differenti-
ate primary EBV infection from a reactivation 
process, although they have limitations such as 
delay in positivity and difficulty in result inter-
pretation. Real-time PCR is used to measure the 
EBV viral load which can help predict prognosis 
and response to treatment [219]. EBV PCR levels 
are usually higher than those seen in uncompli-
cated cases of EBV infectious mononucleosis 
[220]. Other techniques are available to deter-
mine the involvement of T cells or NK cells in 
helping to confirm the diagnosis. T-cell receptor 
(TCR) gene rearrangement is detectable in half 
of the patients with EBV-HLH using Southern 
blotting and/or PCR analyses. It is hypothesized 
that the presence and change of TCR gene clonal-
ity probably plays a prognostic role for EBV-
HLH [90]. Sandberg et al. [221] recently reported 
that Southern blot analysis could be replaced by 
BIOMED-2 multiplex PCR in routine testing of 
T-cell clonality. The EuroClonality (BIOMED-2) 
consortium developed a uniform reporting sys-
tem for the description of the results and conclu-
sions of Ig/TCR clonality assays to help improve 
the general performance level of clonality assess-
ment and interpretation in cases with suspected 
lymphoproliferations [222]. It was reported that 
TCR gene clonality with BIOMED-2 multiplex 
PCR [223] is highly sensitive for detecting T-cell 
clonality and is useful in predicting response to 
treatment in EBV-HLH cases [223]. Interestingly, 
it was found that male patients with EBV-HLH 
may have mutations in the SH2D1A gene which 
is classically associated with X-linked lymphop-
roliferative syndrome (XLPS). XLPS is a syn-
drome of immunodeficiency to EBV virus. 
Therefore, it is recommended to test for XLPS in 
male patients with EBV-HLH [224]. It is also 
recommended to test for other genetic conditions 
such as fHLH, especially in male patients under 
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1 year of age, and in those with HLH in a sibling 
or with consanguineous parents, or when HLH is 
recurrent or unresponsive to treatment.

Prognosis  Of all the viruses associated with 
HLH, EBV-HLH carries one of the worst prog-
noses. In a nationwide survey in Japan to identify 
prognostic factors in children with EBV-HLH, 
Kogawa et al. [225] found that most of the clini-
cal and laboratory parameters including EBV 
load, NK cell activity against EBV-infected 
cells, and the presence of clonality at the onset of 
disease were not associated with a poor outcome. 
Nevertheless, Matsuda et al. showed that change 
of clonality can be a good marker of disease 
activity in childhood EBV-HLH [223]. It is also 
reported that hyperbilirubinemia and hyperferri-
tinemia at the time of diagnosis were signifi-
cantly associated with a poor outcome. Henter 
et al. also reported that hyperbilirubinemia and 
hyperferritinemia at diagnosis, and thrombocy-
topenia and hyperferritinemia 2 weeks after the 
initiation of treatment, adversely affect the out-
come of HLH [226]. Better outcome is specu-
lated to be associated with going into remission 
within 8  weeks of treatment initiation [225]. 
Huang et  al. reported that hypoalbuminemia is 
an independent predictor for HLH in childhood 
EBV-associated disease [227].

Treatment  Antiviral therapy with acyclovir, gan-
ciclovir, or cidofovir is generally ineffective as 
monotherapy in infectious mononucleosis and 
EBV-HLH [228]. However, aggressive therapy 
including immunochemotherapy and allogenic 
stem cell transplantation has radically improved 
the prognosis. The optimal treatment strategy 
[229] for EBV-HLH consists of immunosuppres-
sive medications that inhibit overactive T-cell and 
NK cell responses [i.e., corticosteroids, cyclo-
sporine A, intravenous immunoglobulin (IVIg), 
antithymocyte globulins, etoposide, and plasma 
or blood exchange transfusions] [229, 230]. 
Hematopoietic stem cell transplantation (HSCT) 
is the last treatment resort for refractory forms of 
EBV-HLH, and in the case of EBV infection 

occurring in genetic forms of HLH [231]. Despite 
the fact that reports have shown that HSCT is 
effective in treating patients with refractory EBV-
HLH [232], it should be compared to immuno-
chemotherapy in a randomized study to provide 
evidence for which approach is superior and/or 
safer [233].

