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Abstract Predictive geometallurgy tries to optimize the mineral value chain based
on a precise and quantitative understanding of: the geology and mineralogy of the
ores, the minerals processing, and the economics of mineral commodities. This
chapter describes the state of the art and the mathematical building blocks of a pos-
sible solution to this problem. This solution heavily relies on all classical fields of
mathematical geosciences and geoinformatics, but requires new mathematical and
computational developments. Geometallurgy can thus become a new defining chal-
lenge for mathematical geosciences, in the same fashion as geostatistics has been in
the first 50 years of the IAMG.

Keywords Geostatistics * Statistical scales * Microstructure * Computational
geometry * Processing optimisation + Value of information * Mineral liberation
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33.1 Introduction

Geometallurgy, from the Greek words for earth (geia), metal (metallo) and work
(ergon), can be understood as the exploitation of a metallic ore based on a precise
understanding of its geoscientific characteristics. Geometallurgy is hence a cooper-
ation field for geoscientists and mineral processing engineers, something which has
occurred in virtually all mining operations. A modern understanding of geometal-
lurgy, what we could call predictive geometallurgy, proposes a quantitative approach
to the subject. In rough terms, that requires optimizing the ore processing based
on automated mineralogy and microstructure characterisation of the ore, coupled
with geometallurgical tests. These are tests conducted at several scales (from lab to
plant) along which the actual ore is processed in realistic conditions in order to study
the differential behaviour of the several ore and waste mineral phases, and thus the
enriching potential of the ore through the processes considered.
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As a subject, mathematical geosciences has always had a wide application in
mining. Nowadays typical topics of the area are geostatistics, the analysis of data
from special scales (such as compositional data or spherical data), numerical analy-
sis of flow models, remote sensing, (mineral) potential modelling (for instance with
weights of evidence), fractals, geodata standards, 3D geomodelling, or data integra-
tion techniques. The aim of this chapter is to show the deep link between geometal-
lurgical problems and techniques from the main fields of mathematical geosciences.

Geometallurgy distinguishes primary and secondary properties of the ore
(Coward et al. 2009). Primary properties are intrinsic to the ore and do not depend on
the process. Secondary or response properties describe the behaviour of the ore dur-
ing processing. The primary properties are observed by chemical assays, automated
mineralogy (like with QUEMSCAN or Mineral Liberation Analyser—MLA—), X-
ray methods, and other analytical instrumentation. Secondary properties are mea-
sured with geometallurgical tests, such as blasting tests, Bond mill test, flotation
tests, magnetic separation, density separation and so on. These can even be con-
ducted using the operation itself, that is, on the real plant. The secondary properties
are used to predict the outcome and costs of the processing.

To the authors’ knowledge, all studies conducted on predictive geometallurgy
by mathematical geoscientists (Bye 2011; Boisvert et al. 2013; Rossi and Deutsch
2014; Hosseini and Asghari 2015; Tolosana-Delgado et al. 2015; Ortiz et al. 2015;
Deutsch et al. 2016) consisted on appropriately predicting the secondary properties at
each block of a mining block model, and proposing the mining and processing engi-
neers to conduct their mine planning and plant scheduling based on those properties
instead of on metal grades. The first step (Vann et al. 2011) is the geometallurgical
analysis of the ore body with respect to its primary properties. Samples of similar
primary properties or geology are often said to belong to the same geometallurgi-
cal domain. Conventional descriptive exploratory analysis like k-means clustering,
PCA (Caciagli Warman 2015) or machine learning methods are nowadays used for
this task. Moreover, primary properties are also interpolated to the block model, ide-
ally with geostatistics.

The second step is a geometallurgical testwork, i.e. the characterisation of sec-
ondary properties of material from different geometallurgical domains. Often the
goal of these tests is to define a mapping from the primary properties to the sec-
ondary properties, e.g. via more or less complex regression models (Keeney et al.
2011; Everett and Howard 2011; Sepulveda et al. 2017). Having it makes possible
to populate the block model with estimated secondary geometallurgical properties
and to infer the expected income and costs of each block. Such interpolation of sec-
ondary variables is often done on additive proxies (Ortiz et al. 2015; Deutsch et al.
2016). The result is typically called a geometallurgical (block) model.