In 2007, Balamuth et  al. [230] reported that 
adding rituximab to the HLH-2004 treatment 
protocol improves its efficacy. Rituximab is a 
monoclonal antibody against CD20 on the sur-
face of B cells. Because EBV targets B cells in 
the initial phase of the disease, rituximab’s elimi-
nation of B cells is thought to inhibit the extent of 
the infection. In addition, B cells may be a target 
in EBV-HLH, and rituximab may reduce morbid-
ity and mortality by reducing the circulating 
B-cell population and the EBV load [234]. 
Rituximab seems to be most effective in the 
setting of XLPS patients infected with EBV but 
is likely less effective when EBV is capable of 
infecting the T-cell pool. Nonetheless, the addi-
tion of rituximab to the treatment repertoire of 
EBV-HLH provides an opportunity to tailor ther-
apy specific to the patient (personalized medicine 
approach).

�Other Herpes Viruses
Following EBV, cytomegalovirus (CMV) and 
human herpes virus (HHV) 8 are the next most 
common of the herpesviruses to be associated 
with HLH. CMV infection has been associated 
with HLH in otherwise healthy patients [96, 235], 
premature infants [97], patients with inflamma-
tory bowel disease [236, 237], rheumatological 
diseases [238, 239], cancer [240], and in trans-
plant recipients [241, 242]. In a series of 171 
patients undergoing HSCT, HLH was observed in 
7 (4%) of them and was triggered by CMV in 3 
cases [243]. In a Japanese registry with CMV-
HLH diagnosed at less than a year of age (1986–
2002), four of the five infants died, suggesting 
that younger age may be associated with a worse 
prognosis [244]. The use of specific anti-CMV 
therapy, such as CMV hyperimmune globulin, 
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foscarnet, or ganciclovir, has been associated with 
recovery in selected cases [96, 236–238, 242].

�Human Herpes Virus 8
HHV-8 has been associated with HLH, mostly in 
the setting of Kaposi sarcoma [245], multicentric 
Castleman disease [246], or lymphoproliferative 
disorder [247], as well as in immunocompro-
mised hosts (HIV) [99], transplant recipients 
[248], and, rarely, in immunocompetent hosts 
[100, 101]. In a prospective cohort of 44 patients 
with Castleman disease and human immunodefi-
ciency virus (HIV), 4 (9%) had HLH [246]. 
Intriguingly, in this series, the levels of IL-8 and 
IFN-γ were increased, though the cytokine levels 
of many known inflammatory markers were not. 
In this study, all patients recovered after treat-
ment with splenectomy, etoposide, and rituximab 
[249]. Ganciclovir and foscarnet have also been 
associated with recovery in some HHV8-HPS 
cases. Finally, all other herpes viruses [102–104, 
250] with the exception of HHV-7 have been 
associated with HLH.

�Neonatal Infection-Associated HLH
Due to the lack of disease awareness among 
many physicians, HLH presenting within the first 
4  weeks of life is rarely recognized. It could 
either pass undiagnosed or be diagnosed late in 
the course, or even at autopsy. Neonatal HLH dif-
fers from HLH in older children in etiology, man-
ifestations, and laboratory findings. In a 
nationwide survey in Japan published in 2009, 20 
neonates were diagnosed with HLH within 
4 weeks after birth; 6 (30%) of them were diag-
nosed with fHLH, and 6 (30%) were diagnosed 
with herpes simplex virus-associated HLH (HSV-
HLH) [251]. The overall survival rate of these 20 
patients was 28.6% for fHLH and severe com-
bined immunodeficiency (SCID)-HLH, and 
33.3% for HSV-HLH, despite acyclovir treat-
ment. Although uncommon in HLH of older chil-
dren, enterovirus (echovirus and coxsackievirus) 
and HSV have been associated with fatal or ful-
minant neonatal HLH [252, 253]. This mandates 
early treatment with high-dose acyclovir in sus-
pected cases without awaiting viral studies 
results.

�HIV
HLH can be associated with HIV [117] infection 
[the etiology of acquired immunodeficiency syn-
drome (AIDS)] in different settings. HLH can 
occur either with HIV alone or with a variety of 
underlying associated disorders. HLH has been 
reported in acute or late stages of HIV infection, 
in the setting of immune reconstitution inflam-
matory syndromes (IRIS), and in association 
with HIV-associated malignancies or infections 
(both opportunistic and non-opportunistic) [254]. 
HLH has even been reported as the initial presen-
tation of HIV infection [118], which suggests a 
direct role for HIV in triggering HLH [195].

Due to the fact that both HIV and HLH share 
many similar clinical and biological findings, it is 
likely that this association is also underdiag-
nosed. In one study, hemophagocytosis was 
observed in 20% of 56 autopsy cases of HIV-
positive patients [255]. Around 10% of bone 
marrow biopsies in HIV patients before highly 
active antiretroviral therapy (HAART) initiation 
revealed hemophagocytosis [256]. In adult cases 
with acute HIV infection, HLH was associated 
with low CD4 T-cell counts (<200  cells/μL) in 
almost two-thirds of the cases. In addition, a 
lower CD4 T-cell count was associated with a 
worse prognosis [257].

�Influenza
The association of HLH with influenza has been 
described with seasonal [122, 258–262], avian 
[263, 264], and swine (non-pandemic) influenza 
[265]. It has also been associated with both 
immunocompromised [258–261] and otherwise 
healthy children [122, 266]. In a prospective 
pediatric study, which included 32 children hos-
pitalized with seasonal influenza, one case had a 
fatal outcome [262]. Interestingly, patients with 
severe H5N1 avian influenza have clinical pic-
tures and laboratory findings similar to HLH; 
these consist mainly of encephalitis [267], organ 
dysfunction with hemophagocytosis [268], bone 
marrow suppression [268, 269], and cytokine 
storm [270, 271]. The most common characteris-
tic pathological picture seen on autopsy and 
biopsy in such cases is hemophagocytosis [264, 
271, 272].
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Clinical studies have found that mutations in 
some viral genes (NS1, PB2, HA, and NA) are 
significantly related to cytokine release, and it 
has been shown that recombinant hemagglutinin 
(H5) from H5N1 virus may suppress perforin 
expression and reduce the cytotoxicity of CD8 T 
cells, including their ability to kill H5-bearing 
cells leading to marked lymphoproliferation and 
IFN-γ hyperproduction with macrophage overac-
tivation [273]. Considering the high mortality 
caused by H5N1-HLH, the resistance to many 
antivirals by H5N1, and the similarity between 
HLH and severe flu infections have led some to 
suggest the use of a modified HLH-94 protocol 
[274] with a shorter course of etoposide and 
dexamethasone in such cases. However, in a ran-
domized study from Vietnam, all patients with 
H5N1-HLH died despite receiving corticoste-
roids [275].

Recently, a study was done on 16 cases of fatal 
influenza A (H1N1) infection who met 44 and 
81% of modified HLH-2004 and MAS criteria, 
respectively. Five subjects (36%) carried one of 
three different heterozygous LYST mutations, 
two of whom also possessed the relatively com-
mon p.A91V PRF1 mutation, which was shown 
to mildly decrease NK cell cytolytic function. 
Several patients also carried rare variants in other 
genes previously observed in patients with 
MAS. The high percentage of HLH gene muta-
tions suggests they are risk factors for mortality 
among individuals with influenza A (H1N1) 
infection [276].

�Parvovirus
HLH has been reported in approximately 30 
cases of parvovirus B19 infection; most of them 
had hereditary spherocytosis as the underlying 
disease, and less than 50% were children [106, 
109, 110, 277, 278]. Of these patients, 22 sur-
vived, of whom 16 did not receive any treatment. 
This suggests a better prognosis of parvovirus-
HLH than that with other viral infections.

�Hepatitis Viruses
Fulminant viral hepatitis may mimic and even 
cause HLH. Hepatitis A virus (HAV) is more fre-
quently associated with HLH than other hepato-

tropic viruses, including HBV and HCV. Fifteen 
cases (including children) have been described in 
the literature, mainly in Asia; three of these 
patients also had a concurrent rheumatological 
disease (sJIA or the related adult onset Still dis-
ease), and two also had hepatitis C. Four patients 
survived without specific treatment. The others 
received corticosteroids with or without IVIg. 
Overall, 11 of the 15 had a good outcome [112, 
113, 279].