This can be used in at least three different ways by an operation, to inform both
in short- and long-term actions (McKay et al. 2016). First, the prediction of costs
and recovery allows to assign monetary values to each block. These values can be
used instead of grade as better proxy of cashflow in further calculations, like the
mentioned ultimate pit or mine scheduling. Value is generated by minimizing cap-
ital costs, due to early exploitation of highly valuable parts of the deposit, and by
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an improved distinction between ore and waste (Bye 2011). Second, the predicted
properties can be used as well to find matching ore partners in blending to reduce
feed variability in the plant, and ensure constant plant operation conditions. Value is
generated by lower risk of plant failure, optimal use capacity of all parts of the plant,
and lower controlling efforts by the ability to find the optimal operation conditions
empirically (Shaw et al. 2013). The third option is to use that knowledge to actively
adapt the processing conditions to each portion of the varying feed. The value lies
in higher recovery, lower operation costs, more extensive exploitation (Powell 2013;
Tolosana-Delgado et al. 2015) and ultimately lower ecological footprint.

33.2 Process Modelling

With the exhaustion of simple-texture, single-commodity, easy-to-reach deposits,
the mining industry has been confronted with the need to study a broad range of ore
properties, beyond the classical grade. As mentioned in the introduction, predictive
geometallurgy proposes to obtain a wealth of primary and secondary properties at
each mining block in order to reproduce its behaviour through the processing chain
and, ultimately, to predict its monetary value. This section focuses on such process
modelling.

A couple of steps along the value chain after extraction and crushing, ores are
treated with a variety of processes, mostly physical and physico-chemical, in order
to liberate the several mineral grains and separate them in different streams. Later
on, streams enriched in ore minerals are sent through metallurgical processes, mostly
chemical and physical changes of state processes devised to break the crystal struc-
ture of the ore minerals and produce the final value metals. All these steps can be
studied with two approaches. In the first one, each operation unit is considered as
a black box, and data from both the conditions of operations and the properties of
input and output streams are obtained in order to build empirical rules to predict the
output streams (Matos Camacho et al. 2015). In the second strategy, these predic-
tion laws are built in accordance with thermodynamical, chemical and physical first
principles. These strategies are not mutually exclusive, as one can derive the form
of a parametric predicting equation by first principles and fit the parameters with the
empirical approach.

The first kind of processes mentioned, those mostly keeping the crystal structure
of the minerals involved, include many different processes. Grinding and milling aim
at splitting particles in order to produce single mineral, or liberated, particles. Sizing,
magnetic separation, density separation and many other separation processes aim at
splitting a feed stream into two or more streams with particles primarily classified
according to one particular bulk volumetric property, like size, magnetic suscepti-
bility or density. Finally, froth flotation aims at separating particles according to the
hydrophobicity of its surface minerals as they fall through a bubble-rich 2- or 3-
fluid medium (including water, gas, nonpolar liquids, oils). This is one of the most
complex yet barely understood processes in minerals processing, including effects
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from fluid dynamics, surface physics, organic and anorganic chemistry. In process-
ing plants, several of these processes might be combined so that the output streams
of each processing unit is fed into other units, thus building serial or parallel chains,
trees and even complex networks, with feed-back loops.

Particle based models (Lamberg 2011) are a particular simple and promising
modelling strategy, primarily of use for such networks of minerals processing pro-
cesses. Here, each particle of the general feed is given a probability of going to each
one of the output streams of each processing unit, according to its singular proper-
ties and certain characteristics of the bulk material within the unit. As long as these
probabilities can be considered constant in time, the transient behaviour of the sys-
tem can be modelled with a simple system of first order differential equations with
constant coefficients (Tolosana-Delgado et al. 2015). Other more complex settings,
in particular, milling steps within loops, pose a much more complex challenge and
remain yet unexplored to the authors’ knowledge.

The second kind of processes typically destroy the ore mineral structure into a
fluid state: a water solution (hydrometallurgy, electrometallurgy) or a melt (pyromet-
allurgy). All these processes can be modelled with relatively well-known thermo-
electro-chemical reactions. Lack of space and a certain distance from the classical
fields of mathematical geosciences made us leave the subject out of this contribution.