�Enterovirus
Twelve cases of pediatric enterovirus-related 
HLH have been described. Four patients had an 
underlying disease (Hodgkin and non-Hodgkin 
lymphoma, acute lymphoblastic leukemia, JIA) 
and had a higher mortality rate (75%). Ten 
patients received IVIg (six in combination with 
corticosteroids), but only seven patients survived 
[132]. Other viruses associated have been associ-
ated with HLH (Table 14.4), for most of which 
varying courses of corticosteroids and IVIg have 
been used. Interestingly, HLH may contribute to 
the high mortality rate associated with certain 
hemorrhagic fever viruses, such as those causing 
Dengue fever and Ebola.

�Bacteria-Associated Hemophagocytic 
Syndrome

Of the bacterial pathogens, intracellular organ-
isms have most commonly been the precipitating 
bacterial agents of HLH. The pathophysiology is 
probably related to the host lymphocytes and 
monocytes producing high levels of activating 
cytokines. Defective NK cell and cytotoxic T-cell 
function is also hypothesized to play a role in the 
pathophysiology [2].

HLH has been reported with disseminated 
Mycobacterium tuberculosis (TB) infection. It 
can occur in otherwise healthy patients [280], in 
end-stage renal disease patients receiving hemo-
dialysis [281], in those who had undergone renal 
transplantation [164], or who had malignancy 
[282], HIV/AIDS [283], or sarcoidosis [284]. In 
a review of 36 cases by Brastianos et al., 83% of 
cases had evidence of extrapulmonary tuberculo-
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sis. The mortality rate was approximately 50% 
which portrays the poor outcome of TB-HLH, 
although antituberculous and immunomodula-
tory therapy (consisting of high-dose corticoste-
roids, IVIg, antithymocyte globulin, cyclosporine 
A, epipodophyllotoxin, or plasma exchange) may 
lead to better outcomes [155]. Early diagnosis 
and timely administration of antituberculous 
treatment are crucial in these patients. Moreover, 
one reported case of HLH occurred after child-
hood vaccination with the bacillus Calmette-
Guérin [157].

HLH has also been described in association 
with brucellosis, with Brucella melitensis being 
the most frequently isolated species [168]. 
Leptospirosis has been reported with HLH and 
has required treatment with corticosteroids, IVIg, 
or etoposide, in addition to antibiotic treatment 
[179]. Reports have also related Rickettsia and 
Ehrlichia to HLH, and the prognosis seems to be 
influenced by the specific Rickettsia species, 
patient’s immunologic status, and delay in antibi-
otic therapy or corticosteroid therapy [184]. Also, 
MAS following urinary tract infection with 
Acinetobacter baumannii was reported for the 
first time in a previously healthy 3-year-old child; 
recovery occurred without any cytotoxic treat-
ment or immunotherapy, using only multiple 
doses of GCSF and red blood cell/platelet trans-
fusions [159]. Just like viruses, a large array of 
additional bacterial infections has been associ-
ated with HLH (Table 14.4), but a propensity for 
intracellular invasion is a common theme to many 
of these triggers.

�Parasitic and Fungal Infection-
Associated Hemophagocytic Syndrome
Leishmania infection has been associated with 
HLH (particularly Leishmania donovani and 
Leishmania infantum), but considering that it 
presents with organomegaly and pancytopenia, 
it can also just mimic the syndrome of 
HLH.  This is of importance in non-endemic 
areas, where visceral leishmaniasis is unlikely 
considered as a differential diagnosis, and 
repeated bone marrow smears are often required 
to identify Leishmania species by means of 
PCR with species-specific probes [285]. While 

specific treatment with amphotericin B is usu-
ally sufficient to control HLH, fatal outcomes 
have been seen with undiagnosed Leishmania 
cases treated as HLH [188]. History of travel to 
endemic areas is also of utmost importance for 
suspecting HLH secondary to certain parasitic 
infections such as malaria, toxoplasma, babe-
sia, and strongyloides.

Yeast infections (Candida sp., Cryptococcus 
sp., and Pneumocystis sp.) and molds 
(Histoplasma sp., Aspergillus sp., and Fusarium 
sp.) have been associated with HLH, most com-
monly during HIV infection, malignancy, pro-
longed corticosteroid administration, and 
transplantation [196, 286, 287]. Disseminated 
Penicillium marneffei infection is common 
among HIV-infected patients in Southeast Asia. 
The first case of penicilliosis-HLH was reported 
in a Thai HIV-infected child in 2001, with 
complete recovery after antifungal and IVIg 
therapy [200].

�Treatment Options for MAS/HLH

In addition to treating any underlying infection, 
treatment designed to dampen the cytokine 
storm associated with MAS/HLH is critical for 
improving survival (Table 14.5). Some research-
ers reported the success of high-dose corticoste-
roids alone [25, 288] in treating sJIA-MAS. 
While the fundamental role of corticosteroids in 
the therapy of this disease is not doubted [25, 
69, 70], current regimens usually add more 
aggressive treatment to corticosteroids includ-
ing cyclophosphamide [289], which has not 
gained wide use in this condition; cyclosporine 
A (CsA), which is currently the most commonly 
added medicine to corticosteroids [290, 291]; 
and etoposide-based regimens, such as HLH-94 
and HLH-2004 [11], which have their not insig-
nificant mortality rates during the pre- and post-
bone marrow transplant periods [292]. Of the 
biologics, IVIg has been used, particularly for 
infection-associated sHLH, but IVIg must be 
given early in disease to be effective [293]. 
Furthermore, IVIg has been shown to be inef-
fective in some reports [17]. Antithymocyte 
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globulin has been used successfully in two 
patients with probable MAS [294], but it carries 
a significant risk of serious infections and 
mortality.

Recently, newer more targeted biologic thera-
pies have provided a more targeted and effective 
option in treating sJIA-MAS.  While there was 
some initial excitement about TNF blockers with 
reports on their success in treating many cases of 
MAS including several children with sJIA [295–
303], reports of TNF inhibitors triggering MAS 
diminished enthusiasm for this therapy [304–
310]. Knowing that cause and effect is certainly 
difficult to prove in these situations, the fact that 
MAS did develop in the setting of TNF inhibition 
is concerning [311, 312]. This has led to focusing 
on therapy directed at two other pro-inflammatory 
cytokines, IL-1 and IL-6.

The IL-1 receptor antagonist anakinra was 
shown to be highly effective for sJIA [313, 314]. 
MAS and sJIA flare share many clinical and lab-
oratory features. Moreover in addition to the 10% 
risk of developing overt MAS as part of sJIA, 
another 30–40% of sJIA patients may have occult 
or subclinical MAS during flare that can eventu-
ally lead to overt MAS [68, 83]. This suggested 
that anakinra would also be a valuable treatment 
for sJIA-MAS. There are several reports of dra-
matically successful use of anakinra in cases of 

sJIA-MAS after failing to respond to corticoste-
roids and CsA [313, 315–317].

Anakinra is regarded as a generally safe drug 
because it is a recombinant human protein with a 
short half-life (approximately 4  h) [318] and a 
wide therapeutic window (1–48 mg/kg/day) [35, 
317]. However, cases of hepatitis attributed to 
anakinra in children with sJIA have been reported 
[319]. Moreover, though cause and effect are dif-
ficult to establish, there has been a suggestion 
that anakinra triggered MAS in two children with 
sJIA [320, 321]. In a large case series of 46 sJIA 
patients treated with anakinra at disease onset, 
anakinra was a potential MAS trigger in five chil-
dren at doses of 1–2 mg/kg/day [313]. However, 
dose escalation of anakinra often seemed to help 
control MAS, and none of the children had to 
permanently stop the anakinra [313]. More 
research is needed to define the role of anakinra 
in sJIA-MAS and other forms of sHLH.

IL-6 blockade, via an anti-IL-6 recep-
tor monoclonal antibody (tocilizumab), has 
also proven successful in treating sJIA [322]. 
However, a case report of MAS attributed to 
IL-6 blockade [323] underscores the need for 
further studies to define its role in the treatment 
of sJIA-MAS. IL-6 blockade, however, has been 
successfully used in treating cytokine storm syn-
drome associated with chimeric antigen receptor 

Table 14.5  Treatment options for HLH

Antimicrobials
Conventional 
treatment Biological therapies Future targets

Antivirals
Antibiotics
Antimycotics
Amphotericin B

Corticosteroids
Cyclosporine-A
HSCT
Etoposide
Cyclophosphamide
Methotrexate
Others:
Plasmapheresis

Intravenous immunoglobulins
Cytokine-targeting drugs:
 � •  IL-1 blockade Anakinra
Rilonacept Canakinumab
 � •  IL-6 blockade
 �   Tocilizumab
 � •  TNF-α blockade
 �   Etanercept
 �   Infliximab
 �   Adalimumab
 � •  IFN-γ blockade
Anti-CD20:
 � •  Rituximab
T-cell-targeting drugs:
 � •  Antithymocyte globulins
 � •  Alemtuzumab (anti-CD52)
 � •  Daclizumab (anti-CD25)