Whichever strategy of modelling is followed, it is necessary to characterise the
frequency distribution of certain properties on the particle streams. The most obvi-
ous are the size and mineralogical composition of the particles, in exposed surface,
mass and even in volume proportions. Derived from these, elemental deportment
and liberation distribution are also relevant. Elemental deportment is the proportion
of a given element mass apported by each mineral. The liberation distribution gives
the volume (or mass) of particles containing a certain mineral in a (volume, mass or
surface) proportion equal or larger than a threshold, as a function of that threshold.
This is a cumulative distribution in the fashion of the better known recovery and ton-
nage curves in classical Geostatistics. Finally, more complex mineral association or
paragenesis indicators do also matter, as often concentration processes do not target
the value minerals themselves, but some accompanying, more abundant minerals.
Next section discusses which instruments are used to measure these properties and
which are the challenges brought with them to mathematical geoscientists.

33.3 Ore Characterisation

In the past, one-commodity grade was considered the sole and sufficient variable to
characterize a mining block or a deposit. This variable could be more or less safely
considered as a positive variable yet with an interval scale, according to the defi-
nition by Stevens (1946). This explains why Geostatistics was originally concerned
with univariate properties following the properties of Gaussian or lognormal random
fields (Journel and Huijbregts 1978).
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However, the present and the future evaluation of a mining operation will require
many more variables, kinds of scales and new geostatistical models. Multi-
commodity grades, geochemistry and mineralogy, being vectors of positive or rela-
tive components (Pawlowsky-Glahn 2003; Boogaart and Tolosana-Delgado 2013),
have already brought the need of considering multivariate ratio scales and compo-
sitional scales (Caciagli Warman 2015). The routine analysis of mineral and chem-
ical properties by techniques like X-ray Fluorescence (XRF) or Instrumental Neu-
tron Activation Analysis INAA) for bulk geochemistry, X-ray Diffraction (XRD) for
bulk mineralogy, or Electron Probe Microanalysis (EPMA), Proton-Induced X-ray
emission (PIXE), Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-
MS) or Raman spectroscopy for single grain or locally resolved chemistry and min-
eralogy will ensure a continuous growth of compositional and multivariate positive
data in predictive geometallurgy. The generalisation of microstructural analysis, with
machines like QUEMSCAN, MLA or X-ray tomography (Bam et al. 2016; Becker
et al. 2016), will make further primary properties easy to obtain: particle size curves
(showing a distributional scale (Delicado 2008; Menafoglio et al. 2016a)), interphase
mean contact length composition (a sort of two-way composition (Caracciolo et al.
2012)), grain size curves of each mineral phase (a discrete set of parallel distribu-
tions), deportment (a composition informing of the proportion of mass of a certain
element contributed by each of its bearing minerals), and many more properties.
Even the application of EBSD (electron backscatter diffraction) will make it pos-
sible to characterise the distribution of crystal orientations (spherical distributions)
or its modal values (spherical directions). Spectral information is also produced by
many instruments, and although spectra ar nowadays preferable interpreted in terms
of chemical elements, minerals or paragenesis (Chlingaryan et al. 2015) before treat-
ment, one might think of future applications in which core scanning or airborne
spectral data are considered as informative on their own in a 3D geomodel. Consider
that spectral information is easy and fast to obtain in the operation and thus could
help to guide the extraction process and identify ore types during mining and further
processing (Nguyen 2013).

Many of these characterisation techniques can be ordered in a chain of meth-
ods, where the more advanced methods provide more and more detail but at the
price of lower precision, higher costs, and longer aquisition or turnaround times.
For instance, XRD, though primarily measuring modal mineralogy, can be used to
infer bulk geochemical composition, though with higher uncertainty than directly
using XRF. Also, MLA, though primarily measuring grain and particle structures,
can provide a modal mineralogy, but at higher costs than XRD. Finally, EBSD allows
to characterize crystallites and defects, but can also be used to infer the mineralogical
microfabric, albeit at longer measurement times than MLA for a fixed precision.

The other way around, inferring more advanced characteristics of the ore indi-
rectly from cheaper measurements, is in general an inverse problem. Inverse prob-
lems are much more difficult to handle and often do not have a unique solution.
For instance, inferring modal mineralogy from XRF is an endmember problem, and
delivers at most equivalence classes of solutions (Tolosana-Delgado et al. 2011;
Berry etal. 2011). Interpreting spectra into chemical and mineral compositions often
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requires as well unmixing the signal obtained as a linear mixture of known endmem-
ber spectra. Finally, inferring processing properties from primary properties might
require statistical models or machine learning methods to approximate the inverse
problem solution (e.g. Matos Camacho et al. (2015) for magnetic susceptibility from
MLA data). In summary, each analytical method has a specific role to play, and sev-
eral methods will be required to appropriately characterise all relevant aspects of the
ores.

Another classical class of metrological problems appearing in ore characterisa-
tion is instrumental calibration, namely the inference of the composition of bulk
samples or spots by comparing their signals with the signal obtained from a refer-
ence material or standard where the property is known, as well as the corresponding
uncertainty. The specific challenges for geometallurgy are the high variability of
natural materials, difficult to reflect in standards with comparable compositional and
physical characteristics (called matrix matched), and to measure in a single method.
This concerns many of the techniques mentioned before, like XRF, INAA, ICP-MS,
PIXE and EPMA.

From the point of view of mathematical geosciences, these problems imply cali-
bration problems, data fusion and consensus building. Data has often been collected
during different periods with different instruments at different labs. Seldom all meth-
ods were applied to all locations. Different batches need to be made compatible and
calibrated against each other. In the authors’ opinion, solutions for such problems
will require existing concepts and tools and new developments from geodata man-
agement, geo-ontology and geoinformatics.

Additionally, local analytics techniques (MLA, QUEMSCAN, X-ray tomography,
PIXE, EPMA, Raman) bring their own problems to be solved with mathematical geo-
sciences techniques. It is often very challenging or impossible to acquire standard
material homogeneous at micron scale and matrix-matched to the ore samples. Geo-
statistical models have been proposed for supporting such local calibration efforts
(Tolosana-Delgado et al. 2013).

Imaging techniques are also becoming more and more popular, at all spatial
scales. More and more methods (hyperspectral satellite- and air-borne, drone-borne
imaging, mine face imaging, core scanning, EBSD, MLA, X-Ray-CT, PIXE, ...)
acquire images rather than only univariate or compositional information. On large
scales, from the drill core to deposit scale, imaging gets a rising importance for
the characterisation of the meso- to megastructure of the deposit, because selec-
tivity of ore zones from barren zones during exploration, mining, extraction and
waste pre-screening is highly dependent on such structures. If we focus on sub-
millimeter scales, processing methods and processing costs react very sensitively to
analogous microstructural properties: for instance, the type of intergrowth of miner-
als strongly conditions the necessary milling to achieve sufficient liberation (Perez-
Barnuevo et al. 2013), and milling is one of the most cost intensive processing steps.
Many of these methods measure spectral information at each pixel. Various super-
vised and unsupervised machine learning techniques have been used for mapping
spectral information to geometallurgically relevant quantities (Decamp et al. 2015;
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Harraden et al. 2016; Nguyen et al. 2016). Image processing analysing structure will
thus become more and more relevant in geometallurgy.

Moreover surface imaging techniques like MLA or QUEMSCAN suffer of stere-
ologic degradation: these instruments are devised to characterise geometric proper-
ties of 3D bodies, but only observe them on 2D sections. It is well-known that only
some 3D properties can be estimated unbiasedly by averaging over their 2D counter-
parts. This allows e.g. to have certain confidence in properties like volumetric modal
mineralogy (estimated from the proportions of pixels of the several minerals on the
measured surface), mineral association as the proportion of surface of a mineral in
contact with all other minerals (estimated from the proportion of contact lengths on
the measured surface) or specific surfaces. But other highly relevant properties, like
liberation distribution, grade curves, tonnage curves or particle and grain size distri-
butions suffer significant stereological degradation (Perez-Barnuevo et al. 2012).

Open problems for the next generation of mathematical geoscientists will include,
to mention a few, the development of widely accepted local analytics calibration
procedures; the propagation of uncertainties through image analysis methods; or
the integration of several analytical techniques through consensus-building, e.g. to
deliver mutually consistent measurements of bulk mineral and chemical composi-
tions as well as elemental deportment together with their uncertainties out of XRD,
XRF, EPMA and MLA measurements of the same sample. Correcting stereological
degradation is as well an open issue.