JAK inhibition
TLR blockade
Administration of IL-10 or IL-18BP
PPAR-γ or PD-1 agonists
Targeting DCs or Ag presentation
Blocking alarmins (HMGB1, 
IL-33, etc.)
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(CAR) T-cell-directed therapy against resistant 
leukemia [324]. Other biologic therapies are 
being explored. Co-stimulatory blockade with 
cytotoxic T-lymphocyte-associated protein 
4-immunoglobulin (CTLA-4-Ig) has been anec-
dotally beneficial in children with severe sJIA 
[317], but its role in treating MAS is unknown. 
Nevertheless, there is building evidence that bio-
logic therapies, particularly IL-1 inhibitors, are a 
welcome addition to corticosteroids and CsA in 
treating MAS associated with sJIA [17]. Finally, 
rituximab has recently been reported to lead to 
remission in a sizable percentage of children with 
refractory sJIA [325], in addition to its effective-
ness in treating EBV-HLH [230, 326].

�HSCT
The first report of successful HSCT in HLH was 
reported in 1986 [327]. HSCT tends to be more 
frequently used in familial cases of HLH, but it 
is used in secondary cases as well. While several 
studies have shown that HSCT is the best option 
for permanent disease control or cure [328–332], 
the overall transplant morbidity and mortality 
is still high (~45%) and it is not uncommon for 
patients to develop recurrence of HLH before a 
suitable donor is identified. Moreover, autologous 
and allogeneic HSCT have been reported to induce 
HLH in transplanted patients, probably due to the 
increased risk of infection imposed by the immu-
nosuppressive conditioning regimen with an esti-
mated risk of 4% in a recent cohort [333]. This risk 
appeared to be reduced in etoposide-containing 
conditioning regimens [333]. The current era of 
biologic therapies has reduced the need for HSCT.

In the future, autologous HSCT combined 
with gene therapy to correct the genetic defects 
might be applicable. Carmo et  al. have shown 
that transfer of a functional perforin gene (Prf1) 
into autologous hematopoietic stem cells from 
perforin-deficient mice restored perforin expres-
sion, partially repaired the cytotoxic defect, and 
attenuated HLH symptoms after viral challenge, 
provided that at least 30% engraftment was 
attained [334]. Similarly, Rivat et al. showed that 
in a mouse model of XLP, gene transfer also 
restored SAP expression and normalized cyto-
toxic function [335].

�IFN-γ Blockade
IFN-γ has been shown to play a pivotal role in sev-
eral HLH models. Its neutralization has substan-
tially improved survival in HLH animal models 
[336, 337] and an MAS model using IL-6 trans-
genic mice [338]. Levels of both IFN-γ and IFN-γ 
-induced chemokines such as CXCL10 and 
CXCL9 are elevated in children with HLH [339]. 
Moreover, sJIA-MAS is commonly triggered by 
viral infections which are known to activate IFN-
γ-associated pathways. Furthermore, numerous 
IFN-γ-producing T cells were found in close prox-
imity to activated hemophagocytic histiocytes in a 
study of inflammatory infiltrates in tissues affected 
by MAS [340], and children with MAS show 
increased levels of neopterin, which is known to 
be released by interferon-stimulated macrophages 
[26]. A longitudinal study of the cytokine changes 
in patients with sJIA showed that levels of IFN-γ 
and IFN-γ-induced chemokines (particularly, 
CXCL9) markedly increased with the beginning 
of clinical MAS and returned to normal with its 
resolution. Furthermore, they were strongly cor-
related with many laboratory features associated 
with MAS [338]. These findings highlighted 
IFN-γ as an appealing targeted and potentially less 
toxic therapeutic option in HLH, and a clinical 
trial evaluating NI-0501, which is an anti-IFN-γ 
monoclonal antibody that binds to and neutralizes 
human IFN-γ, is underway [341]. Recently, a 
report on this trial showed promising results [18].