33.4 Orebody Modelling

The generation of large scale 3D models of the ore bodies is the classical key con-
tribution of Mathematical Geosciences to the mining business. Nowadays, point and
block kriging or simulation for grade variables and indicator-based techniques (indi-
cator kriging, sequential indicator simulation, plurigaussian simulation) for categor-
ical variables are accepted standard techniques. Beyond the framework of Gaus-
sian random fields, cumulant based (Dimitrakopoulos et al. 2010; Minniakhmetov
and Dimitrakopoulos 2017) and Copula based (Musafer et al. 2013, 2017) propos-
als, as well as multiple point geostatistics (MPS) can be found in scientific papers,
though their penetration and acceptance in the industry is yet negligible. Multivari-
ate issues are also seldom considered, though compositions (mineral or chemical)
are geometallurgically relevant primary variables, and techniques do exist to pre-
dict or simulate them at both point (Pawlowsky 1989; Pawlowsky-Glahn and Burger
1992; Pawlowsky-Glahn and Olea 2004; Tolosana-Delgado 2006; Tolosana-Delgado
et al. 2011; Mueller et al. 2014) and block support (Tolosana-Delgado et al. 2013)
in a fashion consistent with their scale, namely delivering positive and constant-sum
predictions/simulations abiding to a relative scale.

The geostatistical treatment of other geometallurgically relevant multivariate
scales has received limited to no attention so far by the mathematical geosciences
community. The challenges are multiple (Boogaart et al. 2013). Geometallurgical
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data from EBSD are known to exhibit spherical scales, for which a kriging approach
is readily available (Boogaart and Schaeben 2002a, b). One-dimensional distribu-
tions are much more abundant, and methodological developments for kriging, cok-
riging and conditional simulation exist via functional analysis (Menafoglio et al.
2016a, b). Nevertheless, application to the many geometallurgical data with distribu-
tional scale still requires theoretical and practical developments. Upscaling of these
geometallurgical properties present counter-intuitive characteristics: for instance, a
categorical variable at point support gives rise to a compositional variable at block
support, and while block kriging is generally thought to reduce uncertainty, block
“estimates” of distributional and of categorical variables may very well exhibit
higher entropy themselves. With a few exceptions based on geostatistical simulation
(Deutsch et al. 2015), downscaling has not yet been systematically considered, but
it may become a necessary tool to populate block models with smaller scale granu-
larity, for instance for incorporating information from blast-hole analysis on the 3D
models. Finally, the joint consistent modelling of several variables from different
scales (for instance modal mineralogy, geochemistry, hardness and lithology) has
received limited attention (see Maleki and Emery 2015 for a two-point case study
with one continuous and one categorical variable), and only seminal ideas about
the combination of Bayesian spaces (Boogaart et al. 2014), multigrid Markov Mesh
Models (Stien and Kolbjornsen 2011; Kolbjornsen et al. 2014), generalized linear
models and MPS have been presented for discussion (Boogaart et al. 2014).

It has been shown that the conditional distribution of the geostatistical simulation
is highly relevant for optimal processing choices (Boogaart et al. 2013). Gaussian
geostatistics only delivers that correctly in a Gaussian random field setting. Like with
strategic mine planning (Dimitrakopoulos 2011; Goodfellow and Dimitrakopoulos
2017), non-linear simulation methods better reproducing the conditional distribu-
tions would thus be more appropriate for geometallurgical optimisation. However so
far (April 2017), beyond single categorical variables, no case studies could show the
added value of MPS methods in the context of geometallurgy. The fundamental diffi-
culty appears to be producing sufficiently large, stochastically representative training
images (Emery and Lantuejoul 2014), a problem made even worse by the many rel-
evant variables, some with multivariate, compositional or distributional scales.

Besides the geometric modelling of the large-scale structure of a deposit, 3D Geo-
modelling offer also a tool for modelling and simulation of microstructure and tex-
ture of the ores. Stochastic simulation of such 3D geomodels of ores might be nec-
essary to appropriately simulate breakage of microstructure by crushing, grinding
and milling, as well as to offer an approach to stereological reconstruction. This is
so because all these problems require an appropriate description of the geometric
spatial relations between the mineral grains, and not just summaries of their compo-
sition. However, new concepts, models and techniques have to be developed to link
the macroscale described by geostatistics and the microscale, possibly described by
stochastic geometry.

Another challenge posed by such multi-scale (in the sense of spatial granularity),
multi-scale (in the sense of statistical kinds of data), multi-step (data is added to the
models at different times), multi-dimensional geometric modelling of ore bodies is
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the structuring, management and exploitation of the necessary data to appropriately
provide input for the methods used. A more intimate link between geostatistical and
geodatabases will be required for that, as flexible and sequential conditioning meth-
ods able to incorporate into the conditional distributions data on batches, as they
become available. Sequential data assimilation techniques have been successfully
used for this task in the assessment of univariate quantities (Wambeke and Benndorf
2017).

33.5 Decision Making

Geometallurgy touches on all levels of optimization of the mining operation, from
exploration, investment, and strategic mine planning towards the daily operation.
Each optimization task can be stated as a w-question, and delimits a certain scope of
the decision to be taken.

Blending ores from different localities to ensure a stable feed properties for the
plant presents the smallest decision scope, as it only changes where to mine and
not when or how to process. Having the ability to predict mining and processing
behaviour for different feed materials allows to better predict block values or machine
time and maintenance requirements. Such better block values can be used in classi-
cal strategic mine planning tools for an optimal exploitation of the deposit, that is
answering the when and where issues related to pushbacks and ultimate pit calcu-
lations. For this task a statistic model relating the primary geometallurgical proper-
ties, with secondary ones is typically enough (Vann et al. 2011). If the processing
model is good enough to predict the value as a function of the processing choices, it
can be used in conjunction with a geostatistical description of the geometallurgical
ore properties to optimize the processing itself either for the whole deposit or each
block (optimal adaptive processing) (Turner-Saad 2011; Tolosana-Delgado et al.
2015). Goodfellow and Dimitrakopoulos (2017) shows how blending, strategic mine
planning and routing can be optimized together. The optimizability, i.e. the optimal
achievable productivity, depends on very basic decisions like the size of selective
mining units, available equipment and available data. The overall value of the mine
and thus the decision to mine itself depends on all details. Boogaart et al. (2015)
shows the relevance of the selective mining unit and the decision strategy for the
value of the mine (how fo model). Boogaart et al. (2016) shows how to quantify these
values and the value of the available equipment, determining costs and available
processing choices, before the actual mining operation starts. Such calculations are
based on geostatistical simulation, and thus allow to optimize the geometallurgical
approach (how to optimize) and the investment (what to build). Boogaart et al. (2016)
show the substantial influence of the exploration plan and the data aquisition strat-
egy (e.g. the influence of processing data) on the overall value of the operation and
how quantifying the value of information can be used to optimize the geometallur-
gical exploration strategy. This offers a way to economically justify and timely plan
extensive geometallurgical data aquisition campaigns (what and when to measure).
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All these approaches rely on stochastic optimisation in a geostatistical framework
for geometallurgical data combined with a geometallurgical processing model, both
based on quantitative ore characterisations. That is, they rely on the mathematical
tools described in the preceeding three sections. Applying these techniques is still
a major geoinformational challenge including big data management, data fusion,
massive parallel computing and real time data management (Jones and Moorhead
2013; Lopez et al. 2016).

33.6 Conclusions

Geometallurgy requires substantial geomathematical developments in all the clas-
sical fields of mathematical geosciences and geoinformatics. The challenges are
beyond the classical solutions, e.g. a truly multivariate, multi-scale Geostatistics
honoring non-Gaussian relationships is required; statistical analysis for various scales
beyond positive data and compositions is required, in particular distributional data;
a full space-time 3D data fusion and fast automated updating of models will be
required; there are new challenges to the mathematical background of metrology
including issues of local analytics, compositional calibration, and varying mate-
rial matrices; structural characterisation on several scales from the ore body to the
microfabric are needed on a quantitative level from limited 2D stereological data and
supportive conditioning information (bulk mineralogy and geochemistry, accessory
information on mineral stoichiometry, cristallographic defects, etc.); geostatistical
models of the spatial variation of the microstructure throughout the deposits (i.e. a
structure Geostatistics) needs to be developed; and so on.

The mathematical challenges of integrating characterisation, stochastic mod-
elling, process simulation and optimisation, and data reconciliation, will extend to
manmade and secondary resources (tailing dams, recycling, urban mining) and to
the optimisation of other geosystems (water management, ecosystem management,
urban ecosystems, the trisystem of energy-minerals-water), hence the lessons learnt
from primary ores geometallurgy will be relevant for many fields beyond ore geology
and mining. Beyond the classical fields of mathematical geosciences, geometallurgi-
cal questions will as well require solutions from mathematical disciplines uncommon
at the IAMG, like optimisation, operations research and numerical process mod-
elling. Thus, geometallurgy extends the scope of the IAMG towards these fields. In
this way geometallurgy can become the scientific and economic driving force for the
next generation of mathematical geosciences and geoinformatics.
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