However, some recent studies question the 
potential of IFN-γ blocking therapy in MAS. First, 
Tesi et al. reported two cases of HLH in children 
with novel IFN-γ receptor mutations associated 
with IFN-γ deficiency, findings which highlight 
the significance of IFN-γ-independent mecha-
nisms in the immune pathology of HLH and war-
rant that other novel therapies, beside anti-IFN-γ 
therapy, be investigated [342]. Additionally, 
sJIA patients were found to have normal levels 
of IFN-γ independent of disease activity [343], 
which suggests that this cytokine does not always 
play an essential role in disease pathogenesis.

�Janus Kinase Inhibition
Because targeting individual cytokines might be 
insufficient during severe hypercytokinemia, 
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cytokine signaling pathways can be targeted to 
avoid an imbalance in the cytokine network. 
Janus kinases control the signaling of many cyto-
kines, notably IFN-γ, IL-2, and IL-6. Thus, inhi-
bition of Janus kinases via ruxolitinib for example 
may serve this purpose. Das et al. reported that in 
rodent models of primary and secondary HLH, 
treatment with the JAK1/2 inhibitor ruxolitinib 
significantly lessened the clinical and laboratory 
manifestations, including weight loss, organo-
megaly, anemia, thrombocytopenia, hypercyto-
kinemia, and tissue inflammation. Importantly, 
ruxolitinib treatment also significantly improved 
survival in this model [344]. Similarly, Maschalidi 
et  al. reported that JAK1/2 inhibition in Prf1−/− 
and Rab27a−/− mice with full-blown HLH syn-
drome has led to recovery in both models [345].

�Other Targets
Peroxisome proliferator-activated receptor-γ 
agonists have also been presented as potential 
agents. They interfere with the activation of the 
NFκB pathway and exert both a broad anti-
inflammatory effect and antiviral capacities [346, 
347]. Based on research in HLH animal models, 
other targets for future therapy have been pro-
posed. These include the induction of T-cell 
exhaustion through the stimulation of inhibitory 
receptors like programmed cell death 1 (PDCD1/
PD-1), restoring cytokine balances by the anti-
inflammatory IL-10 or IL-18BP, halting chronic 
TLR activation by TLR antagonists or blocking 
TLR signaling pathways, and targeting dendritic 
cells as the main drivers of ongoing antigen stim-
ulation or suppressing antigen presentation itself 
[348, 349].

Over the past few years, more has been 
revealed about the role of IL-18 in the pathogen-
esis of sJIA and MAS.  It has been shown that 
patients with sJIA have significantly higher lev-
els of IL-18 [85–87] as opposed to other rheu-
matic diseases such as SLE or rheumatoid 
arthritis [350, 351]. sJIA patients with high levels 
of IL-18 are more likely to develop systemic fea-
tures of the disease and are more prone to develop 
MAS [85]. Interestingly, the development of 
MAS in these patients is associated with a further 
rise in IL-18 levels [85]. IL-18 has also been 

found to correlate with ferritin in adult onset Still 
disease [86]. Therefore, IL-18 has been sug-
gested as a promising biomarker for 
MAS.  Another interesting field of growing 
research is in the role of IL-18-binding protein 
(IL-18BP) which is a naturally occurring protein 
that counter-regulates the activity of IL-18. 
Imbalance between IL-18 and IL-18BP, leading 
to higher levels of unbound IL-18, has been 
found in patients with increased disease severity 
[33, 86, 352]. The administration of synthetic 
IL-18BP in perforin-deficient mice infected with 
murine CMV ameliorated liver damage but has 
not shown an effect on the pro-inflammatory 
cytokine levels or on the overall survival [353]. 
Based on these findings, further work is needed 
to demonstrate the role of IL-18 and IL-18BP in 
MAS. Along these lines, IL-18BP was shown to 
be beneficial in treating refractory MAS in a 
child with an NLRC4 mutation [354].

Recently, neutralizing antibodies and antago-
nists targeting the alarmin HMGB1 (high mobil-
ity group box 1) were proposed as potential 
therapeutic options, aiming to reduce the immu-
nostimulatory load of necrosis- and pyroptosis-
derived danger signals. Models of systemic 
sterile and infectious inflammation have demon-
strated the efficacy of this strategy [355]. 
Moreover, blocking the alarmin IL-33, via its 
receptor ST2/IL-1RL1, is also a potential therapy 
[356] [43]. Overall, the future is looking brighter 
for a variety of potential therapeutics to treat 
HLH/MAS in a patient-specific fashion.
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